mice spectrometer solenoid (pre-) review ini9al … · 2015-10-29 · m1 m2 e1 c e2 10/27/15 j s...

30
MICE Spectrometer Solenoid (Pre-) Review Ini9al Impressions Jim Kerby (ANL) RAL, Oct 27, 2015 On behalf (but not checking) of Tom Taylor (CERN, ret.), Amallia Ballarino (CERN), Vladimir Kashikhin (FNAL), Andrew Twin (Oxford Instruments), and Josef Boehm (RAL) With thanks to Ken, Alan, Steve, Soren, Roy and Mark for talks (& slides) yesterday

Upload: vuongmien

Post on 02-Jul-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

MICESpectrometerSolenoid(Pre-)Review

Ini9alImpressionsJimKerby(ANL)RAL,Oct27,2015

Onbehalf(butnotchecking)ofTomTaylor(CERN,ret.),AmalliaBallarino(CERN),Vladimir

Kashikhin(FNAL),AndrewTwin(OxfordInstruments),andJosefBoehm(RAL)WiththankstoKen,Alan,Steve,Soren,RoyandMarkfortalks(&slides)yesterday

Outline

•  Summaryofwhathappened•  What’snext?– WhatdoesMICEneed?– Whatarereasonablepathsforward?

•  NextfortheadhoccommiYee(+?)

•  àifit’singreenit’sanimpression.Ifit’snotIgrabbedtheslideandprobablyhavenotgivenappropriatecredittothespeakerinthisset(apologiesinadvance)

10/27/15 JSKerby 2

Reminder:Basicdesign

3

•  52-stageCCs•  1single-stageCC•  5Coils•  Maxcurrent~300A•  Highinductance

10-40H

M2M1 E2CE1

10/27/15 JSKerby

4

Quench

Normal zone growth

Detection

Power supply

switched off Protection heaters Extraction Quenchback

Trigger protection options

The faster this chain happens the safer is the magnet

Current decay in the magnet

Magnetic energy

Converted to heat by Joule heating

MagnetProtec9on:basicscenarios

10/27/15 JSKerby

Title

Size Document Number Rev

Date: Sheet of

<Doc> 0

SCHEMATIC - MICE MAGNET POWER SUPPLY SYSTEM

B

1 1Thursday, February 16, 2012

20V @ 300APOWER SUPPLY

PS3

POWER TEN 300A PS

OUT +

OUT -

D03

K3EEC225 - 315A

K4EEC225 - 315A

TBD

+/-5V @ +/-60A

+/-5V @ +/-60A

K2CONTACTOR

1 1

K8EEC50-A [80A]

FAST DISCHARGESWITCH

FAST DISCHARGESWITCH

FAST DISCHARGESWITCH

R6200140XX00

DA2-BCHARGEABSORBER3 DIODE

P3

P4

XPR20-300

XPR20-300

100

TRIM E1

LAKESHORE 625OUT +

OUT -

100

TRIM E2

LAKESHORE 625OUT +

OUT -

AMI 420

L=12.9HEND 2

Rc=111

L=43.8H

CENTERRc=195

Rc=203

AMI 420

L=10.5HEND 1

Rc=100

1 1

K1CONTACTOR

AMI 420

P63C-20330

VTM07FTP-G

1

VTM08FTP-H

1

1 1

11

VTM09FTP-J

1

1

VTM05FTP-E

1

HTS LEADPROTECTION

VTM01FTP-A

1

VTM04FTP-D

1

HTS LEADPROTECTION

HTS LEAD - E1

HTS LEADPROTECTION

DA2

VTM02FTP-B

1

TBD

K7EEC50-A [80A]

