michael brown swarthmore college, nsf center for magnetic self-organization tim gray, ed dewey...

65
Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin ’07, Lake Bookman `08 M. J. Schaffer E. V. Belova Research supported by US DOE and NSF Outflow jets, ion heating, and 3D structure in SSX

Post on 22-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Michael Brown

Swarthmore College, NSF Center for Magnetic Self-Organization

Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11Vernon Chaplin ’07, Lake Bookman `08

M. J. Schaffer

E. V. Belova

Research supported by US DOE and NSF

Outflow jets, ion heating, and 3D structure in SSX

Page 2: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

SSX parametersIon Density (protons) 1014 -1015 cm-3

Temperature (Te,Ti) 20 - 80 eV

Magnetic Field 0.1 Tesla

Ion gyroradius 0.5 cm

Alfvén speed 100 km/s

S (Lundquist number) >1000

Plasma 10-100%

Poloidal flux 3-4 mWb

Page 3: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Spheromak formation

Page 4: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

2D MHD simulation

Page 5: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Tangled 3D magnetic lines (lab and solar)

one foot tall 5 earth diameters tall

Page 6: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Ele

ctro

n D

iffus

ion

Reg

ion

Reconnection geometry (2D model)

Sepa

ratr

ix

Inflow (slow)

Outflow (fast, Alfvenic)

Current flow (out)Electron flow (in)

Page 7: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

3D hybrid simulation (Y. Lin)

Kinetic ions (5x108 ions), fluid electrons

Page 8: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Simulation results: 3D resistive MHD (E. Belova, PPPL)

Page 9: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

SSX device (distributed probe array)

•Opposing magnetized plasma guns•Close fitting copper flux conserver•Midplane IDS access for flow studies

Page 10: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Local 3D probe measurements

Right-handedSpheromak

Left-handedspheromak Reconnected

poloidal flux

Page 11: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Merging studies in prolate geometry(2003-2007)

• 0.4 meter diameter, 0.6 meter length • reconnection at midplane

• formation of prolate FRC object • ultimately unstable with slow growth rate

Page 12: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Counter-helicity merging (prolate)

Page 13: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

3D probe measurements in SSX

Page 14: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

3D probe measurements in SSX

Page 15: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

3D probe measurements in SSX

Page 16: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Bi-directional outflows in SSXHigh resolution ion Doppler spectroscopy

(Cothran, et al, PRL to be submittedJ. Fung thesis ‘06)

Page 17: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin
Page 18: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Ion Doppler Spectroscopy (1.33m)

Page 19: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Ion Doppler Spectroscopy (1.33m)

Page 20: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Ion Doppler spectrometer layout

Page 21: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

IDS line shapes (high resolution)

Page 22: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Observation of bi-directional outflow

Data is effectively f(v_r)… one pixel is 10 km/s

Page 23: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Stills from IDS movie

Dynamics of the flow (bursts, turbulence) encoded in the lineshape

Page 24: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Bi-directional outflows on the sun

D. Innes (SOHO SUMER chromosphere)Innes, Nature, 1997

Innes, Solar Physics, 1997

Page 25: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Location of SUMER slit on solar disk

SiIV light dispersed along slit

Page 26: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Velocity resolution 10 km/s

Spatial resolution1000 km

Spatially localizedevents

Page 27: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin
Page 28: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Hot ions in SSX

Cothran, et al (SSX)

(low density discharges,after glow discharge conditioning, short gas delay)

Page 29: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Hot ions in SSX (merging)

Page 30: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

IDS hot ion temperature measurement (one shot, 1014

density)

Page 31: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

IDS hot ion flow measurement

Page 32: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

IDS hot ion temperature measurement (average, 5x1014

density)

Page 33: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Scaling of Ti with density

Page 34: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Scaling of Ti with density (single sph)

Dipole-trapped, Gaussian fit, early in formation (30-40 s)

Page 35: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

IDS ion temperature measurement HeII 468.57 nm (THe > TC)

Page 36: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Te from CIII (97.7 nm) to CIV (155 nm) ratio

