mi a reproduced copy c! juus te-äim* - dtic

62
AD-A956 002 G A Reproduced Copy C! JUUS te-äiM* > Mi ft Reproduced for NASA fry the NASA Scientific and Technical Information Facility 91-05014 lllilliiliilllii me (72 Am <5 91 7 1. OfiO

Upload: others

Post on 07-Nov-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

AD-A956 002 G

A Reproduced Copy C! JUUS

te-äiM*

> Mi ft

Reproduced for NASA

fry the

NASA Scientific and Technical Information Facility

91-05014 lllilliiliilllii

me (72 Am <5

91 7 1. OfiO

Page 2: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

BLANK PAGES IN THIS DOCUMENT WERE NOT FILMED

Page 3: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

r

NASA CR-132 6 87

ANALYTICAL EVALUATION OF ILM SENSORS

By Raymond J. Kirk

SEPTEMBER 1975

i: Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

>5;*

u

Y

VOLUME II

APPENDICES

Prepared under Contract No. NAS1-13489 by HONEYWELL INC.

Systems and Research Center Minneapolis, Minnesota

for

KNOOUCIS IT

NATIONAL TECHNICAL INFORMATIONSERVK:*

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

f^f.FR-r^-1 3?*:87-Vol-?) »»'JIIVTTCAL N^-^ttf

?oorNDTrt-5 (Hon€vw«=llf Inc.) 112 p HC $S.25

ft3/:ij nncla«; ^ c. 2 3 ^

liUUliliUUIiUUliliitiiUlliillliK

Page 4: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

Analytical Evaluation of ILM Sensors

Volume II

Appendices

Contract No. NA$i-13489

| * ■•■»«."liiw-i I'vJ

1 Ju.a; ... j

fc»

i Av^L'unl i 'it f fodffl

plvull rtijij/er JDist I Spsolal

(V\

Systems and Research Center Honeywell Inc.

hnmi-y

"v

UllJlliaiillMMailJlJiJlMMllI £

Page 5: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

SECTION IX

APPENDICES

APPENDIX A. TENTATIVE MLS ACCURACY REQUIREMENTS

APPENDIX B. MARSAM II COMPUTER PROGRAM SUMMARY

APPENDIX C. SCATTERING OF ELECTROMAGNETIC WAVES

APPENDIX D. ATMOSPHERIC ATTENUATION OF MICROWAVES

APPENDIX E. RADIOMETRY COMPUTER PROGRAMS

APPENDIX F. MLS CONFIGURATION K AIRBORNE EQUIPMENT

jjaiMaMMMMAuaauHiMiis

Page 6: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

APPENDIX A. TENTATIVE MLS ACCURACY REQUIREMENTS

GENERAL

Safe flights and landings generally require the following aircraft per-

formance :

o The aircraft path deviations should be within safe limits.

o The aircraft path rates (such as sink rate) should be within

safe limits.

o The aircraft attitude changes should be comfortable to pilot and

passengers.

o The aircraft control surface movements should be within reason-

able mechanical limits and should allow adequate margins for

response to air turbulence and other factors.

o The aircraft control column activity should be comfortable to

the pilot.

o For manual flight the display activity should be acceptable to the

pilot.

The MLS shall not compromise the ability of the aircraft to maintain these

criteria.

The factors of error magnitude, duration, spectral content and zone of occur-

rence are important as well as the factors of aircraft type, AFCS configuration,

gain, and transient response.

A-l

IlliüJiMMliMMMMlUiiäMMIlL \

Page 7: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

Angle Noise (Includes Receiver Noise) -- Angle noise Is defined as spatial

and temporal perturbations In the guidance signal. It originates from both

ground and airborne equipment and the environment.

Path Following Noise — Path following noise is defined as that portion of

angle noise which can cause aircraft motion; it exhibits relatively slow

variations.

Control Motion Noise — Control motion noise is that portion of angle noise

which affects control surface, wheel, column motion, and aircraft attitude;

It exhibits moderately fast variations.

Extraneous Noise — Extraneous noise Is that angle noise which exhibits

variations too rapid to affect aircraft control and guidance.

Path Following Error — Path following error is defined as the angular

deviation from a predetermined course of an aircraft perfectly following MLS

guidance comnands. The error Is thus due to angle bias and path following

noise in the guidance signal.

Range Error — The range error Is the difference between the suitably processed

DME range and the true distance at any given point in time. DME bias and noise

errors have the same general definition as for angle guidance.

Course Linearity Error -- Course linearity error is the deviation of the

angle coding scale factor from the nominal, about a selected course. Linearity

errors affect effective AFCS gain and display sensitivity, and con-

A-3

llliilüüMUMMMliüMüliMMI£

Page 8: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

o High - Does not affect aircraft control and guidance.

In terms of spectral density, the bias would be lower frequency limit of

noise (approximately 0 to .05 radians/second for a 60-second record).

While the term "path following error" suggests the difference between a

desired flight path and the actual flight path taken by an aircraft following

the guidance, In practice this error Is estimated by Instructing the test

pilot to fly a desired course, and measuring the difference between the

filtered guidance indication and f.he corresponding position measurement

determined by a high-accuracy instrument such as a theodolite. The errors

and spectral distribution thus obtained give an accurate estimate of the

path following parameters. A similar technique is used to determine the

control motion noise.

Treatment of Sudden. Large Errors

Interference or nultlpath can occasionally cause large, sudden changes In

angular indication. Provision shall be made to handle such transients while

maintaining validation and coast requirements. Capability of "coasting"

through periods of transients shall be provided, which rejects loss of data for

a period of time up to 2 seconds, except that those functions, actively In use

to determine flare altitude,shall be limited to 0.5 seconds coasting time.

Bias

The angular bias is determined by averaging the time error record of a test

flight (the difference between the MLS-derlved angle and the tracker-derived

angle) over a period of 60 seconds.

A-5

illiitlMMMMMMliälillilllJL

Page 9: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

x: o u u a 4J o* c

o >u u o

T3 W C

•H (0 «3 >. W

r^ 3 a a C 4J 4J

■a 4J u u p o at o U 4J

os ^ a; h 4J

J-l fH 0 OO-rt M C fc

w > c o o

I I

< fll

P^

A-7

llflllMMVIMllMllKttlllMlI

Page 10: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

ja

9)

0) c o a> c

o

§

«0 o

u

w 41 CO ft

I JO N

I

re

M re

9i C o

c o

Of c 0) c o

a o u I I

I

4) U c

o (M

I 1

re rf->

E c m re

PH rH W rH

O PH

IO

b Ö a» M

o

o o o <M o

§1

N <

C o

>

ÜJ

Ul

o

0» k

_re

A-9

JIJillMMMMUMlittlMllIAII

Page 11: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

ERROR INTERPRETATION

Procedures are outlined below which relate the measured parameters to the

specification for accuracy. Refer to Figure A-3 for definition of points

outlined below and to Table A-4 for the filter configurations.

Point A; MLS Raw Error Data.

Point B; Time Average over any 60-second Portion of Flight Course. Course Bias - See Table A-l for limits.

Point C; Path Following Error; see Table A-l for limits; use technique ^ described in Figure A-l for calculation.

Point D; Use Table A-2 for limits.

Dsta Rate: The MLS signal format shall accommodate different data rates

in different configurations. The format shall be capable of

providing the minimum information update rates for the functions

in each configuration as shown In Table A-3.

TABLE A-3. MLS MINIMUM INFORMATION UPDATE RATES

FUNCTION UPDATES PER SECOND

All angle functions except Flare

5

Flare 10

Aircraft Carrier Landing - Aslmuth Elevation

10 10

DME Interrogation Rate - Normal On-Ground

40 5

NOTE: All numbers update per sec .ond

A-ll

U 1 1 1 M I M I 11 JL U S K K A M 1 I 1

Page 12: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

Table A-4 — Filter Configurations and Corner Frequencies

Guidance function

Corner frequencies (radians/sec)

UQ wl w2 w3 wA «5

AZ

El

Flare DME

.05

1.5

2.0 10

0.3

0.5

0.5 0.5

10

10

10 10

2

2

2

TBD

A

A

A

TBD

.05

.05

.05

.05

Smoothing filter

Path following filter

Filter configurations

^2

S+W2

CÜ n

S2+25 a,nS+to) n ; ? = 1; w0 = .M(jjt n wn

w0=wn <l-2?2 + (4(r4-4?

2+2)1/2

Control Motion filter:

Rate filter:

S+w

S + w 3

1 w4

S + Wi

Rate band pass Path following Control band cutoff -v R pass

U)i CÜ

Smoothing filter

aj(rps)

A-13

lIllJIJiMMliHMMMÄMäliMMIi

Page 13: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

APPENDIX B. MARSAM II COMPUTER PROGRAM SUMMARY

INTRODUCTION

The overall purpose of the MARSAM II program was to develop and implement

a mathematical computer model for use in the performance assessment of

reconnaissance sensor systems of varied types operating on prescribed aerial

flight profiles against ground targets in specified background and weather

environments. MARSAM II (the mathematical model acronym) addresses those

aspects of sensor performance as are related to the capability of such

systems to provide target identification detail. Specifically, the types

of aerial sensor systems considered in the MARSAM II mode? '.re: frame

and panoramic cameras, television, the visual observer, vertical and forward-

looking infrared, side-looking and forward-looking radar, and ELINT. As

applicable to the different sensor types, film record and/or display modes

of operation are considered. In addition, there is provided as an integral

part of the MARSAM II computer model a stored library of characteristic data

for numerous target-elements, backgrounds, and weather conditions (such data

is readily expanded or modified by the user analyst). Where the provided

library data base is considered applicable to a given problem, the task of

preparing model inputs is significantly eased for the user. Available

outputs from MARSAM II range from detailed sensor system performance para-

meters and associated probability measures of detection, recognition and

identification to mission success measures. The MARSAM II computer model

was developed as a tool for use by sensor systems design analysts in their

PRECEDING PAGE BLANK NOT JTLMHJ

B-l

liliJiliUUliMUMlillMMlllUI

Page 14: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

r * ^ ^»^ ^^^^^^^^« 1

! Analyst • • Targets 1 • Composition 1 • Location | • Movement ■ • Environment types

• Weather j • Background | • Flight profile | • Sensors

1 1 1

Library • Target elements

• Types • Signatures

• Backgrounds • Types • Signatures • . Masking

• Weather • Types • Degradations

!" i i

i i • Sensor systems

f\

characteristics

i ' i

Marsam II assessment models

• Photo • Infrared • Radar • TV • Elint • Visual

Iterat ons Outputs

• Sensor type • Detection, recognition • Weather type identification • Element signature »■• »-^ probabilities • Sensor characteristic • Profile variable • Mission success

• Diurnal parameter measures

• Sensor performance parameters

Figure B-l -- MARSAM II Capabilities Summary

B-3

llJlJIlflMMMHJilllltllJIJia 1 X \

Page 15: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

Simplification of model use results from availability of a library of target«

element*/environment/sensor-system characteristic data, such library

data base being an integral part of MARSAM. To input a problem to the

model, the analyst describes target composition by a code number for each

of the target elements within the target. Similarly, atmospheric and

background environment characteristics may be input, in the main, by

specification of code numbers. Thus, such code number inputs are used

as the means to obtain from the library and input to the model a majority

of the required target-element, enviroment, and sensor-system characteristic

data (library data is readily expanded or modified as desired by the

analyst).

