michel viret service de physique de l’etat condensé cea...

38
Spin electronics at the nanoscale Michel Viret Service de Physique de l’Etat Condensé CEA Saclay France

Upload: others

Post on 28-Mar-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

Spin electronics at the nanoscale

Michel Viret

Service de Physique de l’Etat Condensé

CEA Saclay

France

Page 2: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

Principles of spin electronics:

ferromagnetic metalsspin accumulation

Resistivity of homogeneous materials:

AMRDWR

Spin torque in DWs

Reduced dimensions:

Mesoscopic transportAtomic MR

Page 3: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

Different DOS for upand down spins :

Spin dependent electrical transport in ferromagnetic metals

s electrons : low density of states + high mobility

d electrons : large density of states + low mobility

Transport is dominated by s electrons scattered into d bandsd bands split by the exchange energy→ diffusion is spin dependent

→ Two current model :Two conduction channels in parallel

with ρ↑≠ ρ↓

Resistivity :

or (with spin-flip) :

ρρρρρρρρ

↑↓↓↑

↓↑↑↓↓↑

++

++=ρ

4

)(

ρρρρ

↓↑

↓↑

+=ρ

E

d bands

s bands

Spin

down

spin

up

↑↑↑↑

↑↑↑↑↓↓↓↓

↓↓↓↓

Page 4: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

Current generated spin accumulation at a Ferro (Co) / Normal metal (Cu) interface:

Typically, at 4.2 K :lsf (Co) ≈ 60 nmlsf (Cu) ≈ 500 nm

Page 5: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

H (kOe)

80%

I

V

Multilayers

F metal / NM metal(ex : Fe / Cr, Co / Cu, etc )

4 K

Conf igurat ion P

M MNM

-

+

M MNM

+

-

Conf igurat ion AP

r r

r

r

R R R

RR+= r

R- = R

R+ = (r+R)/ 2

R- = (R+r)/ 2

P

PAP

R

RR −=GMR

rrR

RrRP ≈≈≈≈

++++====

4

rRRAP

++++====<

Introduction to spin electronics

Page 6: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

Domain wall resistance

Example of FePd:

MFM image 2 x 2 µm2 at zero field, in the virgin state and after saturation. The up domains are black andthe down ones are white

Resistive

measurements : on a nanostructure withstripe width = 300nm

0.5

7.992

8.016

8.040

8.064

8.088 ρ

CPW

ρCIW

ρ (µΩ

cm

)

H

∆R/R = 8 % within the DWs

Why is it so small?

(R. Danneau et al., Phys. Rev. Lett. 88, 157201 (2002))

Page 7: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

Spin transfer from the conduction electrons to the DW

Current

direction

Theory

Two kinds of electrons:

• Localised• Conduction electrons

→ s-d Hamiltonian

Action of a current:

Globally, the conduction electrons transfer gµB to the DW

Page 8: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

s-d Hamiltonian :

: localised spins

Precession equation :

s : conduction electrons

⇒⇒⇒⇒

Simple model : the particle approach

( )

⇒⇒⇒⇒

In the rotating frame:

Page 9: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

Loc

a l M

omen

t

Electron spinφ0

In the frame of the local moment :

In the laboratory frame

Spin evolution during DW crossing

Page 10: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

Loc

a l M

omen

t

Electron spinφ0

In the frame of the local moment :

In the laboratory frame

Spin evolution during DW crossing

Page 11: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

exw

F

J

v

δφ

η=0

2wex

F

2

w 1

J

v

)p1(

p2

R

R

δ

−=

∆ η

Loc

a l M

omen

t

Electron spinφ 0

In the frame of the local moment direction :

Loc

a l M

omen

t

Electron spinφ0

In the frame of the local moment :

In the laboratory frame

Spin evolution during DW crossing

Page 12: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

exw

F

J

v

δφ

η=0

2wex

F

2

w 1

J

v

)p1(

p2

R

R

δ

−=

∆ η

Loc

a l M

omen

t

Electron spinφ 0

In the frame of the local moment direction :

Loc

a l M

omen

t

Electron spinφ0

In the frame of the local moment :

In the laboratory frame

Spin evolution during DW crossing

Page 13: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

exw

F

J

v

δφ

η=0

2wex

F

2

w 1

J

v

)p1(

p2

R

R

δ

−=

∆ η

Loc

a l M

omen

t

Electron spinφ 0

In the frame of the local moment direction :

Loc

a l M

omen

t

Electron spinφ0

In the frame of the local moment :

In the laboratory frame

Spin evolution during DW crossing

Page 14: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

exw

F

J

v

δφ

η=0

2wex

F

2

w 1

J

v

)p1(

p2

R

R

δ

−=

∆ η

Loc

a l M

omen

t

Electron spinφ 0

In the frame of the local moment direction :

