michael s. fuhrer university of maryland an introduction to graphene electronic structure michael s....

17
S. Fuhrer University of Ma An Introduction to Graphene Electronic Structure Michael S. Fuhrer Michael S. Fuhrer Department of Physics and Department of Physics and Center for Nanophysics and Advanced Materials Center for Nanophysics and Advanced Materials University of Maryland University of Maryland

Upload: brett-oconnor

Post on 17-Dec-2015

221 views

Category:

Documents


3 download

TRANSCRIPT

Michael S. Fuhrer University of Maryland

An Introduction to Graphene Electronic Structure

Michael S. FuhrerMichael S. FuhrerDepartment of Physics andDepartment of Physics and

Center for Nanophysics and Advanced MaterialsCenter for Nanophysics and Advanced MaterialsUniversity of MarylandUniversity of Maryland

Michael S. Fuhrer University of Maryland

If you re-use any material in this presentation, please credit:

Michael S. Fuhrer, University of Maryland

Michael S. Fuhrer University of Maryland

Carbon and GrapheneCarbon and Graphene

C-

-

--

Carbon Graphene

4 valence electrons

1 pz orbital

3 sp2 orbitals

Hexagonal lattice;1 pz orbital at each site

Michael S. Fuhrer University of Maryland

Graphene Unit CellGraphene Unit Cell

Two identical atoms in unit cell: A B

Two representations of unit cell:

1/3 each of 6 atoms = 2 atoms

Two atoms

Michael S. Fuhrer University of Maryland

Band Structure of GrapheneBand Structure of Graphene

Tight-binding model: P. R. Wallace, (1947)(nearest neighbor overlap = γ0)

2cos4

2cos

2

3cos41)( 2

0

akakakEE yyxF k

kx

ky

E

Michael S. Fuhrer University of Maryland

Bloch states:

AB

AB

0

1

1

0

FA(r), or

FB(r), or

“anti-bonding”E = +γ0

“bonding”E = -γ0

1

1

2

1

1

1

2

1

Γ point:k = 0

Band Structure of Graphene – Band Structure of Graphene – ΓΓ point ( point (kk = 0) = 0)

Michael S. Fuhrer University of Maryland

3

4

3

2

1

i

i

e

e

λλ

λ

K

K

K

0

1FA(r), or

1

0FB(r), or

Phase:

K 2

3a

a3

4K

Band Structure of Graphene – K pointBand Structure of Graphene – K point

Michael S. Fuhrer University of Maryland

0

1FA(r), or

1

0FB(r), or

K

2

3a

a3

4K

0

π/3

2π/3

π

5π/3

4π/3

“anti-bonding”

E = 0!

“bonding”

E = 0!

1

1

2

1

1

1

2

1

K point:Bonding and anti-bonding

are degenerate!

Bonding is Frustrated at K pointBonding is Frustrated at K point

Michael S. Fuhrer University of Maryland

)()()( rrvF FFkσ

kvbe

ibeek Fi

ii

k

k

;2

12/

2/rk

θk is angle k makes with y-axisb = 1 for electrons, -1 for holes

Eigenvectors: Energy:

Hamiltonian:

)(

)(

)(

)(

0

0

rF

rF

rF

rF

ikk

ikkv

B

A

B

A

yx

yxF

electron has “pseudospin”points parallel (anti-parallel) to momentum

K’

K

linear dispersion relation“massless” electrons

Band Structure of Graphene: k·p approximationBand Structure of Graphene: k·p approximation

Michael S. Fuhrer University of Maryland

Visualizing the PseudospinVisualizing the Pseudospin0

π/3

2π/3

π

5π/3

4π/3

Michael S. Fuhrer University of Maryland

30 degrees

390 degrees

Visualizing the PseudospinVisualizing the Pseudospin0

π/3

2π/3

π

5π/3

4π/3

Michael S. Fuhrer University of Maryland

PseudospinPseudospin

K

K’

kvH

ikk

ikkvkvH

tFK

yx

yxFFK

'

0

0σ || k

σ || -k

• Hamiltonian corresponds to spin-1/2 “pseudospin” Parallel to momentum (K) or anti-parallel to momentum (K’)

• Orbits in k-space have Berry’s phase of π

Michael S. Fuhrer University of Maryland

K’ K

K: k||-x K: k||xK’: k||-x

real-spacewavefunctions(color denotesphase)

k-spacerepresentation

bondingorbitals

bondingorbitals

anti-bondingorbitals

Pseudospin: Absence of BackscatteringPseudospin: Absence of Backscattering

bonding

anti-bonding

Michael S. Fuhrer University of Maryland

““Pseudospin”: Berry’s Phase in IQHEPseudospin”: Berry’s Phase in IQHE

π Berry’s phase for electron orbits results in ½-integer quantized Hall effect

2

14

2

nh

exy

422 vsgg Berry’s phase = π

holes

electr

ons

-80 -60 -40 -20 0 20 40 60 800

5

10

-30-26-22-18-14-10-6-226101418222630

B = 8 TT = 2.3 K

xy (e

2/h) xx (

e2 /h)

Vg (V)

Michael S. Fuhrer University of Maryland

Graphene: Single layer vs. BilayerGraphene: Single layer vs. Bilayer

Bilayer GrapheneSingle layer Graphene

5.2

4.3

w m

l m

6.0

2.6

w m

l m

Single Layer vs. BilayerSingle Layer vs. Bilayer

Michael S. Fuhrer University of Maryland

Graphene Dispersion Relation: Graphene Dispersion Relation: “Light-like”“Light-like”

ky

kx

E

Light: ckE

Electrons in graphene:

kvE F

Fermi velocity vF instead of c vF = 1x106 m/s ~ c/300

Bilayer Dispersion Relation: Bilayer Dispersion Relation: “Massive”“Massive”

ky

kx

E

Massive particles:em

kE

2

22

Electrons in bilayer graphene:

Effective mass m* instead of me

m* = 0.033me

*2

22

m

kE

Michael S. Fuhrer University of Maryland

-40 -30 -20 -10 0 10 20 30 400.00

0.05

0.10

0.15

0.20

0.25 QHE single layer at T=1.34K B=9T

xx(k

-1)

Vg-V

Dirac(V)

-10

-6

-2

2

6

10

xy(e 2/h

)

Quantum Hall Effect: Single Layer vs. BilayerQuantum Hall Effect: Single Layer vs. Bilayer

-30 -20 -10 0 10 20 300.00

0.05

0.10

0.15

0.20

0.25

0.30

xy (e

2/h) xx(k

-1)

Vg-V

Dirac(V)

-8

-4

0

4

8

bilayer QHE at T=1.35K, B=9T

See also: Zhang et al, 2005, Novoselov et al, 2005.

2

14

2

nh

exy

Berry’s phase = π

Single layer:

14 2

nh

exy

Berry’s phase = 2π

Bilayer:

Quantum Hall EffectQuantum Hall Effect