Further simplification and efficiency of model use results from the

automatic manner of sensor-to-target offset consideration. That is, for

a specified sensor and specified flight speed and altitude, the model

automatically determines and assesses sensor performance at only those

aircraft-to-target offset distances for which at least one target element

falls within the sensor field of view.

* In the vernacular of MARSAM, a target is defined as a group of one or

more target elements where, for example, a target element may be a

man, a truck, a boat, a hangar, a surface opening, etc.

B-5

JillJIJtJiUliMllMliUitlllllttIM

Page 16: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

CtlTCR-,

STORE riXCO OAT* IN MCWORV

RC»0 LIBBARV ONTOTAPt i AND SAVC

SCLECT THE REQUIRr.O DATA FROM THE LIORARV AND STORE

-0

SETUP PARAMETRIC TRADEOFF IF SPECIFIED

X

'HAVE ALL SENSOR/ELEMENT\ COMBINATIONS BEEN

XECUTED '

*VES

SELECT NEXT SCNSOR/tLEMCNT COMBINATION

COMPUTE COVER/CE FOR DETERMINE THIS —• SENSOR l/ODC SENSOR/ILEMENT OF OPERATION COMBINATION

-^D

EXECUTE INFRARED MODEL

EXECUTE SIOE-LOOKINC RADAR MODEL

'DOES MODE OF OPERATION REQUIRE

. DISPLAY

CO TO SPEC- IFIED SENSOR ttfcE.F.C.H.ORDl

*E \NO

EXECUTE HUMAN FACTOR DISPLAY MODEL

«ÄIÄ5 OFPOOK

—0

-0

Figure B-2 —MARSAM Program Information Flow

B-7

JIMJlJiäMMÄMJillfiliajlMJlil

Page 17: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

1

a

; 8 i i

M

xpos

ure

v pi

ckup

olse

igna

l-to-

lü U K Z (/) • • • •

3 — « «ft 1 «> y M

J Iff 3 5 A o M III 1 oa • • •

t

I j 3 M ih

eric

Itt

ance

ntp

ath

ne

e

b 8§ SS 1 Atm

tr

an

App

lu

m

1 • « <

I i

.. 8 1

3 fact

age

In-v

m > £ .3 u e — ft </> Ü H 8 • • • o

ft» "8 E

5

Ü E

III.« i i nil fc a y ? S S -g ä 8 ± .a k 01 «I -i o a. o o:

t

■ft» rang

e

Ize

Ived

8 " "»«» 2

3 (ft & 5.

ö

dyna

m

leni

ent

o-no

ls

ctor

vi

ew

nes

re

Ispl

ay

ontr

ast

arge

t e

Ign

al-t

ca

le f

a Im

e in

o. o

f II

OUt-(/)(/>»-Z •'*•••••

t i

■\ Ji e

1 jp t

u

emen

ill

ty

M . T.Ä 1

s 33 „ pi

ck

play

tern

get«

ol

va

II M M

> J2 g 5. toS »- o -i (^ »-o:

S >. oe«/)

1-1

CO

U o (0 c

§ ca

> at

<->

i i

i n «

3> •t-i f*4

t 1

1 1 s |s m

ot

mot

fl 01 — •

For

war

d

• A

ng

ul»

OtQ.

J B-9

llflllMMUMMMllllÄäMMMlM

Page 18: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

4

Ol c •^

1 ^ ^ 1 > > ^ w « a 3 v» ut **

1 E iJ

5 tran

s

tran

s

sphe

r

± M o CM S

CM o S x o < • • •

13 S 1

Ill **% J ^ s i Pi c/> tu ae 3E Bi «t

| S

f * irsg ^ ö =§1 » 2 -Sac

-: 5 «- * 8 -j o o. -a c

I

1 J

In v

iew

l-to

-no

lse

t el

em.

size

fact

or

ast

F res

olut

ion

nts

"5. 1 1 S-i « *l £ S It %» o o*>

M H M H (^ o a: a> o

(0

0)

(0

no e

Ji! O

u (D e i

«3- I

tfl

2 S,

J

B-U

llIilliJtMUMMMMällAlilllX

Page 19: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

LIBRARY DATA

This section contains and references the characteristic environment,

target-element, and sensor subsystem data stored In the MARSAM library.

The ten major categories of stored data, accompanied by a brief description

of the types of data contained, are listed below:

o Terrain Characteristics

- Line-of-sight probability data for six terrain types

o Weather Characteristics

- Data applicable to the photographic, television, visual observer, and infrared sensor models for five weather conditions

- Data applicable to the radar sensor models for ten weather conditions

o Turbulence Characteristics

- Data applicable to the photographic sensor models for three turbulence types

o Target-Element Signatures

- Dimensions, photo/visual reflectivity, emlssivity, and radar cross-section for 81 target elements

o Background Signatures

- Photo/visual reflectivity, emlssivity, and normalized radar cross-section for 15 backgrounds.

o Sensor Subsystem Characteristics

- Performance characteristics for:

A forward-looking Infrared subsystem

A TV image orthlcon subsystem

A TV vldicon subsystem

B-13

liliJlüliMlifiMMllÄMällMMi^

Page 20: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

APPENDIX C

SCATTERING OF ELECTROMAGNETIC WAVES

INTRODUCTION

Various sensors which could be used for an ILM depend on their operation

on the reflective properties of the terrain in the microwave region.

Many measurements of these properties have been made, however, the pre-

ponderance of the data is at incidence angles between 10 and 80 degrees.

Since IIH sensors must operate with Incidence angles from about 84 to 89

degrees, these data are not directly usable.

In an attempt to obtain usable data, a theoretical formulation of electro-

magnetic scattering was developed and programmed on a computer under the

assumption that if the theoretical model corresponded to the measured data

at those points where data was available, the model could be used to generate

the needed data at higher incidence angles. The model used was a statistically

rough surface using the Kirchoff approximation and at first appeared to give

good correspondence. It was later noted that the formulation was

missing a cosine of the incidence angle. After correcting the model, no

set of parameters in the theoretical model could give correspondence with the

measured data. Several explanations are possible for this. It has been pointed

out that the source from which the model was obtained has an error in the

dominant term of the equation at high incidence angles. Another problem is that

only diffuse reflections are considered in the model with specular components

C-l

UlIiaMMMMMMMÄMlilllÄlJL

Page 21: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

the scattering properties of the surfaces Involved.

The technique selected to establish the scattering properties is to obtain

a theoretical model of scattering which can be Justified from physical

principles. Any such model will have various parameters which can be

adjusted to modify the scattering properties, so that it can represent

various surfaces. The model will be applied to the measured backscattered

data to establish the values of the parameters for the surface, and these

parameters will then be used to generate angular relationships.

Definitions for Scattering Parameters

The most physical scattering parameter is the reflection coefficient.

It is defined in terms of the field strengths at the reflecting Interface

as

ER ■>-— (C-.)

where R is the reflection coefficient

% is the reflected field

Ej is the Incident field

While this is an adequate parameter for perfectly conducting, finite

size, smooth targets, it Is difficult to use.

C-3

UlillMUMMiliililiUilliMttlK \

Page 22: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

For an area target, the concept of cross section is generalized to a

dimensionless cross section per unit area, such that the radar range

equation becomes:

Pt A r

W»3 r4j8 P - t / Y G G_ dS

„^ I I t R (C-3)

where s is the reflecting surface

Y is the differential cross section per unit surface area.

Gt»GR are t^e «ntenna gains in the direction of the

differential area dS

This equation is often used in the form:

P^ G^ C, 2

p - ^t bt GR X fy dS (c.4)

which assumes that the gain across the antenna beamwidth is constant

and zero outside the beam. By examining this equation, it can be seen

that for finite targets

T —2— R (C-5) A

where A is the target area

R is the reflection coefficient

X is the wavelength.

C-5

UJiüüliMUMMJiliüMülilAII

Page 23: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

Incidence wave

Reflected wave

Figure C-l — Scattering Geometry

C-7

liUMJJlUliilllUliAitüfllttlX

Page 24: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

I

i—TT—i i i

C-9

liliUüüMMMliMMliMüäM \

1 £

Page 25: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

210- ISO

Figure C-3 -- Specular Scattering from a Smooth Finite Surface

c-n

UliüliüliMMMUMättüllIMI*

Page 26: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

Ki Is the propagation vector of the Incident wave

K2 is the propagation vector of the reflected wave

n is the unit normal to the surface

p - Kj + K2

For a finite surface area in cartesian coordinates,

> dS (C-14)

j^expok^ r(a/+c£'_b) Jv>.r> 4 TT r JS v x y eJ

where a - (1-F)sin01 + (1+F) sin G^ co80

b ■ (1-F) cos02 - (1-F) cosPj

c ■ (l^F) sin 6 2 cos0

i> (x,y) is the height of the surface at (x,y)

0 do

^ X dx

Since the field due to a perfectly conducting area of the same size is

jkA Cos Oj exp (Jkr) (C-15)

In r

A reflection coefficient for the rough surface can be defined as

1 r .> > P - Js(ap +C s' -b) e V'rdS (C-16)

2ACos©i X y

where >2ffr J> > >-• v - — L(sin 01-8ine2 cos 0) l-sin028in05-(cos01+cos0 ) K J

i,J,K is the unit vector triad

C-13

liJiJiJUMMllMlllililMilillÄiü

Page 27: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

The Integral In the expression for <pp*>depends on < e*vt*>? * , which

Is the characteristic function of the probability distribution of f ,

Therefore, to proceed further It Is necessary to define this distribution.