Page 37: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Te from CIII (97.7 nm) to CIV (155 nm) ratio (single spheromak)

Page 38: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Te from SXR array fitting

Observe electron heating with SXR during 30-40 s reconnection period

Page 39: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Hot ions in the extended corona

Cranmer, Space Science Rev, 2002 (UVCS)

Page 40: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

UVCS line of sight

Page 41: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Greater than mass ratio ion temperatures

Page 42: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Quadrupole measurement in SSX

Mattheaus, et al, GRL (2005)Landreman, (2003)

Cothran, et al, GRL (2003)

Page 43: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Driven magnetic reconnection experiments

Cothran et al GRL 30, 1213 (2003)Brown et al ApJL 577, 63 (2002)Brown et al Phys. Plasmas 9, 2077 (2002)Brown et al Phys. Plasmas 6, 1717 (1999)Kornack et al Phys. Rev. E 58, R36 (1998)

Magnetic probe array

RGEAs

Large slots cut into FC rear walls define the reconnection region

3D magnetic structureEnergetic particles

Page 44: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

3D magnetic probe array

600 coils, 558 array

~2 cm spacing

25 three channel 8:1multiplexer/integratorboards

10 eight channel 8-bitCAMAC digitizers

Full probe readoutevery 0.8 s

Page 45: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Quadrupole out-of-plane field

Ion inertial scale 2 cm

Page 46: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Trajectory of Polar spacecraft

Path of tiny Polar

Page 47: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Trajectory of POLAR spacecraft

Polar trajectory

Mozer, et al, PRL (2002)

Page 48: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

POLAR SUB-SOLAR OBSERVATION OF THE ION SCALE

Page 49: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Merging studies in oblate geometry(2007-2008+)

• 0.5 meter diameter, 0.4 meter length • turbulent merging process

• formation of oblate FRC object (sometimes)•Ti higher, Te lower than prolate

• often unstable with Alfvenic growth rate

Page 50: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Trapezoidal flux conserver in SSX

Page 51: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Trapezoidal flux conserver in SSX

Page 52: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Trapezoidal flux conserver in SSX

Page 53: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

FRC equilibrium with trapezoidal FC

Page 54: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

2D merging simulation (N. Murphy)

Page 55: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Stable Oblate FRC in SSX (sometimes)

Page 56: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Ti and Te in oblate merging in SSX

Ti higher, Te lower than prolate

Page 57: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Density at midplane with merging

Page 58: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Dynamic merging events in SSX

Unstable! Turbulent?

Page 59: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Summary (1)

Bi-directional sub-Alfvenic outflowmeasured with ion Doppler spectroscopy on SSX

Hot ions and warm electrons also observed in the laboratoryusing spectroscopy/soft x-rays

Page 60: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Summary (2)

Measurement of Ti for different ion mass(Carbon, Helium, Silicon)

Electron heating observed during mergingevents using soft x-ray array…

less heating for single spheromak

Page 61: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Summary (3)

3D structure measured at the ion inertial scale in SSX merging experiments

First laboratory measurement ofout of plane quadrupole field observed onlength scale similar to Polar observations

at the magnetopause

Page 62: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Summary (prolate)

Bi-directional sub-Alfvenic outflowmeasured with ion Doppler spectroscopy on SSX

Both ions/electrons heated by reconnection

Spheromak merging createsunstable prolate FRC object

with reconnection at midplane

Page 63: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Summary (oblate)

Merging in oblate geometry in SSX

Hot ions and warm electrons also observed in the laboratoryusing spectroscopy/soft x-rays

Page 64: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Future studies (fall 2008)

Measurement of Ti for different ion mass(Carbon, Helium, Xenon)

Continue search for stable mergingin oblate geometry

Page 65: Michael Brown Swarthmore College, NSF Center for Magnetic Self-Organization Tim Gray, Ed Dewey ’10, Bevan Gerber-Siff ’10, Kevin Labe ‘11 Vernon Chaplin

Future studies (fall 2008)

High resolution, high frequency mag probe(Tobin Munsat collaboration)

Mach and retarding grid ion probes