Loc

a l M

omen

t

Electron spinφ0

In the frame of the local moment :

In the laboratory frame

Spin evolution during DW crossing

Page 15: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

Loc

a l M

omen

t

Electron spinφ0

In the frame of the local moment :

In the laboratory frame

Spin evolution during DW crossing

Page 16: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

Loc

a l M

omen

t

Electron spinφ0

In the frame of the local moment :

In the laboratory frame

Spin evolution during DW crossing

Page 17: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

Loc

a l M

omen

t

Electron spinφ0

In the frame of the local moment :

In the laboratory frame

Spin evolution during DW crossing

Page 18: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

Loc

a l M

omen

t

Electron spinφ0

In the frame of the local moment :

In the laboratory frame

Spin evolution during DW crossing

Page 19: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

For a long wall and

Precession around the effective field :

Rotating frameMagnetisation

Magnetic

moment

Direction of

electron

propagation

Laboratory frame

→ The mistracking angle is small (a few degrees) and theinduced spin scattering is weak

Page 20: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

The total moment is conserved →

Reaction on the wall

The torque can be decomposed into a constant and periodic partFor long walls, the periodic part averages to zero and the constant part reads:

distortion (steady state)

P = polarisation, j = current density pressure

• Torques: non-homogeneous within the walls + small ‘pressure’ term

• Importance of the magnetic structure of the DW

• Very thin DWs: Enhanced pressure oscillating with thickness

Conclusions :

Effect of the current : Globally, the conduction electrons transfer gµB to the DW→→→→ Spin torque

Page 21: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

Preliminary conclusions

Question: Can we build spin electronics devices with domain walls?

DW: topological soliton which can be moved by a current and which scatters electronsRussel Cowburn (Durham/London) : magnetic logic based on DWsStuart Parkin (IBM San Jose) : registery memory

Problems: DWs are not very resistive and cannot be pushed by small currents…

Solution : 1D structures

Page 22: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

Ohm’s law: I = G VG = σ S / L if L >>

• lF Fermi wavelength (quantum)

• ℓ mean free path (elastic)

• Lj coherence length (inelastic)

macroscopicdiffusiveatomic ballistic

Different transport regimes

Page 23: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

Magnetoresistance in reduced dimensions: the constriction

+ magnetism :

Spin degeneracy removed by the exchange energy

≠ Fermi wavelength for up and down electrons

→ the size of the constriction at which the

number of transmitted channels changes

is spin dependent

↓↑

↓↑

≠→

−±=

=

++∇−=

NN

kEEm

k

dnk

JrVm

H

perpexFlong

perp

ex

)(2

2.

.)(2

2

2

*,

22

η

η

π

σ

⇒ conductance quantized :

G = ΣΣΣΣTi↑↓↑↓↑↓↑↓G0 (G0 = e2/h = 1/26kOhm)

2D electron gases : σ quantized in units of 2G0 , but large H : quantization in G0

Perfect case: continuous materials of cross section close to λF (ex: 2DEG) : k⊥ quantized

Page 24: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

Closer to real life :

Metals : λF ≈ 2Å→ quantization requires atomic contacts !Conducting channels defined by overlap of atomic orbitals→ atomic calculation needed+ In the single atomic regime more than one conduction channels are opened for 3d elements. Ni: 4s2 3d8→ potentially 4↓ + 6↑ channels

Magnetic problems :DWs not infinitely thin: Micromagnetic configuration of the relevant atoms?

Experimental problems : Magnetostriction ??For Ni : λ ≈ -40 ppm → 100 µm wire shrinks by 4 nm !

Introduction of a DW in a constriction (ideal case) :DW width = size of constriction (P. Bruno, PRL83, 2425 (1999), Y. Labaye et al., J.A.P.91, 5341 (2002))

Constricted DW width ≈constriction diameter or length

+ Potential barrier of magnetic (exchange) origin (Imamura et al. PRL 84, 1003 (2000)) : large MR effects because a DW can close the conductance channel.

Page 25: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

Break junction technique :Samples : ferromagnetic bridges suspended with pads of different shapes made in polycrystalline Ni, Co, Fe :

MR in ferromagnetic atomic contacts

Micromagnetics:

Program OOMMF (NIST)

Page 26: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

Experimental setup

Bending system in a cryostatPulling ≈ 1 nm/turn

Page 27: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

H. Ohnishi, Y. Kondo and K. Takayanagi,

Nature 295, 780 (1998)

TEM pictures while pulling an Au tip from a Au film :

Page 28: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

Measurements : breaking

01234567

89

101112131415

-1 -0.8 -0.6 -0.4 -0.2 0 0.2

d (nm)

(e2/h)

Conductance steps : atomic reorganization (+ quantization)