By the central limit theorem, It can be expected that the surface is

Guasslanaly distributed In height. Two correlation functions, corresponding

to "peaky" and more smoothly bumpy surfaces will be Investigated. The

characteristic function for a gausslan surface Is:

<eiVZ(.V-5) > " exP ("V2 o (1 - C (T) ) (0-19)

2 where a Is the variance of surface height

C(T) is the correlation coefficient

Slightly Rough Surfaces

2 2 If the surface Is slightly rough In the sense that V a < < ^

then the power series for the exponential will converge rapidly enough that

only the first term has significant contribution to reflection. In this

case, the Integral Is readily evaluated yielding (Ref. C-l, C-4)

*!*! v, 2 2 -r2 ' .* w 2 2 vxy2 T2 ' (c-20) <pp*> . JJ 5 2__I e*p -V2 a - _J____ ^ '"> A - A

-T2/T

2

if C(T) -e T /T

and 9 9 9 9

C^JS- 2v\y\ Vz a T exp(-Vz2o2) (C-21) 9 2 9 3/2

ACos^g(nvxy r)

If C(T)-e-lXl/T

C-15

IlliJiliJililiMlilillliMiiilMlliK \

Page 28: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

Very Rough Surfaces

The other case which can be easily evaluated is the very rough surface,

2 2 in the sense that V a > > 1. Since v ois very large, the characteristic

Z 2

function will have significant values only near T«O. Further, since the

correlation function is by definition an even function, it's McLaurin

series will contain only even powers. Since Cj(0)»l, this term contributes

nothing to the expansion of the characteristic function about zero.

Thus the only term of interest is the second derivative. Taking this

expansion and performing the integration (ref C-4).

* 2 TT IFF '•pp >

A u2 2

A Vt a c //

(0)

for C - e -t2/T

* <pp > - 2 w F2V 2

z 2 a

eXp- V/2V2a2|C:|"(0) z

T2A(V2 a2/ T2 + V2 ) 3/2

z xy

(C-24)

(C-25)

for C - T /T

Converting to differential cross section,

Y- 2 |F|2 C.) (I)2 expj- (T()2 (^)2

K

(\ )4(f-)a

for C(z) ^ a 2/-.2

-T IT

4(f)2 (li)2

A R

r . «. |F|2 ^)2 C-^-)2 V

^s^if-Wi2] 3/2

(C-26)

(C-27)

for C(T) - e -|T|/T

C-17

UIlIMMMMMMllttitiilLIMlI

Page 29: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

o -ICNJ

HM

Q O

■H l/t 4J 1 ff

"O 00 «. c

«1 iH U^ "S. a

re o 10

f N Oi 2 ^ o

1 1

>* 1

u 01 H

s> •H fa

o CM

o €0

o o If»

o ? gp'S

C-I9

IJJIJIJlJiMMMMaillllMÄMÄlJl

Page 30: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

F .8in0 slne2a2RH(1)-8lneia3RV(1) (C.33)

ala4

FVH . 8in0 flln92a2RV(1>-8lnV3RH(i> (c.34)

F HH

2 -sinflj^sinejSin 0Rv(i)-a2a3RH(i)

ala4

where a^ ■ l+aj

32 ■ cos Oisln ©2+sin Oi cos 02 cos0

33 - sin ©^ cos 82-K:os ©^ sin Ö2cos0

a^ - cos ©! +cos ©2

ar ■ sin O^sin ©2co80-co8 ©^cos ©2

i ■ arctan-i/ yi-.5

FJJJ Is the local Fresnel coefficient for J polarized

transmission and K polarized reception.

Since this set of equations defines a scattering matrix, the reflection

for arbitrary polarizations can be derived from it. In particular, for the

circular polarizations.

FLR " FHH "^ FW ^ J (FHV~FVH) (C-36)

RR rHH W J UHV VT

2

F «F +F - 1 (T -F) RL HH W J v HV VH;

F -F -1(F +F) F,T - HH W J v HV VH'

(C-37)

(C-38)

LL ^1" vv : HV vtt_ (c_39)

C-21

UlillMMMMMMllltMllllMJllI

Page 31: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

01 n

I •s. o u 4J O CD H

m i ü V

5 •H

C-23

liflJIiaMMMMM ILIiiUMMIJL

Page 32: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

A main program, used to test the subroutine and establish surface

parameter values has also been written. The test program obtains back-

scattering cross sections from 10 to 80 degrees, and plots these cross

sections along with a set of values which are input. By examining the

resultant plot, it can be immediately determined how well the theoretical

results match the measured data.

The name of the test program is TSTSCAT. The program reads in from the

teletype values for the constant (measured) plot, scale roughness, scale

slope, and permittivity. Polarization and correlation are changed by

modifying the program. The call to STSCAT is made with continuation lines

to enable modifying IPOL and ICOR with literals. Line 180 is IPOL, line

190 is ICOR. Thus, to enter a value of IPOL, the following program

modification would be made

180 &[lP0L] ,

where I IPOL j is the value of IPOL, to change correlation, the

equivalent modification is

190 & [ICOR] ,

A listing of the entire program, including the test drive program and

the subroutine STSCAT follows:

C-25

UKMÜMiillMlIüllIiMilüMIIK

Page 33: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

230 RESULT (I )«SI0 ^QB rki^T^B f^ ?*o 10 ANGLemsioM NvArtr*?*' 2*0 PRINT 260.SLP ^^i^f 260 260FOBMAT("SLOPEs"»F6.2» ^ 270 PR'NT 20«(ANCLE(|)•1:1*101 2*0 P' INT 30.(PESULTCI).1 = 1.10) 281 PRINT 282 2^2 282FORH*T(//) ZIO 15 CONTINUE 300 50 CONTINUE 305 PRINT 306 306 306FORMAT«"PLOT "» 307 READ 380.REP 308 IF(REP.NE.VES) 60 TO 338 310 20 FORMAT(10HINCIDENCE .10F6.2) 320 30 FORMAT(10HCROSS SECT.10F6.21 321 NMPT«2 322 YMAXi-lO 323 YMINs-50 324 CALL PLOT(XPLT.rPLT.YMAX.YMIN.NMPT.l.36> 325 KPLT>0 326 LPLT'l 327 DO 337 JPLT«1»36 32i KPLTie»2»JPLT 32* LPLT1«LPL7«I 330 VPLT(l)>KPLT/9.0*(RESULT(LPLTl).RESULT(LPLT))*RESULT<LPLT| 331 VPLT(2>«i(PLT/9.0«(INGAMILPLTI|.|N6AN(LPLTn*INGAMILPLTi 332 CALL PL0T(XPLT.YPLT.YMAX.YMIN.NMPT.0.36» 333 KPLT«KPLT«1 33* IFIKPLT.LT.9)60 TO 9J7 339 XPLTiKPLT-9 336 LPLTiLPLT^l 337 337CONTlNüe 338 338PRINT 370 3*0 READ 380*RFP 390 |FIREP.E0.YES)60 TO *0 3M PRINT 36* 3(2 READ 380.REP 363 IF«REP.E0.YES)60 TO 31 36* 36*FORMAT(«ANOTHER ARRAY"«) 369 370 FORMAT('ANOTHER CASE") 370 380FORMAT(A3) 380 STOP 390 END 1010 SUBROUTINE 5TSCAT(A|NC.AREFL.AOA2.PRMTtV.|POL.ICOR.ROUGH.SLOPE.GAMDB) 1020 COMPLEX PRMTIV.BVV.9VH.BHV.BHH.RVFRT,RH0R2.BETA.BC0N.).CTFMP 1030 SN|NC*StN<A|NC) 10*0 SNREF»5IN(AREFL) 1090 *'10A2:SIN(A0AZ) 1060 CSINCcCOSIAINC) 1070 C5REF«C0S«AREFL) 1080 C£0A2iCOS(A0AZ) 1082 TEMPliAINC^AREFL 1083 IFITEMPl.LT..00001)60 TO *30 1090 AS«CS|NC»CSREF-5NINC»SNREF«CS0A2

C-27

UliilliMMMfiMMllliMllÄMÄII

Page 34: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

1640 GAMMAa3.1170909E3«BETA*(R0U6H»SL0PE)**2«EXP(. •39.«7a«17*(ROUGH»( 1650 6 CSIKOCbPEFI I««2)/«TEMP1»S0RT (TEMPI)» 1660 lt = 5L0»>E/«l.<.l<>»P0UGH) 1670 670 IF«C5|NC.GT.C5PEF)G0 TO 750 1680 TEMPItABSISNREF/CSREF) 1690 IF(K/TEMP1.|.T.1)G0 TO 730 1700 TEMP2iEXP(-(K/TEMPll**2l 1710 SHAD*t*EXP<-TEHPl<">2*TEMP2/(3.55«9*KII 1720 GO TO 760 1730 730 SHAD9iEXP<-CTEMPl-K)/3.!5«9» 17*0 GO TO 760 1750 750 SHAOP'l 1760 760 TEMPltABSISNINC/CSINCI 1770 IF(K/TEMP1.LT.1IG0 TO 810 1780 TEHP2tEXP(-«lt/TEHPl)««2) 1790 SHA0I«EXP(-TEMP1»«2*TEMP2/(3.55490707«KII IflOO GO TO 620 IfllO 810 SHAOI«EXP(.(TEMP1-K >/3.54*9077) 1820 820 CAMHAcCAMMA*SHAOP*SMAOI MIO 830 |FICAMMA.GT.O)GO TO 870 1M0 PRINT 880.GAMMA 1850 850 0AMDB>99.99 1860 60 TO 890 1870 870 GAMDB'IOOALOGIO(GAMMA) 1880 880 FORMAT(11HGANMA ERPOK«F6.2) 1890 890 RETURN 1900 END

AH *&<&%*

C-29

UUIIMMMMMMÄÄÄÄllMIII

Page 35: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

ROUGHNESS«0.0540 PERMITIVITV« c.50+J 1.50 SLOPE- 0.15 INCIDENCE 10.00 30.00 30.00 40.00 50.00 60.00 70.00 80.00 0. CROSS SECT-S3.61-54. 44-55. 51-56.61-£7.5?-£3.4?-30. 30-35. S£ 0.

0. 0.

-5.0000E 01 1.0000E 01

-4.0000E 01

GAMMA. DB

•3.0000E 01 -5.OOOOE 01 ♦ ♦

-1.OOOOE 01

5.S000E 01

INCIDENCE ANGLE DEGREES

4.3000E 01

.♦ . ♦ . ♦

. ♦

. ♦

. ♦

.♦ »

»

6.3000E 01

♦ . ♦ .

♦ .

-5.OOOOE 01 -4.OOOOE 01 -:-i. OOOOE oi -3.0ÜOOE Ü1 -1.OOOOE 01

* Th«or«tic«l

. M*Mur«d

Figure C-6—test Hatch for Bsekacattar fro« Coacrat« at X-band, vertical polaritatlon

C-31

UlllIMMlfMUMttitiläilllll

Page 36: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

Taking the surface parameters which yield the best data at X-band and

directly scaling them to K-band yield figures C-8 and C-9. These figures

show a relatively good match between the theoretical prediction and the

measured data. A few other values for the slope and roughness parameters

have been attempted, with poorer results.