1 1TBD

HTS LEADPROTECTION

HTS LEAD - F

11 HTS LEAD - G

HTS LEAD - H

HTS LEADPROTECTION

L=6.8HMATCH 2

Rc=85

1 1

HTS LEAD - C

HTS LEAD - D

R9

0.008

R8

0.008

K6E

EC

225

- 315

A

DA3DISCHARGE

8 DIODEABSORBER

P1

P2

CS3

PS CONTROLLEROUT +

OUT -

CRYOSTAT

TBD

K5EEC225 - 315A

TBD

DA4CHARGE

8 DIODEABSORBER P1P2

R5

0.008

10 Ohm / 50W

20V@300APOWER SUPPLY

PS2

XANTREX 300A PS

OUT +

OUT -

D02

CS2

PS CONTROLLEROUT +

OUT -

10 Ohm / 50W

DA1-BCHARGEABSORBER3 DIODE

P3

P4

DA1 L=15.7HMATCH 1

Rc=136

VTM03FTP-C

1

HTS LEAD - A

HTS LEAD - B

R7

0.008

R6

0.008

20V@300APOWER SUPPLY

PS1

XANTREX 300A PS

OUT +

OUT -

D3

CS1

PS CONTROLLEROUT +

OUT -

10 Ohm / 50W

DA1-ADISCHARGEABSORBER3 DIODE

P1

P2

VTM06FTP-F

1

R4

0.008

DA2-ADISCHARGEABSORBER3 DIODE

P1

P2

R3

0.008

R2

0.008

R1

0.008

LBNL/MICE: DC PATH [“As Built”]

•  Added 5 contactors to system –  HTS Lead protection during fast discharge

10/27/15 JSKerby 5

Schema9csas-operated

10/27/15 JSKerby 6

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

Title

veRrebmuN tnemucoDeziS

teehS:etaD of

<Doc>

SCHEMATIC - MICE MAGNET POWER SUPPLY SYSTEM

B

1 1

Title

veRrebmuN tnemucoDeziS

teehS:etaD of

<Doc>

SCHEMATIC - MICE MAGNET POWER SUPPLY SYSTEM

B

1 1

Title

veRrebmuN tnemucoDeziS

teehS:etaD of

<Doc>

SCHEMATIC - MICE MAGNET POWER SUPPLY SYSTEM

B

1 1

+/-5V @ +/-60A

+/-5V @ +/-60A

DA2

DA1

FAST DISCHARGESWITCH

FAST DISCHARGESWITCH

FAST DISCHARGESWITCH

HTS LEADPROTECTION

HTS LEADPROTECTION

CRYOSTAT

AMI 420

AMI 420

AMI 420

0/20/2 2/0

2/0

2/0

2/0

2/0

A

B

2/0

C

D

H

G

F

E

L=15.7HMATCH 1

Rc=136L=15.7HMATCH 1

Rc=136

1

R1

0.008

R1

0.008

1DA2-BCHARGEABSORBER3 DIODE

P3

P4

100

TRIM E2

LAKESHORE 625

100

TRIM E2

LAKESHORE 625OUT +

OUT -

1

K8EEC50-A [80A]

K8EEC50-A [80A]