Tunnelling : R = R0 exp(x/x0) , x0=0.045 nm

Tunneling regime - H=0.4T perp

3

4

5

6

7

8

9

10

11

0 0.01 0.02 0.03 0.04 0.05gap (nm)

ln(R)

Page 29: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

Two types of measurements

R(θ) → AMR:

0

0.2

0.4

0.6

0.8

1

1.2

-90 -60 -30 0 30 60 90 120 150 180 210 240 270

Angle (degree)

Resistance

R(Η) → ‘DWR’ :

Page 30: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

- 9 0 - 6 0 -3 0 0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0

6 9 8

7 0 0

7 0 2

7 0 4

7 0 6

A n g l e ( d e g r e e )

Atomic contact:

∆∆∆∆R/Rmin= 75%

9 0 0 0

1 0 0 0 0

1 1 0 0 0

1 2 0 0 0

1 3 0 0 0

1 4 0 0 0

1 5 0 0 0

1 6 0 0 0

1 7 0 0 0

1 8 0 0 0

Atomic contact:

∆∆∆∆R/Rmin= 21%

7 2 0 0

7 4 0 0

7 6 0 0

7 8 0 0

8 0 0 0

8 2 0 0

8 4 0 0

8 6 0 0

8 8 0 0

R (

Oh

m)

Nanostructure:

∆∆∆∆R/Rmin= 1.1%

Atomic contact regime (Fe, 4.2K)

R(θθθθ) curves :

• Significant effect• Clear departure from cos2(θ)

7000

7200

7400

7600

7800

8000

8200

8400

8600

8800

-100 -50 0 50 100 150 200

angle (°)

R (Ohm)

2T, Vdc=0mV

3e2/h

3.5e2/h

→ Channels closing?

Parallel with evolution of conductance with stretching

Page 31: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

Tentative explanation of the AMR effects :

Orbitals overlap responsible for the

opened channels

Distortion with field because of spin-orbit

coupling?

+ enhanced effects in reduced dimensions

Page 32: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

Ab-initio calculations

Pseudo potential plane wave method + spin-orbit coupling

Fe atomic chain: magnetisation parallel and perpendicular

Tight binding calculations

fcc (111)

bcc (001)

The exact geometry of the contact is

important, especially the coordination

number of the central atom.

Page 33: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

Tunnelling regime, Fe (4.2K) :

→AMR still large in tunnelling

Measurements quite ‘erratic’ because different configurations can give the same resistance

Tunnelling defined by the overlap of evanescent orbitals→ Spin-orbit coupling of the same nature but on the evanescent orbitals

Page 34: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

Summary of AMR measurements in Fe

Page 35: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

6.2

6.25

6.3

6.35

6.4

6.45

6.5

6.55

6.6

-60 -40 -20 0 20 40 60 80 100 120 140 160 180 200Angle(degrees)

R(kohms)

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

H(T)

R(kohms)

180°

90°

90°<--180°

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7

7.1

-2.5 -1.5 -0.5 0.5 1.5 2.5H(T)

R(kohms)

← Fe (4.2K)‘Domain wall’ effects

12%

27

28

29

30

31

32

33

34

35

36

37

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

H(T)

R(kohms)

180°

90°

Co (4.2K)↓

DWR ≈ 10% – 20%

21%

Page 36: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

E-field efects

3700

3800

3900

4000

4100

4200

4300

4400

4500

4600

4700

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

H (T)

R (Ohm)

Vdc=100mV

Vdc=50mV

Vdc=0

field at 0°

Electric field effects, Fe (4.2K):

Effect of the electric field:

Evidence for spin torque?

At 50mV, j ≈≈≈≈ 5 108 A/cm2

differential conductance for two different magnetic configurations

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

Vbias (V)

dI/dV (Ohm)

H=0

H=1T

Page 37: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

Conclusions for the MR at the atomic scale

conductance depends on orbital overlapS-O coupling = atomic AMR effectIn reduced dimensions: large S + large O !

Contact:

AAMR : 50 %

DWR : 20%

AAMR>DWR

Tunnelling

TAMR : 100 %

TMR : 35%

TAMR>TMR

tunnelling AMR : same with evanescent orbitals

See: M. Viret et al., Eur. Phys. J. B 51, 1 (2006)

Page 38: Michel Viret Service de Physique de l’Etat Condensé CEA ...iramis.cea.fr/meetings/Nanomagnetisme/presentations/pdf/michel.viret.pdfThe total moment is conserved → Reactionon thewall

Conclusions

Can DWs be used for spin electronics?

In the bulk :

DW resistance too small + current induced pressure too weak

In atomic constrictions:

Importance of orbital effects (AMR)

DW Resistance enhanced (20%)

Pushing with a current impossible (destruction of the contacts)

The ideal : 1D atomic chains…