Figure C-10 shows the result of a computation for vertical polarized X-band

backscatter off an asphalt surface. Again, the only significant deviation

between theory and measurement is at angles which could have significant

specular contributions.

APPLICATION OF SCATTERING MODELS TO ILM

Information on the scattering properties of natural surface is required in

several areas of the ILM sensor analysis. Scattering data provides a

means for

o Differential cross section estimation

o Mjltipath environment definition

o Mutual Interference analysis

Extension of Cross Section Data

The most obvious usage of scattering models is to extrapolate available

radar cross section data. Nearly all of the measured cross section data

available is for Incidence angles between 10 and 80 degrees. For the ILM

program, 84 to 88 degrees are typical incidence angles. Thus at Incidence

angles of interest, very little data is available. Further, the beamwidth

C-33

liliJtHüMMHMHllliMälillii

Page 37: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

»OJGHNES;«0. 054C' PE RMITI •,' I T V = 5. ^ 01- J U. 3 0 SLOPE* o.c-n INCIDrNCE 10.00 i'O.Of 50.00 40. ruj f.i.i. on öC. 00 70.00 SO. 00 0.

■:?•□;: :ECT-M. 1.10-15.53-17.£0-13. rs-i ?.z7-?\. 31-54. ou-ii.£4 0.

•5. OI.'OME' 01 J.00OOP "1

-4.OHOOH 01 niiOhE 01 ■?:, oooof 01 -1.0 0 •' 0 j 01

♦ ♦ .

♦ .

i'.oOOiic ni

INCIDENCE ANGLE DECREES

*

♦ *

4. 50rM.i£ 1.11

-".. 5 0 0 Oc 01

* Th«or«tlc«l

• MtMurcd

Figure C-9~B«ck«c«tt«r fromconcr«t« at K^ band, horitontal polarization

C-35

liliJtllJiMMMllJittälittAMMl£

Page 38: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

and sidelobe levels of the measuring antenna «re not normally known. At

high Incidence angles where the differential cross section Is relatively

high and changing slowly with angle these Items are fairly unimportant.

However, at low grazing angles, the cross section Is low and varies rapidly

with angle. Therefore, antennas of different beamwldth (or systems with

dlffeerent pulse width for a pulse measuring system) can have large

discrepancies when measuring the same surface, since the major power contri-

bution may come from slightly different angles. Also, when the cross section

is very low and the measuring system uses a CW technique, significant

error contributions can be made by energy entering the sidelobes. Thus,

even that data which is available at these low grazing angles is of question-

able validity. Since a computer program is available which provides cross

section data in good agreement with the high angle measured data, which is

in some sense mathematically reasonable, and which is intuitively correct,

the outputs from this program can be used with some confidence.

The same caveat applies to using the theoretical results as was mentioned

in criticizing the measurements. The cross section is changing rapidly with

incidence angle, and thus some gain function must be included in the

integration of the radar range equation

Pr " ^— C -^ dS (C-Al) (4ir)3 ,^S VT

C-37

JiliJlJtJiUMMMMUilMülilAii

Page 39: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

In this model, all significant contributions to the received energy come

from areas where ^xv^o * By extending this approximation to all

taodels the glistening surface, i.e., that area having significant contri-

bution to the diffuse multlpath signal, may be defined.

It can be derived geometrically that if the area is not limited by the

antenna patterns of the transmitting and receiving antennas, the glistening

surface is approximately a trapazold with sides defined by (ref. C-l).

o and ends defined by

dl"hl COt 2 ßo 1"r»t

where d. is the distance to the start of the glistening

surface from the ith antenna

as shown in Figure C-ll,

Limiting the area of integration to this surface, the mean value of

received diffuse nultipath power Is given by the bistatic radar range

equation:

2 V r y (9^.0) VVV | ) Gg (e2-9R^ ) < (4K)3 JS ^2

where 9t is the transmitting depression angle

0r Is the receiving elevation angle

C-39

liliiiJlJlliMMllllliättiililiLilL

Page 40: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

Many analyses (ref C-l chapter 7 for example) have shown that the distribution

of this power Is approximately uniform in phase and Rayleigh in power.

Since any other assumption yields an extremely complex expression depending

on surface parameters, polarization, etc., the Rayleigh distribution will

be assumed here. Thus the diffuse multipath appears at the receiver as an

additive noise term, which provides an upper limit on the signal to

noise ratio.

Since the width of the glistening surface is very narrow, the azimuth antenna

gain variation and change in cross section can be approximated as a

constant. The width of the glistening surface is:

tu - [h2 + hjtanöjd^-hj)] tan 8< ft o

where h^ is the height of the transmitting antenna

h2 is the height rfthe receiving antenna

£ is the ground range from the transmitter to the receiver

The total diffuse multipath power is then:

.2 ^.cote,, , „ _ , _ , h p r

P * /• 1 Mo -I £-r -I r -I ftl t / Y (tan ^ (—• ), tan A( ^ ) , 0) Gt (tan N jzz>\' 0 > (Air)

(1 -r)" r h2cot8o ~'2 2

-1 h2 G (tan ( —) -6 , 0) (rh. + (£-r)h-) 2 tan ß dr

C-41

llüJlJilililiMiIllltüilüüMllI£

Page 41: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

REFERENCES

1. Beckmann and Spizzlchlno, The Scattering of Electro Magnetic Waves from Rough Surfaces, MacMlIlan, 1963.

2. Semenov, Scattering of Electromagnetic Wfves from Restricted Portions of Rough Surfaces with Finite Conductivity, Radiotekhnika 1 Electronlca V, 110, 1965, p. 1952.

3. Barrick, D. E., Rough Surface Scattering Based on the Specular Point Theory, AP16 1968, P449.

4. Beckmann, Scattering by Composite Rough Surfaces, Proc. IEEE, Vol. 53 No. 8, August 1965, p. 1012.

5. Beckmann, Shadowing by Random Rough Surfaces, AP13, May 1965, p. 384.

6. Ruck, Barrick, Stuart, and Krlchbaum, Radar Cross Section Handbook, Vol. 2, Plenum Press, 1970.

7. Mltzner, K.: Change In Polarization on Reflection from a Tilted Plane, Radio Science, Vol. 1, 1966, pg. 27.

C-43

liflXJlXMUMllllliUMllllMMIll

Page 42: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

APPENDIX D

ATMOSPHERIC ATTENUATION OF MICROWAVES

GASEOUS ABSORPTION

The absorption of microwave energy by atmospheric gases is due Co cyclotron

resonance of the molecules of the constituent gases. In the frequency

range of microwave sensors, the absorption Is due to the 1.35 cm resonance

of water vapor and a series of resonances of oxygen centered about .5 cm.

The general theory of gaseous absorption of microwaves has been formulated

by VanVleck (Reference D-l) and the constants In the formula measured by

Birnbaum and Maryott (Reference D-2), Artman and Gordon (Reference D-3), and

Becker and Autler (Reference D-4).

The absorption by oxygen is given by:

L}/A2+ iVj2 (2+1/X )2+aV2 (2-m)2+4V2J % -^M^)2 \-^ ^ + S-^r- + *-T-d C-D

where

a Is the attenuation In dB/Km o

^ Is the wavelength In cm

P Is the pressure In atmospheres

T Is the temperature In degrees Kelvin

293 AVj - .018 P ( -^

AV2 - .049 P ( ^ ^

^m PAGE BLANK m ^^^

JIJiliUJiUliMMUllIttüliMiLi^

Page 43: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

where

^•°p Is the ground level dry absorption coefficient ad * - 2

To

h Is the altitude (Km)

k Is the temperature/lapse rate

T0 is the ground level temperature (0K)

T -3 a * (24 -_o) Pw x 10 is the ground level wet

20 101.3 absorption coefficient

P is the atmospheric pressure (KPa)

3 W is the absolute humidity (g/m )

This model is useful because of its analytical tractability. Since the

maximum gaseous attenuation of interest is less than 5 dB, any errors

caused by the use of this formula will be insignificant.

ATTENUATION BY CLOUDS OR FOG

Attenuation of microwave by clouds or fog is of a considerably different

nature than that due to either rain or water vapor. This is due to the

scattering characteristics of the very small (''.01 cm) diameter drops.

Fog attenuation was derived by Gunn and East (Reference D-5) with the results

shown in Table D-l. Attenuation at frequencies below X band are not

significant over the path lengths considered, for example at 3 GHz with a

30 m visibility, it requires a 50 Km path to obtain 1 dB of path atten-

uation.

The data in Table D-l is presented in terms of dB/Km/g/nr which requires

knowledge of the amount of condensed water. Based on attenuation measure-

D-3

liJiJlliliMMMUÄllllMilillÄil V

S

Page 44: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

Table D-2. Assumed Water Content of Fog

RVR. ft g/m3 of Water

1,200 .065

700 .14

150 1.1

0 4.0

ATTENUATION BY RAIN

The attenuation of microwaves by rain Is the most significant and

simultaneously the least predictable of all atmospheric degradations.

The theoretical foundation for predicting rain attenuation is the paper

of Ryde and Ryde (Reference D-6), which assumed a particular distribution

of water drop sizes and derived expression for attenuation based on Mie

scattering. The resultant attenuation values can be quite closely

approximated by a function of the form

A - kaRb (D-5)

where

A is the specific attenuation (dB/Km)

a is a function of frequency

k is a function of temperature and frequency

R is the rainfall rate (nm/hr)

b is a function of frequency

D-5

ülilKÜMÜMllllUällilMMMII

Page 45: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

The only attenuation measurements which differed from Rydes theory via

the reflectivity approximation were measurement where there was evidence

of hail or snow mixed in the rain. In these cases, the attenuation was

significantly less than it would be for pure rain, as theory predicts.

Therefore, it appears that inconsistancles in measured data are due more

to inaccuracies in measuring the spatial and temporal variations of the

rain than to any basic fault in Rydes theory. Medhurst's minimum and

maximum limits are not reasonable for radar performance calculation,

since it is highly Improbably that any rain shower would consist of

uniformly sized drops, pathologically sized to provide the highest or

lowest possible attenuation. Any arbitrary variance in attenuation would

be as mathematically viable as Medhurst's minimum and maximum.

ATTENUATION BY ICE AND SNOW

Solid water can be present in the atmosphere in several forms: ice fog

or cloud, hail, or snow. Because of the different dielectric constants

of solid water, its attenuation is generally insignificant. However,

if the solid water is coated with a layer of liquid water, it's attenuation

can be as great or even greater than the attenuation of the equivalent

liquid water particle.

Therefore, the specific attenuation of ice fog or Ice clouds will be

considered to be zero, as will the attenuation of hall or snow if the

air temperature surrounding the hail or snow is below 00C. If the

D-7

UJlJlliaMMMMAMlMAUIMil

Page 46: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

The vertical profiles for the various cases Is shown in Figure D-l.