1

DA3DISCHARGE

8 DIODEABSORBER

P1

P2

R8

0.008

R8

0.008

VTM02FTP-BVTM02FTP-B

1 R2

0.008

R2

0.008

K1EEC225 - 315A

K1EEC225 - 315A

1

1

VTM05FTP-EVTM05FTP-E

1PS3

20V @ 300A

TDK-Lambda

POWER SUPPLY

PS3

TD

OUT +

OUT -

K2EEC225 - 315A

K2EEC225 - 315A

R3

0.008

R3

0.008

D01D01

1

1

L=12.9HEND 2

Rc=111L=12.9HEND 2

Rc=111CS3

PS CONTROLLER

CS3

PS CONTROLLEROUT +

OUT -

R6

0.008

R6

0.008

20 /

50W

@ C

RY

OS

TAT

20 /

50W

@ C

RY

OS

TAT

D03D03

R4

0.008

R4

0.008VTM03FTP-CVTM03FTP-C

1

R7

0.008

R7

0.008

DA1-ADISCHARGEABSORBER3 DIODE

P1

P2

1

D02D02

K3EEC225 - 315A

K3EEC225 - 315A

HTS LEAD - GHTS LEAD - G

PS2PS2 OUT +

OUT -

CS1

PS CONTROLLER

CS1

PS CONTROLLEROUT +

OUT -

20 /

50W

@ C

RY

OS

TAT

20 /

50W

@ C

RY

OS

TAT

VTM04FTP-DVTM04FTP-D

1

VTM09FTP-JVTM09FTP-J

1

HTS LEAD - AHTS LEAD - A

1

20 /

50W

@ C

RY

OS

TAT

20 /

50W

@ C

RY

OS

TAT

L=43.8H

CENTERRc=195

Rc=203L=43.8H

CENTERRc=195

Rc=203

VTM07FTP-GVTM07FTP-G

1

20 /

50W

@ C

RY

OS

TAT

20 /

50W

@ C

RY

OS

TAT

20 /

50W

@ C

RY

OS

TAT

20 /

50W

@ C

RY

OS

TAT

HTS LEAD - DHTS LEAD - D

HTS LEAD - CHTS LEAD - C

L=6.8HMATCH 2

Rc=85L=6.8HMATCH 2

Rc=85

HTS LEAD - BHTS LEAD - B

1

1 HTS LEAD - EHTS LEAD - E

100

TRIM E1

LAKESHORE 625

100

TRIM E1

LAKESHORE 625OUT +

OUT -

K7EEC50-A [80A]

K7EEC50-A [80A]

R5

0.008

R5

0.008

VTM06FTP-FVTM06FTP-F

1

PS1PS1 OUT +

OUT -

L=10.5HEND 1

Rc=100L=10.5HEND 1

Rc=100

VTM01FTP-AVTM01FTP-A

1

HTS LEAD - FHTS LEAD - F

R6200140XX00R6200140XX00

1

DA2-ADISCHARGEABSORBER3 DIODE

P1

P2

1

DA1-BCHARGEABSORBER3 DIODE

P3

P4

DA4CHARGE

8 DIODEABSORBER P1P2

R9

0.008

R9

0.008

HTS LEAD - HHTS LEAD - H

1

1

VTM08FTP-HVTM08FTP-H

1

CS2

PS CONTROLLER

CS2

PS CONTROLLEROUT +

OUT -

20V @ 300A

TDK-Lambda

POWER SUPPLY

20V @ 300A

TDK-Lambda

POWER SUPPLY

TrainingSSD

•  SSDhasbeenabitproblema9catRAL–  Somevacuumissues–  LostvoltagetaponLTSleadofM2coil

•  InthetrainingrunofSeptember13th,2015allwasgoingverywell.–  Implementa9onofaddi9onalQPfortheM2leadhadnotyetbeendone,soadecisionwasmadetoramponlyM1andECE

–  Aquenchoccurredat~260AinECE(muchhigherthanexpected,nextslide).

•  QPsystemperformedasexpected,nothingoutwardlyunusualexceptforthelargecurrent.

710/27/15 JSKerby

Leadfailure

•  However,uponenteringthehalltheodorofburntFR4/G10wasextremelystrong.StrongestatHereliefvalve

•  Aferagreatdealofanalysis,ithasnowbeendeterminedthat(seediagramonnextslide):–  OnelegofM1deadshorttoground.ThisisLTSAlead.–  LTSBleadnotconnectedtocoil(open),butconnectedtoLTSAwith~

2.4KOhmresistance.–  M2coilOK.–  Nodamageseenanywhereelse.

•  However,M2coilhas1.3KOhmresistancetoM1(&ground)–  ACmeasurementsshowthatQPonM1notac9veindica9ngabreakin

theinternalQPcircuit.Mostlikelypointisindicatedinthefigureonthenextslide(xnexttodiodes)becausethereisanothershorttogroundonthislegofthecircuit.

–  AllothercoilsOK(includingtheirQPcircuit).

