microbial activities and intestinal homeostasis a delicate balance between health and disease

13
REVIEW Microbial Activities and Intestinal Homeostasis: A Delicate Balance Between Health and Disease Christina L. Ohland 1 and Christian Jobin 1,2 1 Department of Medicine and 2 Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida SUMMARY This review discusses the equilibrium between host and microbial community in the context of health and disease. The focus is on bi-directional pressures between pro- karyotes and eukaryotic cells, as well as inter-bacterial interactions resulting in alterations to the microbiota. The concept that the intestinal microbiota modulates numerous physiologic processes, including immune devel- opment and function, nutrition and metabolism, and path- ogen exclusion, is relatively well established in the scientic community. The molecular mechanisms driving these various effects and the events leading to the establishment of a healthymicrobiome are slowly emerging. This review brings into focus important aspects of microbial/host in- teractions in the intestine and discusses key molecular mechanisms controlling health and disease states. We discuss the evidence of how microbes interact with the host and one another and their impact on intestinal homeostasis. (Cell Mol Gastroenterol Hepatol 2015;1:2840; http:// dx.doi.org/10.1016/j.jcmgh.2014.11.004) Keywords: Bacterial Communication; Bowel Disease; Host- Microbe Interactions; Inammatory; Microbiome. A ppearances can be deceiving. Despite what you see in the mirror, humans are more prokaryotic than eukaryotic, as the bacteria in and on our bodies outnumber our own cells 10 to 1. 1 Microbes are embedded in our biological system and are deeply integrated in our daily life, and an emerging eld of research has tackled the inter- kingdom communication network present in the walking mixed cultures we call people. The gastrointestinal (GI) tract has the highest density and variety of bacteria in the human body (approximately 100 trillion microbes made up of >1000 species) due to the ideal growth conditions provided by this organ. In the colon, there are up to 10 12 microbes per gram of luminal content which accounts for 60% of fecal weight. 2,3 A healthy adults intestinal microbiome is diverse, relatively stable over time, and domi- nated by two phyla, Bacteroidetes and Firmicutes (w95%). Nevertheless, there is considerable interindividual variability at the species level due to genetic, environmental, and nutri- tional factors. 4 Diet in particular has been shown to rapidly shift this community, 5 resulting in geographic region-specic microbial signatures as seen in rural African children eating a ber-rich diet compared to their European counterparts. 6 Although understanding the bacterial species present in the gastrointestinal tract is important, recent work has shifted the focus to the existence of a core enteric metabolome, which has the potential to change the way we look at how our gut functions. 7 Because bacterial genes have many over- lapping and redundant functions, the end result of their combined metabolism and catabolism can ultimately have a tremendous impact on the intestinal environment and host physiology. As we discuss later, these microbial-derived products are a main component of the host-bacteria and bacteria-bacteria communication network essential to intes- tinal homeostasis. External pressures, such as infection or antibiotics, cause a disequilibrium in the microbial community, a phenomenon designated as dysbiosis and often associated with pathol- ogies including inammatory bowel disease (IBD). 8,9 Alter- natively, internal pressure resulting from defective host genetics, such as innate and adaptive immune genes, results in mismanagement of the microbiota, again leading to dys- biosis and pathologic conditions seen in the airway, 10 the skin, 11 and the gut. 12,13 IBD is a chronic, relapsing, and remitting inammatory disease that can be classied as ulcerative colitis (UC) or Crohns disease (CD). Both forms can be thought of as examples of disrupted communication between the intestinal microbiota and the host. The nature of this communication breakdown is not clear but involves genetic susceptibility related to the epithelial barrier and innate immunity, all of which are important components of host-bacteria interaction. 14 This review will discuss the complex cross-talk between intestinal cells and the microbiota as well as the antagonistic and mutualistic interactions among enteric bacteria. This multifaceted communication network is what shapes the intestinal environment, drives homeostasis, and is thus essential to understanding how to prevent and treat intes- tinal disorders such as IBD. Abbreviations used in this paper: AMP, antimicrobial peptides; CD, Crohns disease; CDI, contact-dependent growth inhibition; GI, gastrointestinal; HGT, horizontal gene transfer; IBD, inammatory bowel disease; MAMP, microbe-associated molecular pattern; QS, quorum sensing; SCFA, short-chain fatty acids; SFB, segmented la- mentous bacteria; T6SS, type VI secretion system; UC, ulcerative colitis. © 2015 The Authors. Published by Elsevier Inc. on behalf of the AGA Institute. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). 2352-345X http://dx.doi.org/10.1016/j.jcmgh.2014.11.004

Upload: itomorales

Post on 18-Nov-2015

7 views

Category:

Documents


2 download

DESCRIPTION

Metabolimso

TRANSCRIPT

  • REVIEWMicrobial Activities and Intestinal Homeostasis: A DelicateBalance Between Health and Disease

    Christina L. Ohland1 and Christian Jobin1,2

    1Department of Medicine and 2Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FloridaSUMMARY

    This review discusses the equilibrium between host andmicrobial community in the context of health and disease.The focus is on bi-directional pressures between pro-karyotes and eukaryotic cells, as well as inter-bacterialinteractions resulting in alterations to the microbiota.