Based on the weather cases defined above, specific attenuation profiles for

C, X, Ku and Ka bands have been computed as shown in Tables D-4 through

D-10. Gaseous absorption was computed using the VanVleck equations. Rain,

cloud, and fog attenuations were computed by Interpolating values from

Tables D-l through D-3.

Since the fog for weather case 2 is only 60D thick, it can be assumed to be

at constant temperature. Therefore, Table D-5 is only the gaseous attenuation.

The specific attenuation of fog must be added in the first 60m to compute the

total specific attenuation. Values of fog attenuation for weather case 2

are given in Table D-ll on page D-15.

D-9

UHJlliMMiiMliMMttMiililillH \

Page 47: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

Table D-4~ SPECIFIC ATTEMUftTION DB/KPIfILM WE«THEP CflfE 1

ftLTITUDE KlLOWETEPl

0.00 0. 0.10 0. 0.£0 0. 0.30 0. 0.40 0. 0.50 0. 0.60 0. o.ro o. 0.80 0. 0.?0 0. 1.00 0. I.10 0. l.£0 0. 1.50 0. 1.40 0. 1.50 0. 1.60 0. 1.70 0. 1.50 0. 1.90 0. 2.00 0. 3. 00 0. 4.00 0. 5.00 0. «£■.00 0. 7.00 0. 9.00 0. •?. on o.

00 00 00 00 00 00

C BAMp € GHZ 9000E-01 9043E-01 <>0d7E-01 9131E-01 9176E-01 101-SE 00 10S£E 1019E 1015E 1010E 1005E 1001E 9^3E-01 9919E-01 9S74E-01 9930E-01 «789E-01 9750E-01 9711E-01 9680E-01 9'&59E-01 947OF-01 9495E-01 9927E-01 2039E-01 1654E-01 335£E-02 2663E-02

X-B«NP 9 GHZ

0.2775E 0.2785E 0.2796E 0.2807E 0.2817E 0.3115E 0.3132E 0.3117E 0.3097E 0.3078E 0.3059E 0.3039E 0.3019E 0.3000E 0.2981E 0.2962E 0.2944E 0.2928E 0.2911E 0.2894E 0.287«E 0.2699E 0.2626E 0.2693E 0.5701E-01 0.4633E-01 0.8336E-02

KU BAND 15 5HZ

•cA BAND 35 GHZ

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0.8412E 0.8430E 0.9449E 0.8469E 0.8488E 0.9091E 0.9126E 0.90SI&E 0.9035E 0.3994E 0.8933E 0.8882E 0.983eE 0.8782E 0.8732E 0.8682E 0.8638E 0.8596E 0.8554E 0.9513E 0.8475E 0.8100E 0.7938E 0.:E;045E 0.1258E 0.1021E 0.1778E-01 0,1410E-01

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0.3196E 0.3199E 0.3201E 0.3204E 0.3207E 0.3475E 0.348 IE 0.3468E 0.3453E 0.3438E 0.3424E 0.3409E 0.3394E 0.3380E 0.33f5E 0.3 35 IE 0.3338E 0.3326E 0.3314E 0.3302E 0.3290E 0.3172E 0.5119E 0.3147E 0.4496E 0.3t51E 0.C.311E-01 0.5007E-01

01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 00 00

TE1P 'K 295.0000 294.3500 293.7000 293.0500 292.4000 291.7500 291.0908 290.4318 289.7725 289.1133 288.4541 287.7949 287.1357 286.4766 285.8174 285.1582 284.5512 283.9606 283.3701 282.7795 282.1890 276.2835 270.9718 265.5238 259.5714 253.0682 246.2572 239.0394

D-Il

UBJIJIMUIIHMMllJlllüüMJll

Page 48: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

Table D-6 - - SPECIFIC 1 ̂ TTENURTIDN D E-'KM. JLM WERTI HEP' CASE 3. 1

ALTITUDE C PANE" X-BftND KU B^MD KH B:i=iHIi KILGMETEP S 6 GHZ 9 GHZ 15 GHZ 35 GHZ TEMP '>■:

0.00 0.9346E-02 0.1521E-01 0.3165E-01 0.1077E 00 292.7000 0.10 0.9135E-0£ 0.1503E-01 0.3126E-01 0. 1 Ot.4E 0 0 292.0900 0.20 0.?030E-0£ 0.1485E-01 0.3088E-01 Ü.1052E 00 231.4600 0. ?0 0.8879E-0S 0. 146SE-01 0.3051E-01 0. 104 0E 00 230.84 00 0.40 0.S733E-02 0.1452E-01 0.3016E-01 0.1028E 00 230.2200 0.50 0.1234E-01 0.2551E-01 0.5410E-01 0.1919E 00 279.6000 0.60 0.1233E-01 0.2567E-01 0.5457E-01 0.1935E 00 273.3573 0.70 0.1232E-01 0.2584E-01 0.5506E-01 0.1951E 00 273.1156 O.SO 0.1232E-01 0.2602E-01 0.5556E-01 0.1968E 00 277,3734 0.90 0.1232E-01 0.2620E-01 0.5607E-01 0.1935E 00 276.6312 1.00 0.1533E-01 0.2639E-01 0.5659E-01 0.2002E 00 275.3891 1.10 0.1234E-01 0.2658E-01 0.571?E-01 0.2020E 00 275.1469 1.20 0.1236E-01 0.2678E-01 0.5763E-01 0.2038E 00 274.4047 1.30 0.1237E--01 0.2698E-01 0.5ä23E-01 0.2057E 00 273.6625 1.40 0.1240E-01 0.2721E-01 0.5381E-01 0.2076E 00 272.9203 1.50 0.1245E-01 0.2756E-01 0.5943E-01 0.2100E 00 272.1781 1.60 0.1241E-01 0.2769E-01 0.5975E-01 0.2110E 00 271.7507 1.70 0.1235E-01 0.2775E-01 0.5991E-01 0.2116E 00 271.4226 1.80 0.1229E-01 0.2781E-01 0.6007E-01 0.2122E 00 271.0945 1.90 0.1223E-01 0.2738E-01 0.6024E-01 0.2129E 00 270.7664 2.00 0.1213E-01 0.2796E-01 0.6042E-01 0.2136E 00 270.4333 3.00 0.1187E-01 0.2893E-01 0.6263E-01 0.2219E 00 267.1575 4.00 0.1133E-01 0.2381E-01 0.c253E-01 0.2218E 00 264.2066 5.00 0.1969E-02 0.2485E-Ü2 0.4184E-02 0.13:32E-01 258.1250 6.00 0.1671E-02 0.2051E-02 0.2924E-02 0.9179E-02 242.5000 7.00 0.1328E-02 0.1616E-02 0.2270E-02 0.7149E-02 234.7717 3. 00 0.1051E-02 0.1288E-02 0.1803E-Ü2 0.5715E-02 227.8819 ?.oo 0.8357E-03 0.1034E-02 0.1457E-02 0.4654E-0c 220.9921

D-13

IIIlIJUMMMMMHlllÄÄMMIll

Page 49: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

Table D-10 — SPECIFIC RTTENUftTION DB -KM.ILM WEfiTHEP CASE 4

RLTITLIOE C PRND K-BrtMD KU PflNIi Kfl BAND KILDMETEP S 6 5HZ 9 GHZ 15 GHZ 35 GHZ TEMP '¥

0. 00 0.S527E-02 0.1019E-01 0.1506E-01 0.4630E-01 £68.0000 0.10 0.93l4E-0£ 0.99£3E-0£ 0.1465E-01 0.4504E-01 £67.3400 0.20 0.3107E-02 0.9t.77E-0£ . 0.14£5E-01 0.4 330E-01 266.6800 0. 30 0.7905E-02 0.94 31E-0£ 0.1336E-01 0.4£60E-01 £66.0200 0.40 0.7709E-02 0.919£E-0£ 0.1349E-01 0.414£E-01 £65.3600 0.50 0.7517E-03 0.9958E-03 0.1311E-01 0.4 027E-01 £64.7000 O.t-O 0.7309E-0£' 0.3705E-0£ 0.1371E-01 0.3905E-01 £64.3337 0.70 0.7104E-0S 0.3459E-0£ 0.1£33E-01 0.3736E-01 263.9773 0.3 0 0.49068-02 0.3££0E-0£ CI.1195E-01 0.3670E-01 £63.6160 0.90 0.6714E-02 0.7933E-0£ 0.1158E-01 0.3556E-01 £63.£547 1. oo 0.65c'7E-0£ 0.7761E-0£ 0.11£3E-01 0.3446E-01 262.8934 1.10 0.6345E-05 0.7541E-0£ 0.1033E-01 0.3339E-01 £62.5320 l.£0 O.t.lt.SE-Oc' 0.73£7E-0£ 0.1054E-01 0.3234E-01 262.1707 i. :so 0.599-sE-0£ 0.7119E-0£ 0.10£1E-01 0.313£E-01 £61.8094 1.40 0.53£9E-0£ 0.6917E-0£ 0.9335E-0£ 0.303£E-01 £61.4480 1.50 0.5ir.€.6E-0£ 0.'iE.7£0E-0£ 0.957IE-02 0.£935E-01 £61.0867 l.SO 0.5495E-0£ 0.t.5£7E-0£ 0.9544E-0£ 0.2869E-01 £61.0499 1.70 0.5334E-02 0.6359E-0£ 0.9149E-0£ 0.2814E-01 £61.1155 I.SO 0.5159E-0£ 0.t.l57E-0£ O.S960E-0£ 0.£761E-01 261.1811 1.90 0.4999E-0£ 0.593£E-0£ O.S777E-0£ 0.£709E-01 £61.£467 =■. 00 0.4344E-0£ 0.581lE-0£ 0.3599E-0£ 0.2659E-01 261.3123 5. 00 0.354£E-0£ 0.4 374E-0£ 0.7089E-0£ 0.2228E-01 261.9685 4. 00 0.£709E-0£ 0.533£E-0£ 0.5£37E-0£ 0.1646E-01 £56.9718 5.00 0.£095E-0£ 0.£557E-0£ 0.33£5E-0£ 0.1200E-01 £50.970£ •f.. 00 O.l-St^E-OJ: 0.£019E-0£ 0.2382E-02 0.9039E-02 £42.7857 7.00 0.1313E-05 0.1604E-0£ 0.££58E-0£ 0.7114E-02 £35.4751 5. 00 0.1044E-0£ 0.1£79E-0£ 0.1791E-0£ 0.5673E-0£ ££8.5066 9.00 0.:;£r£E-03 0.10£3E-0£ 0.144£E-0£ 0.4^09E-0£ £21.9449

Table D-ll. Specific Attenuation of Fog for Weather Case 2. (Db/ka)

Subcase RVR C Band X Band Ru Band Ka Band

2.1 1200 ft .0015 .0047 .010 .038

2.2 700 ft .0033 .010 .022 .082

2.3 150 ft .026 .080 .171 .645

2.4 0 ft .096 .292 .620 2.34

D-15

UaiÄMMMMltHUail A 11 i 1 I X

Page 50: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

APPENDIX E

RADIOMETRY COMPUTER PROGRAMS

A set of computer programs has been written for use In the analysis

of microwave radlometry. The main programs are:

o Skytemp

o Path temp

o Bnis

The first program, Skytemp, performs the Integration of specific

attenuations to obtain the radlometrlc sky temperature at various

Incidence angles. It assumes a flat earth and a layered atmosphere,

and assumes that all significant attenuation occurs In the first

lOKm of atmosphere. Thermometrlc temperatures and specific attenuations

are read from files pre-stored on the H-6080 disk file system, and sky

temperatures are output to the disk on a file names FLTSKY In a format

which Is easy for the computer to use in further calculations.