8JSKerby10/27/15

M1circuitaferfault

9JSKerby

DiagramoftheM1circuit.Resistance(fourwireandtwowire)measurementsrevealed:i)LeadAhashardshorttoground,ii)LTSBisshortedtoLTSAthrough2.4kOhmsandLTSBisnotconnectedtotheM1coilontheLeadBside.

10/27/15

SS1/SSDDiodePack

10MICESSMagnetReview,

October26,2015AlanBross

ThisisaphotooftheQPpackforSSD/SS1.Whatisnotknownatthis9meisexactlyhowthetermina9onsweremade.DidWangfollowtheproceduresusedonSSU/SS1?

Feedthrough

10/27/15 JSKerby 11

Summary

Manycontribu9ngfactors(innopar9cularorder):•  QAatvendor•  Electricalsystemimplementa9on•  NotpoweringM2,causingadelayinquenchback

AlltogetheràM1failure

10/27/15 JSKerby 12

GoingForward

•  WhatdoesMICEneed?•  Whatcanbedone?

10/27/15 JSKerby 13

WhatdoesMICEneed?

•  MICEprogramme:–  StepIV:

•  Measurementofmaterialproper9es•  Observa9onofreduc9oninnormalisedtransverseemiYance

–  Coolingdemonstra9on:•  Studyofcoolingdemonstra9oneffect

•  PrincipalcomponentsofStepIVprogrammecanbe(andcurrentlyarebeing)carriedoutw/oSSD/M1

•  Coolingdemonstra9onrequiresrecoveryoffullfunc9onalityofSSD

1410/27/15 JSKerby

WhatCanBeDone?

•  AddressingtheKeyQues9ons1.  StepIV?2.  RepairPath?3.  Schedule?4.  Cost?5.  Risks?

10/27/15 JSKerby 15

1.StepIV?

CanweoperateMICEStepIVwiththeSSDasis?•  Op9csdesignssufficientforcharacterizingabsorbermaterialsareinhand

(assumingSSDM2coilisopera9onal):–  Cri9calSSDchecks:

•  SSDE-C-Equenchandreasonableresponseofvessela Hevesselandfeedthroughintegritysa9sfactory

•  SSDM2lowcurrentcheckouta  Noanomalousresis9vebehaviorobserved–  Nextstepisacarefulramptohighcurrent

a  Viableop9csandlikelyviablemagnetwithM2andE-C-Ecoils•  PlanistoproceedwithmodifiedStepIVrunplanfor~1year

a  Timetoprepareforarepair

Answer: YES–  Caveats:

•  S9llneedtovalidatemagnetatcurrentsrequiredbyalterna9veop9cs•  Needtoconfirmthatwehaveapowersupplyconfigura9onthatis“safe”foropera9ons

10/27/15 JSKerby 16

•  Quad model built in VF •  Quench initiated in the

inner layer of the E2 coil.

•  All coils are powered by a single powers supply.

•  A 20 Ω external resistor goes across all the coils.

•  Switch opened when the overall voltage across the E2 coil exceeds 0.2V.

PSUConfigura9on(PreliminaryforSSU)

HengPan(LBNL)

10/27/15 JSKerby 17

CommiYeeIni9alComment

•  WesuggestnofurtherfullpoweringofSSDorSSUoccurun9larevisedpowersystemisdesigned,understood,tested,andimplemented.

•  ProceedingwiththeStepIVprogramisprobablyfineaferthischange.–  Riskforfurtherincrementaldamageisprobablycontainedtotheareaalreadydamagedandinneedofrepair.

–  Someno9ceablepor9onofStepIVcanbeaccomplishedwithoutM1orM2ifneeded...

10/27/15 JSKerby 18

Poten9alTechnicalPathsForward

•  Op9on1–Repeatpreviousrepairscenario–  Assump9ons

•  NOchangestomagnetdesign•  RepairstartsatconclusionofStepIVrunning•  Suitablerepairteamavailable–magnetmovedtoteamloca9on

–  Schedule•  MagnetcouldbeatRALforinstalla9on/commissioningpriortoendofUSFY17.WouldfullybecomeRALresponsibilityatendofUSFY17.

–  Cost•  Nominallyappearstouse100%ofMAPmanagementreservefunds.Plausible.

–  Risk•  QAissues(believedtobeknown)couldbeaddressed•  Surpriseswhencoldmassisinspected?•  Arewecomfortablewiths9ckingtothecurrentdesignuntouched?

10/27/15 JSKerby 19

Poten9alTechnicalPathsForward•  Op9on2–Fabricatenewcoldmass

–  Assump9ons•  Onlyallowmodestchangestocoldmassdesign

–  Examples:»  Minorchangeinbobbinlengthtocontrolthermaldistor9on»  Allowforvacuum-impregna9onofcoils»  Allowforaddi9onofac9vequenchheaters

•  Integra9onwithexis9ngcryostatstartsatconclusionofStepIVrunning•  Allrequiredsuperconductorisonhand(enoughSCisinFNALstoragetowind2newcoldmasses)

–  Schedule•  Coldmassfabrica9oncouldstartassoonasreviseddrawingsapproved.•  BudgetaryquotefromAlforgingvendorindicates10weekdelivery.•  WithSConhand,newcoldmasscouldbemachined,woundandousiYedbeforeAugust1,2016(preliminary

es9mateof8months)•  Poten9allycouldbecold-tested/trainedindewarinadvanceof

August1,2016(arealis9cscheduleneedstobeconfirmed)–  Couldalsobecarriedoutwhilemagnetdisassemblyunderway

•  FinalInstalla9on–  Installa9onofpreppedcoldmasswouldlikelysave~2monthsinbaselinedisassembly/reassemblyschedulefor

magnet(vs.slide8)–  Atrainedcoldmasswouldlikelysave~3weeksintraining9me(vs.slide8)

–  Consistentwithcomple9onbeforeendofUSFY17

10/27/15 JSKerby 20

Poten9alTechnicalPathsForward

•  Op9on2(cont’d)–Fabricatenewcoldmass–  Cost

•  Verypreliminaryes9mateof$500KtoprepareanewcoldmasswithSConhand

•  Wouldwewanttowind2coldmassesasriskmi9ga9on???•  Woulds9llrequiremostofthe$700Kbasecostes9matetodisassemble/reassemblethemagnet

–  Risk•  Achancetoaddressiden9fiedriskswithminimalmodifica9ons•  Tes9ngbeforeinstalla9onwouldprovidecertainty–however,onlyonechanceisrealis9cunless2bobbinsareprepped

•  Opportunity–Poten9alreduc9onintrainingcosts(save~$150K)•  Opportunity–Possibilityofretrofiungexis9ngSSDcoldmassasaspareaferSSDrepaircomplete

10/27/15 JSKerby 21

Poten9alTechnicalPathsForward

•  Op9on3–DoNOrepairandinsteadinsertanothersolenoidinthecoolingchannel

10/27/15 JSKerby 22

Demonstra9onofMuonIoniza9onCooling(Re-baseline)

Insert1-or2-coilsolenoidhereanddevelopnewmatchop9cswithoutSSDM1.

SSDSS

Poten9alTechnicalPathsForward•  Op9on3(cont’d)

–  Assump9ons•  Magnetcanhandlelongitudinalforcesofcoolingchannel•  Magnetcryostatcanbemodifiedforintegra9onintocoolingchannel•  Magnetboreissufficientlylarge•  MagnetcoolingcanbemanagedintheRALHall

(Isthereamagnetavailablewhichcanbeoperatedwithoutarefrigeratorsystem?–noneavailableatRALrightnow)

–  Schedule•  Oneyeartoprepmagnet•  OneyeartoprepPRYmodifica9ons•  Installa9onshouldbefast

–  Cost•  Wouldrequirefurthermodifica9ontothePRYextension•  Wouldrequireaddi9onaldesignandfabrica9onworktointegratethenewmagnet

–  Risk•  ModestaslongasbothSSUandSSDopera9ngreasonablythruStepIV•  (SSDinit’scurrentformwouldremain;M2has1.3kohmresistancetoM1/ground)