Pathtemp Is a very similar program, which integrates the specific atten-

uation to obtain the total one way attenuation on any glide path from

any altitude to the ground. It also computes the path emission observed

at any altitude (under IGRn) and at depression angles from .01745 rad to

.157 rad (1° to 9°), for the IIM weather cases. Its output is to a disk

file named FLTPATH for path temperature or FLATRANS for path attenuation.

E-l

UlilllKliMMUAlläMälllMIlL

Page 51: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

Prograa Skytemp

10 DIMFNSION ALPHA (2?« 10) «THIK (28) .THFOdB) .T5KY(18»10) »TEMP (28* 10) 030 . DATA THIK/20».lt8M./ *<► CALL ATTArH(2r.«D00C<.R/FLALPHA; ««BfO«^«) A*» CALL ATTACMCPNTOOOAe/FLTEVP^OfO.ISTAT») Ai REVIND 20 _ *7 PFWIfJ02l «e. PFAD(20.?41.F'jn = 49) ( (ALPHA ( I O) »I = 1.29) . J= 1 .10)

.*o 49 RFAr(21»2*2»FND = 50) ( (TEMP(|»J) .1 = 1.29)0=1*10) . . 50 50 HO 20C Ksl.lS 060 ir(K.r-E.lO) 60 TO 100 070 .THF!>(<)sK 0B0 THFTA=</57,?9 0:>0 GC TO 120 100 100 THerU>=K-9 110 THETA=TMEr(K)/5.7?9 120 120 CCNTINUP

.130 . ..Sir. rH=SIM(TMETA) ... UO r>0 190 L=l »10 Ul IF(<.\E.1)G0 TO 1*5 'A5.U5 CCHTIVUE — ... _ . - . . .

6 ATTFNJsl, U8 TSt(Y(<,L)=0.0 .150 DO 19:' 1 = 1.26 160 ATTrN,I=ATTFNJ«EXP(-,23«ALPHA(I.L)«TwiK(n/SINTH) 170 T5KY(<.L)=T?KY(K.L)*(200.*TEMP(I.L))«(ATTENJ-ATTENI) IBO ATTrNJ = ATTEMI _- 190 190 CCMINUF 2^0 200 CONTINUE 210 CALL ATTACH(22»«D000A3/FLTSKY;«.3.0.ISTAT.) . . . 220 RFW1N022 230 WPITE(?2.?40) ((TSKYd.J) .I = 1.18).«J=1.10) 240 240 FCRMAT(6E12.4) . . _ 241 241 FO^.'AT(2(10n2.4/) .8^2.4) 242 242 F0P*AT(14P4,2) 246. CALL 0ETACH(20.IS«) .._.. . 247 CALL rETACH(21.I5.) 248 CALL 0ETACH(22.I5.) 2^0 _ STOP - . _ .- ., . 260 END

OBICaNAL PAGE IS OF POOR QUALITY

E-3

KflJililMMHllllttJlJittliMllE

Page 52: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

Program Bnls

KO BTFENSION GAMSUM(2»l«) tREFOUTUS) »GLTMPdO) «(EM5V(2) tSPEC(?) .SPSKVdO)- 1.1 DIMENSION 5PCSKY(9tlO) 012 DIMENSION TSt(Y(9.lO) .WXCS(IO) ♦T0(10»2) 01* riMENSION TAPP(10.2».T5PEC(lO«2)«TEMIT(10.?).EMIT(2l 020 HAT* R5H»SLP.P'?MP(:,PRMIH/.5«3.2«10..10./ 0?5 n*T* r,LTMD/?9«;,»i»»2«l2,7.268./ 2*. CALL «TTArM(21«,000n<,R/Pl)TPUT;»O«0.IS.) 027 OFWIN') 21 030 DATA rMNC/89./ 31 C«LL ATTACM(20«»nn00*9/FLT5KYS».J.O.ISTAT») 32 "EWIND 20 0?3 orAn(?0»3<.) ( (SPCSKYd tJ).I = l«9)«(TS''Y(K,j)«"(sU<>).J=l»10» 03* ?<. Fr<?MAHfF12.4) 0?5 0*0 PRIM 36 036 036 FORMAT ("POUPM si)pcACe PAOAMETFRS tPGM»SLP»PRWR^PRVTM" ) 037 OFAO ?a.O/lTl,riAT2«DAT3«'>47* 0>fi 0?9 FCr.^tT (i-ee,c) 039 k-eprcrgr-r tvc 0<,0 ai^C = riNC/,i7,:o 041 ir (nATl,Fr,0,)'-,n TO *3;,'GH = ^AT1 !SLO = r>AT2;PRMRC = r«T3SP!?MlM = D*T* <,2 TATA V,XC^/l.f,«."'.N2.2.2.3»?.*«3.1.3,2t3.3«3.*«*,P/ 043 043 Ff'IT2sr, 04* Ql'MrirO.O 045 r»'iTl=0.0 050 H^ *2,: J=l .1° o?>o r,AMSiiv(i ,j) =0, 070 GA»'SUW(2»J) =0. O^c orFn.'TU) = ir>»j-05 QOO AcpFLsPre-^n'(j)/57,?<} ir«o ^^ 42" i = i«o -^ 110 ftOA7=(I-n/«5,729 ^tofc l?0 CflNCsC^StAI'-C) Qj*»^f'M/'' 130 C^RFF = cnS(ACfcL, ^tjOz» ■Q**»*. 140 recA7=c^sfAOft7) QlrA*&Jb ISO ^'IMr = MN(Atf;r) "^otbT UO P'-PrFiSI^^APeFL) <" l^O S^0A7 = .SIN^A^A7) IPO A2=(CSI\,C*5*,PFF,*SNn<:*CSRF^»CSOAZ)*«2 WO A3=(5NI»'r*C«orF*CSI\C*5^R:^»CS0*Z)»*2 2 30 A^sSMNr^^N^PF^CSrAZ-CSINrACSPFF 210 re.LP;=(l.-Ae)/2. 220 H».'Lp:=(l,*A«>/2. 230 TAU rR«;NrL (:»!LIN.CtLIN«PPMDF»Pi>»M ^»PVfRH) 340 r«AM = A2»(*1* (5NRFr*SNnA7)»»2)/((1»A?»**2) 3^0 Frq'ir ^ I'"C«5"OAZ)*«?«(A3*SMrA7«*2) / ( (l*Af )•*?» 360 FXY5'>=SNI*C»»?*,>NR|fF««2-2»^wiNC»5N^PF»CSOA7 3 70 r = (6.?9,l«<«orw»(r';i»i

C*CspFp) )«*?

371 IF(G.LT.12,S) f,n TO 377 372C »»»«VPtiY on(ir,H cvon^rMTI AL**** 37 3 TFMPlrr}**?»3,9.474H*eLP»*.,»FXYSO 37* orfTsTA.^'Mr-*«,! D»t;>/( (CST^r^CSPPP) • »2*TF^PI»?f)PT (TFMP1) ) 375 GP TO *r,0 376r ••••51JGJTLY ROUfiM ryp^N-NTI^L»«^^ 377 377 SL■wri = C■,',

37fl S^LSTsC, 379 FACT^sl, 3'«C GTOMrl,

E-5

JlllJillMMllMJlHllÄJlÄÜMMIi

Page 53: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

TOO A70 CTD"AT ("TtJf T4r VPPTiriL f'^PT 70,1T'I ") «tnO 4PC rr^'-'AKfS, 1 .^^«cn.A.lX.Fl 1.^1 fllO 695 FO^'ATdP^y.r^.l .MSV,«,!) ,7x,MSV,F?,l )/n 8?5 R?5 rrBMAT (''MVe-ftTf'e:P»?X«(sM'5lPFU*f . ?X t Rw«ifTrL'L AR .?X ««wP»* I TTEn «?X. 8?6'. PMArraDf T, inx.o'i^TFriJSP «rv «sw'saiiriii A»? .;x«?i-:rwiTTrn »?* «BWA^pAtjcM )

8?8f- 7X,3^fiifY.15Y.,'T'_ ,DP(;ATllP-',/10X,"Vf:',TIC«L Pit 4R f 7«T | n'i" . ?0X . P?9f- ?0X«"HCP17rNT4L "OL *5 I.rATinr") «30 OFAP 48?«',,IMC 340 <.f2 FrP"AT (P10.A) »50 ir(oivc.Nt.C,)r.n Tn 40 «51 ''«LL ^FT-,.''M(?r,ISTAT,l «?2 C*LL TTaCHf?! .T^TAT,) 858 TALL OETArHCjltlS.) 8»S0 STOP 870 P'VD 8«0 FU^'CTICN 5lJAr(SLCP«TAV«) 3«30 ▼m = ^LriP/TAWt 900 r«9Fr = ,5/( a*,?7fl^O3»THET*,?'03fl9#THrT*«?*.000'?7?«THrT»«3*.07fll0e* 9106 THrT*»4)*«4) 920 SHAOrFXPC-.^^TAMA^fTocC) 9 30 870 PFTIJON 9^0 880 FOPMAT(HSWAr«nvivr, OUrSTIOr APLF) 950 r^n 1000 SLIPROUTP.'E FHSNFL (?^LIW«CSLIN»PRMRE»P-<MIM»PV«P«) 1010 PlsPPMPE-SNLIN 1020 A6SOrSORT(Pl«»2*PRMIM««2) 103" n2=.5»ATAN2(PRMIM/pi) 1040 CSB=r05(P2) 1050 «WP = 5IM(«»2) 1060 PNOPV=PRMRF»«2*PRMIM«»2 1070 PVr((PN0RM»CSLIN)*»2»*»A65O«(PRMRe«SNB)*»2»CSLIN»A6R'3**7-2» 10806 A6SO*PNORM«CSLIN)/((PNORM*CSLIN«2* 1090 6 S0RT(AfS0*CSLIN)*(PRMRr*CSB*PPMIM*SNB)*A6S0)ftft?) 1100 CONTINUE 1110 RHs<cSLIN»«2*A650«*»SNB»«2*C5LIN*A6S0««2-2»A6S0*CSI fM>/MCSI IN* 11206 2«S0RT( 1130 6 A6S0*CSLIN)*CSB«A6S0)*«2) 1U0 RfTURN 1150 END

fiftasf

E-7

UJiJIUMMllMMlllllMÜÜMMIJl

Page 54: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

•o m

or 3

UJ *-

Z < X t-

K Z ui o

— a a. «

in •

o o

-> tu if> »-

m S

• t

^•isj»f-f-« — ««r-»in

o a

mr-r-r-r-^-r-h-r-*

<«rsirgrgrsifMrMiv(M<D •-ooa)Bs<oaiaoB«r-

> Z> — W >- (u •- a » «A a

in o n IM U. • u.