Possibili9es:MuCoolTestAreaMagnet;newFC

10/27/15 JSKerby 23

Poten9alTechnicalPathsForward

•  Op9on4–CutSSDopen(throughvacuumvessel,sheild,coldmass)andrepair–  Assump9ons

•  Wouldrequireacquisi9onofusedrefrigeratorbecausethermallosseslikelytoexceedwhatcouldbehandledwithcryocoolers

•  Wouldrequiremodifica9onstoworkwithrefrigera9onsystem–  Schedule

•  Rela9velyfastassumingthatrefrigera9onsystemcouldbeinstalled/commissionedduringStepIVrunning

–  Costs•  TBD•  U9lizesurplusrefrigeratorsystemtocontroloverallcosts

–  Risks•  Notclearthatthiscouldbedonesafelywithoutdamagingthecoldmasssupportstructure

10/27/15 JSKerby 24

Poten9alTechnicalPathsForward

•  Op9on5–Construc9onofnewSSmagnet–  Assump9ons

•  Wouldallowforimplementa9onof(some)lessonslearned•  Wouldnotallowforamajorchangeinconfigura9ontoamorereliablemagnetstyle(e.g.highcurrentSCcablewithrefrigerator)

–  Schedule•  Difficulttoimagineascenario,withpropercon9ngencyassessment,thatcoulddeliveramagnetin9me

–  Costs•  Difficulttoimagineascenariowherecostswouldnotbesignificantlyhigherthanasimplerepair

–  Risks•  Dependingonscaleofmodifica9onsfrompresentdesign,wouldrequireanen9relynewtestprogram

10/27/15 JSKerby 25

CommiYeeIni9alComment

•  Op9ons4and5donotappearviablefortechnicalorfundingissues.

•  Op9on3requiresmorebeamphysicsstudiesforstartersandcompleteunderstandingofhallinterfaces

•  Op9on1looksleastexpensive(?)•  Op9on2buyssomescheduleandpoten9allybeYerperformanceofoneoftheinstalledSS

10/27/15 JSKerby 26

CommiYeeIni9alComment

•  MICEcollabora9onhasdoneconsiderableworkinthepastmonthtounderstandproblem

•  WhiletheSSprobablyincludesabasicdesignproblem,theassemblywastestedsufficientlytoassuresomeconfidence

•  ThefailuremayhaveresultedfromnothavingaclearunderstandingoftheactualmarginintheSSconcerningquenchbackandtheintegra9onoftheSSDwiththeoverallpowersupply/systemandhavingM2notpowered

•  StepIVappearsachievablewithminimalincrementalrisk•  BeyondStepIVthereareseveralop9ons(2,1,3),thoughat

most3lookviableanddeservefurtherreviewoverthenextmonth(no9ngthat2and1arecloselyrelated).

•  WelookforwardtomoredetaileddiscussionNov23-24

10/27/15 JSKerby 27

10/27/15 JSKerby 28

Protec9oncircuit:diodes+resistors•  >3Vforwardvoltagedrop(needstobemeasuredcold)

–  Forwardvoltagedropdecreasesastemperatureofdiodesincreases

•  Resistor:stripofStainlessSteel–  Designedtocomfortablysupportbypasscurrentduring“normal”quenchdecay(~6s)–  Temperatureriseduring~6sdecayis<~300K

10/27/15 JSKerby 29

Analysis

•  Quenchini9atedonECEandini9allyproceedednormally–  ThereisnoevidencethatanyLTSleadswereinvolvedini9ally

•  At~20sec,theinternalQPforcoilM1failed–  Thevoltageonthecoilincreasedrapidlyand,itappearsthatanarcattheLTSpowerfeedthrough(fromvacuumtoLHevolume)occurredwhichburnedouttheleadandeffectedM2(thepowerleadsforM1andM2u9lizethesame4pinfeedthrough).

•  WhatcausedtheQPfailure?

30JSKerby10/27/15