o •- c

II X »-

a >- o (/) ••••••••■•

iriMf^i^omirrM^m oaaoi^ccocao-r- <\j

if. •••••••••• (<~OCCC — — — <vo

IS z <

u z tut- OZ » UI u a z < — a

a

el UJ or 3

a z uj o I»- •■•••««•••

a o

o -i UJ ♦ >- ir ►- • »■

o a

> or ►- « "■ _i >Z> — »J t- UJ — a T * at UJ a

z c IM

or ► O

in ••> <•

tB««h-0'irir«^ir

u u z UJ K o z _ UJ

z < •- a

a i <

o •

ir oc O ") Ul ♦ »-

IM ►-

UJ or 3

»r-OoylTi^OiMOO- • ••••••••• in«r-«r-<D»x-*ir »inir«^r-KB«i<n fMfMIMfNlfNjAJIMfNJOjrNJ

a z IUO a x z»- UJ <

or « 5 a

•crgrMrsjrgrgrwrgfSj«

«ooooooooo»

a < _j >■ 3 x UJ a

z o M

a o ZlMIT^O^IMCDO^I^

• ••••••••• l^^^-^^-lfclB-^—<^> c^^ir«iC«r-r~iM rvisjisjiSi^Mrgrsirgivoj

OTiv (>j«r«o»i»>«-»siuoo»- rvj u i/l *••••••••#

»OCO-««»imi«irtj

ooooocoooo • u. o •-

c

13 T u

«n >■ on* o u in •■•••••••• • u. cooooooooo

z

z c 3

«uo •tir>r-««4<(i<0(\.o -JCrUj •••••••••• ui * a ^iM«MiriMf-^»""^ Q o. 2 0>ir>irir>4>r^r-cm ft C UJ rviis; rsjrvjiNjrjiMrgiNiru C « »-

O

Ul * a a o o c « u

z o

a: 3

* c J c CDUJ ^«rg(M<Mf\ir^r\«fNjrsjfn ao u. C»- •...•«••.. OK •»- «rr. •iac<r<raar« **-

O^- I^JMfVJCNjrglMI^INJISj*- C*" Z ZlMrgiMlMIMPUlNjrgrglM X

II U. C. II UJ !/■ — IT sn *- tn U. Q « U. a Z « M Z< X_i «-o^rvjOoa-Ofr-* T_i o3>-a •••••••••• or 3 «-» x « «n m ♦ r^ r> r- « »• o C 3 «J Ou.t^i_iir'siisjiMi»^'«<iriv Cut a a c cr a

l/i o m

«/> _i w. a « a U.' UJ C U. UJ f- *rt «■aB«^<r<oiriinsmin *-tn UJ3>>H- •••••*•••• u*3 X U. W ft m O O O O — — — M o s.u. < U. IT. Ul < U. er — > « — « C « ti a a

ui a u. a u UJ »J UJ «Zu o«'<Mm«-'>Mm«o <Z u. ^ </i •••••••••• u. ►- (K < < -. fx «M «M nj «n m «n m ♦ a« 3 Ul W 3 UJ «n x «n »

< t- r <

Ui *•••*••••• JCU- ••»•••••••

>. »«-«^inr-r^r-Kin o o » craa>aaaccaa<c U. rsjojrMAjrgrMiMrgfMiN. cr Q. UJ r^iMiMf^rgrviMiMfvisj ►- C « ►-

d

c c -. — -. — -. — -. — — _ OU. CO"»»»»»»'©'* • ••••••••« —I- •••••••••(

CCCCOCCCCCb •»- ot-fr^Kr-ff-f-r-

Z'NiM'N.iNjruiNjivrürgru X ZrsiiMfMrNjiNjCMiMrMiNjfM UJ C

NJ x IM ** rvj

>■ a « • • w<irtf>irr-fMh-ero IT „j ♦ — — — f^ i« r^ *

a

>■•-••••••••

wa»00 — — mm* i/t ui >

IT O

UJ >n « u

IT »n UJ a

■ ir »> ■— « o r-

i» »s, * —

j »-^rwiNjmiririrmmc 3 >- a O^^mmi^mmmmmmm U. in _| a c

« UJ U in »oooooooooo S^H. •••••••••• u.^aoooooooooo u m u: — > o

Z Ul o —Mm* —iMm^o H-*n •••••••••• «< — IM <M M «v m m m m •# ui u

E-9

JIBJIilJiMMMÄailÄM 11 I 1 1 I

Page 55: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

N

1 III u z w»- oz

— a a «

o •

in • o -»tu

m X kl

ii >-0t h- « •* Jl >Si •> Oi *~ tu — a w m tt UJ a

lu in :

o 3 i o Ik i • u.

IK

i — o •MM «mirt <> « •>

a <

< o

f ISi

I

x ««MMA ft

ooooooqeo

r» • o O » o in« «n

MM rsi IM NN

lOm

IS z

z o »- z « kJ -JOt IU« or a

1%

ir«cr--*m-«*(ncM

mio^om^^ni^'M

O i O I o***«****«

z I 3 c o

z lu

Z i c

i -• C <C IT «• & _j •- ir IT «

U. «T «J • MM I». * ^ K ^ • fJ o c v. a

er It. o tn •-» « r> « vv i 3>-t...... k.Ka«««irir-i U. IT li, * — > c

OB — «U I i -• rg CM

KJ « IL

«n:

z IU

E-1I

IIJiailHttMMlMäMMMMMII

Page 56: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

m n

u. « bj or U 3 U 3 z »- Z t- kJK < UJ ►- « o zoc z oza z » Ul lu o »bJhiO . o« a — -"«S**l«OOf»-#fM u a a Z « Zi- z « z t- •• ••• — a.UJ<inin«r>ir>cio<«>o»

a^f>j»r-r~so««oiM« « •- N"«-"»<-<«M«MrgiM — < » IM -. — — IM «M

o a o a • « - • < O -1 o ^ - o o — o o -)w a ->Ui a ♦ ►- ♦ *- o»- _l o •- -!••••• • •- .< fl>»4*4«*M»*«rt**»4<^ t *m o z •- ■***>»*****m o z « „ ,, . . ... , — UJ z •* ui o _ 5 II IM II M >■ « — >- a t- * or »- « ft - _l>-0 - _l>-0 >0«I«f-«-«f-M»»vOm > 3 W Zmwrno *«>r- ©«no - wm — \j<n »- UJ eo»o-><o»9'«o« t- bj »»OK**in*-"»«

E ^ »•»OIMf-KC»f>- •- a ^^irirfoiMMin*^ x «/> *ri «M «M *^ ^^ ^4 »N z «« M ******** « ■K lu bi a a

UJ UI i/> > in >

on« rg^^MMtn«-«»« o 3 w — » — ««Me*r-IMIM rg b, IT fM U 1,1 • «•••«•«t« • u. • b. fM»o — «»o«r»«

m •- IT n M rg («| . in *• IM *. ** ^m * * & C C **

M n I z •- »- o « z z lu b. -1 _J

u. bJ T a Z ft C 3 O 3 — H- »- — K t- ►- Z < »- Z « « u. a (ro-o^^M^m^ir, «- bj a O -.m «r «r»M» O- — _J a u. _l o w b'« a i"i«*ir»i"i«r-*n IU < a — 0>l>—f-**ino« a a t. 9fnmmmiri^ir>^rM a a r o-r-r-««- — — «M-»<! a a u' IMIMIMIMIMIMIMfMrVirg cr a bj IMM^MMIMIMIMIMM c«»- o « 1- \j M

o c & CJ O b.> O bj —»»»»»»aom IT H- ir\ t~ • ••••••••• • 1- iMiMiMNiMisirgrgiM« m K IM^-^^««««««

o — miMNivrgfsjiMiMMx O — r-««<>^««««ir X Z M M CM IM IM IM CM CM <M 10. m Z'*'*-*'*'*-*'*-*-'-'

ii lu O ii bj o U1 -. in 1/-. 1- IT h- tu a « bi ft « 2 < N. 2. « ISI I _l - Z _l »•»«r-1rt0.4r.1rMM» c r >-a C3>-ft 3 O « « 3U««i«<^ir«--iMwiP O b. tn _j -• PM »« wt «M Cb-iOj-« ^«^p- a a c a a O

IT. & ITl 0 W _J U —> a « ft « UJ lu W b. bj KJ K Ul — »•»«oovxin«« •-U1 bi 3 >- »- b.3>-»- •••••••••• I b. M ft s.b.iiaif^O' — inr-»iri — f- « b. i^ b, <> -.».«Mrg « b. in bi O ««(nm*« a — > a — > — < c « a a a b-a bJft. UbJ Ci b. « Z bi • 0-iMm*-iMm*o « Z bJ 0-<iMin-#»«Mm«o b. 1- V) b. •- «A ft « « ft « < 3 b iJ 3 b> U m x m »

E-13

U li 1 I MSMUUliäMMMMHlK

Page 57: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

I

(Mf\ ^ rj ir\ M .-< oe o> IM "- «VJ

ooo^»riA.«mi^aou>fn OJ ^ M >4 «M

(ubir»^krir^o<oot#

CD IT »H ITS» ^) ^ »- 0D O«

0<#<>(MIMOO*DOIOO

r>4 •- r>j

tm^^<ciraoo>o(MO

CM ,* ** ,« (M

UJ o- r- — «h * >n o <s< f- <r» e • • • • h-ir» rt «M r- •« c «D a>

IM »-

• o>-4'0>irteroa3i*>0h- vsO'O^m^-eAiM^'m

• o./ifi'-i^^r-i'i^-if» h-o><M<M'*oo^inir>(r>«-i

IM --IM

• •oom^iMOir>'*,iAi»> OO-^IMIM^^^IM^« Uj^-(r>u>o>foeMiAaD^iA O*****. •••••

ror-or(M-«<M»a)f>iM ^ao^^aOOmi^9^>m

IM ^ »- i-i -H IM

vSiMfo»-i»»--i*>h- — ^in u. — c<ccccircrrsir £••••••«•••

«IT» — rnac-'^cco' iv —•

• (Maor-mao^mir^) o — ># ■<• O-O « IT IM CD f- bj^mrui^o-irto^i^iri

rvoiMiri^fio-or-ir ir\«f. --»«ro^-<i—r-co

«M —

• IMfM^IM<-<h- 0>»MIMh-

"^O^iMmirt^^io ico><MiM4-O'-*ir>'Ä^0—i

IM — IM

• «D — «,— «triMfO^O- OiM«o<cir>aDirm»rM^ u.O'fO''0,<Mfvr~«.fMir> n •••• IT. OlMIM^OWirr»^»-

fM — "" (M

• h-iMP-^i«>r-iM>o-><> C>oo4-r~'-<-<o>r-iMiM

£••#••••••• lACh^h-oor^irtoDi^

«ac4'ir>o^iMinc<cin Cg ^ «< ^ »M ry

• i»iOiriOh--<»'i*f\.rr Cor>rm«Dr>-^m~a'<£ U-^WOI^^IM^OOO

>Cfvii^miM<ctr-»<»>tr (nctirirt-iMiMin — ^m

(M <-'»<•-' IM IM

• «ü(fi!MI«1«COO>-0<0

bjiMr^-'irt^iroKiMir

O'Oi^Moi^ca.tir ^•4—-'>^—' — — h- or

IM >4 •>!

OO-" («IIMCIM^J^flDI^ Uj^lM-J-IMfOIMIM«»". o-"» Ct**********

IMtCODiTOOPirC IMir ^aiMiMirisirrir« h-»—

IM •-• -< IM

O'-'r-^'in^aci^^rMir iijir\rt>^<oir>iMO>,i*s«f

«r trfOOJ'-iotri^o ^ «r ir v> or Ki iv ir IM t^ f.

JM »4 .4 .4 IM IM

• «DOO'U^oo'iri^rvO \fllMO0D<C.-^-O> — f^«*

C«* *•••••• • •

l'iir"4i-'l/Nrri"4i-Nfk-0L IM -• M

Or^Ou". t^mr-^MiooBf^ u. o 1»". IM c o» <■ i« f» -* c-

i^h-cifKiOL.maiv^ (»iC»Mi*,'C*i^ir>^r--«

IM »< "< IV

• rM4)o>o^i^<''iro or-~air)r-ceinec*>o lL «M («■ « ■* lf> c •* or IM » Ci**********

coto — oiro>0'»r- iri(^iri4)94-4ivmr-iri

»V »4 -« i^ fv fV

< f/lM lü..

a

• ^»«ODX^C^—<^ O^OOltlfilM^ — O'IM u<ß<oa>rjainai>-ap<c £■*•••••••••

•r-'^ — iMwoc^r-iri ivü'-"-<iriM—""^ir

• U.O""0r,»4iMi-i'* OO

lur- iMiMtr<coo>irr~ir o,••••••••••

iM^^^^ror- o •* ir

P

ii •

a a -j -i

.II

z «-

UJ«CO^ — O^flM-»!*". c •••••••••• IOO^I*>-40D^CDIM*O

iMC-iMma aoittrf^r^«-« IM ** ^ 1\l

• •* O fi *< O tv •* <* f. -t V9 r~ ir> a< 4 a. i" r^ o or ir üirsiiMr-K «a*^^«(ir

4 Kl ^- O IVa.Kl<0'4aO -«^m^-iM^Kiirif-r-»-« ii IM ••• rv —IM tu a O -J in

ii

• o^cr^Ki — iMinoo e>irr-i>-oo>f<o<f«4«ra) ü.iooouO"--*ir^fMrr c**********

iMiMinO'4'<Ofvoooo' <Mo-«*oo>oivirorK>

fSi v4 »4 «4 IM IM

* 'C il\ f. •f O Kl IM r~- Kl >*l OKi04'0,KiO(rO"-r>- L.« OKir--4iMKi»4«ra< o»»»« •

K «C IT C O -4 ü »- -4 O •-C'«h-*4,»IM««0* II IM »4 IM ■-• IM «M

r —o < J _) a o«n

a Ui IUJO—IMfO*— »MKV*0

<< — IMIMIMIMmKlKim^

K Ui lUiO — «MI*»* — *M«»»*0

<<>-IMIM*VIMK>«n«*>l*>^ Ui U

UJ. lUiO — fM«*—^iK>*0

<<«4iM(MfMfMmmmm<r UJ o

E-15

llUJIJiUaJifiMMltllJlMlläUil

Page 58: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

APPENDIX F

MLS CONFIGURATION K AIRBORNE EQUIPMENT

PHYSICAL DESCRIPTION OF FAA-K AIRBORNE EQUIPMENT

The H-80 Airborne Equipment Set offers operational and installation flex-

ibility through compact, modular equipment packaging.

The H-80 airborne system will meet all FAA-K equipment requirements. Figure F-l

shows two airborne sets in a typical redundant aircraft installation.

Features include a standardized package design and simplified interconnections

that will permit straightforward installation of the equipment in the DC-6

or CV-880 aircraft. When the airborne equipment is used in the dual con-

figuration illustrated, provisions are made for interconnection of the

two HN-700 Angle Receiver/Processors to implement built-in cross monitoring

capability.

The physical characteristics of each H-80 subsystem are summarized below and

discussed in detail in the following paragraphs.

Physical Characteristics of H-80 Equipment Set

Angle Rec/Proc (HN-700)

DME Interr. (HN-800)

Control Unit (HC-400)

Antennas I (HL-181) (HL-362)

(HL-363)

Size 3/4 ATR Long 1/2 ATR Short

5.75'^, 4.125"^ 2.5,,D

4"H, 5"W, 6'^

Not Defined ii

it

Weight 20 lbs 10 lbs 3 lbs 1 lb Not Defined

Power 145 w 40 w 15 w mm ~

p-l

lilVlMMUMUMUIlttflKIIIl

Page 59: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

Alchough the HR-800 DME Interrogator is considered en Integral subsystem,

the HN-700 Angle Receiver/Processor can operate Independently.

The H-80 airborne set is designed to use about 200 watts of 400 Hz, single

phase, HSv aircraft power. The HN-700 connects to the aircraft power source

and supplies the required dc power to the other units as required.

The airborne units have been designed for hard-mounting in the aircraft, and

will operate and withstand expected prototype aircraft environmental conditions:

Temperatures -40 degrees to +65 degrees C

Vibration +2 g's per MIL-STD-810B (Curve B, Figure 514-1)

The HN-700 is packaged in a standard 3/4 ATR long case and has been dimen-

sioned for hard mounting to the test aircraft equipment rack for ease of

installation. Mechanical holddown clamps allow quick installationand removal

of equipment. Plug-in circuit boards allow fast replacment of defective

circuits for ease of maintenance.

System interconnections have been simplified and provide ready access to

connectors and test points for in-flight equipment monitoring during the

test program. These connectors, as well as the test point access, are

located on the front panel. The HN-700 interconnects to the HC-500 control

unit for channel select and azimuth and elevation path selection. Additionally,

The HN-700 provides basic low dc voltages, RF signal down conversion, and a

frequency synthesizer signal for the HR-800. The HN-700 angle deviation out-

puts are scaled to standard ILS course width sensitivities and are therefore

compatible with the existing set of avionics in the test aircraft.

F-3

lIlMlMMMMMlliättttliMII I

Page 60: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

PERFORMANCE CHARACTERISTICS OF FAA-K AIRBORNE EQUIPMENT

The perfonnance characteristics of the configuration K-FAA Airborne Doppler

MLS Equipment Set, designated H-80, will meet the FAA requirements for high-

capability guidance equipment for aircraft engaged in autoland operations

at primary hub airports.

The H-80 airborne equipment has been designed to provide precise takeoff and

landing terminal area guidance information, under Category III weather

conditions, for fixed-wing civil aircraft operating with autoland avionics at

suitably equipped major runways. The airborne set will provide the accuracies

and functional characteristics in Tables F-l and F-2.

The HN-700 provides the 200 channel frequency synthesizer, down conversion

of both the angle guidance and OME, as well as the signal processing for the

angle data. The accuracy of the angle guidance Information is preserved

even under heavy nultipath conditions by the use of a digitally implemented,

matched tracking filter that acquires and tracks the direct signal. In

acquiring the angle data, the processor employs a search algorithm that

prevents lock-on to bright flashes or other spurious signals. Once in

track, the receiver verification circuitry continuously checks the video

spectrum to assure that the tracked signal is the correct one. In case of

failure to verify, the receiver is forced to re-acquire the signal.

F-5

lIllIMÄMMMMHllÄMäÄIMIi

Page 61: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

Table F-2. Specific Performance Features of Configuration K, FAA Airborne Equipment

Item Description

Lateral Path Azimuth Select

Sensitivity

Wide Angle

Missed Approach

Vertical Path

Glidepath Select

Sensitivity

Coordinates

Flare Altitude and Rate

Range and Range Rate

Monitoring

Altitude/Range Discretes

Pilot select of ±30 deg in 5-degree increments

ILS compatible deviation with course softening option within desired range.

±60 degree suitable for display.

Automatic front-to-back AZ switching with DME.

2 to 12 degrees in 0.5-degree increments

ILS compatible, with course softening option within desired range.

Conical, with option of ELI planar equivalent through DME algorithm.

Suitable for Collins 860F-1 display and 11SA435 A flare coupler.

Suitable for Collins 860-3 digital DME indicator.

On-line monitoring, self-monitoring push-to- test confidence test. Comparison test.

Marker beacon, flare, and decrab options.

F-7

iiaiMjiMMMHaaaÄÄÄiiii

Page 62: Mi A Reproduced Copy C! JUUS te-äiM* - DTIC

pushbutton and MLS subsystem status lights vhlch are activated by the

self-monitoring circuitry in the MLS equipment. The HN-400 control panel

further provides access to the HN-700 microprocessor programming, wherein

certain operatimal options may be implemented. For example, although

normal Elevation 1 output is conical, both deviation and total angle may

be converted to a planar equivalent through keyboard entry of proper

coding to implement an appropriate DME conversion algorithm.

The HL-362 and HL-363 omnidirectional antennas are provided to assure

full MLS airborne antenna coverage during the diverse aircraft maneuvers

associated with curved approach paths, missed approach, and departures.

The HL-181 sector horn antenna provides effective gain enhancement of the

guidance signals, as «ell as assuring adequate coverage for the critical

final approach phase of the terminal area mission.

F-9

II J I I M M I M M MM IMMMIIII \