    The concept that the intestinal microbiota modulatesnumerous physiologic processes, including immune devel-opment and function, nutrition and metabolism, and path-ogen exclusion, is relatively well established in the scientificcommunity. The molecular mechanisms driving thesevarious effects and the events leading to the establishmentof a healthymicrobiome are slowly emerging. This reviewbrings into focus important aspects of microbial/host in-teractions in the intestine and discusses key molecularmechanisms controlling health and disease states. Wediscuss the evidence of howmicrobes interact with the hostand one another and their impact on intestinal homeostasis.(Cell Mol Gastroenterol Hepatol 2015;1:2840; http://dx.doi.org/10.1016/j.jcmgh.2014.11.004)

    Keywords: Bacterial Communication; Bowel Disease; Host-Microbe Interactions; Inflammatory; Microbiome.

    ppearances can be deceiving. Despite what you seeAbbreviations used in this paper: AMP, antimicrobial peptides; CD,Crohns disease; CDI, contact-dependent growth inhibition; GI,gastrointestinal; HGT, horizontal gene transfer; IBD, inflammatorybowel disease; MAMP, microbe-associated molecular pattern; QS,quorum sensing; SCFA, short-chain fatty acids; SFB, segmented fila-mentous bacteria; T6SS, type VI secretion system; UC, ulcerativecolitis.

    2015 The Authors. Published by Elsevier Inc. on behalf of the AGAInstitute. This is an open access article under the CC BY-NC-ND

    license (http://creativecommons.org/licenses/by-nc-nd/3.0/).2352-345X

    http://dx.doi.org/10.1016/j.jcmgh.2014.11.004Ain the mirror, humans are more prokaryotic thaneukaryotic, as the bacteria in and on our bodies outnumberour own cells 10 to 1.1 Microbes are embedded in ourbiological system and are deeply integrated in our daily life,and an emerging field of research has tackled the inter-kingdom communication network present in the walkingmixed cultures we call people.

    The gastrointestinal (GI) tract has the highest density andvariety of bacteria in the human body (approximately 100trillion microbes made up of >1000 species) due to the idealgrowth conditions provided by this organ. In the colon, thereare up to 1012 microbes per gram of luminal content whichaccounts for 60%of fecalweight.2,3 A healthy adults intestinalmicrobiome is diverse, relatively stable over time, and domi-nated by two phyla, Bacteroidetes and Firmicutes (w95%).Nevertheless, there is considerable interindividual variabilityat the species level due to genetic, environmental, and nutri-tional factors.4 Diet in particular has been shown to rapidlyshift this community,5 resulting in geographic region-specificmicrobial signatures as seen in rural African children eating afiber-rich diet compared to their European counterparts.6

    Although understanding the bacterial species present inthe gastrointestinal tract is important, recentwork has shiftedthe focus to the existence of a core enteric metabolome,which has the potential to change the waywe look at how ourgut functions.7 Because bacterial genes have many over-lapping and redundant functions, the end result of theircombined metabolism and catabolism can ultimately have atremendous impact on the intestinal environment and hostphysiology. As we discuss later, these microbial-derivedproducts are a main component of the host-bacteria andbacteria-bacteria communication network essential to intes-tinal homeostasis.

    External pressures, such as infection or antibiotics, causea disequilibrium in the microbial community, a phenomenondesignated as dysbiosis and often associated with pathol-ogies including inflammatory bowel disease (IBD).8,9 Alter-natively, internal pressure resulting from defective hostgenetics, such as innate and adaptive immune genes, resultsin mismanagement of the microbiota, again leading to dys-biosis and pathologic conditions seen in the airway,10 theskin,11 and the gut.12,13 IBD is a chronic, relapsing, andremitting inflammatory disease that can be classified asulcerative colitis (UC) or Crohns disease (CD). Both formscan be thought of as examples of disrupted communicationbetween the intestinal microbiota and the host. The natureof this communication breakdown is not clear but involvesgenetic susceptibility related to the epithelial barrier andinnate immunity, all of which are important components ofhost-bacteria interaction.14

    This review will discuss the complex cross-talk betweenintestinal cells and the microbiota as well as the antagonisticand mutualistic interactions among enteric bacteria. Thismultifaceted communication network is what shapes theintestinal environment, drives homeostasis, and is thusessential to understanding how to prevent and treat intes-tinal disorders such as IBD.

    http://dx.doi.org/10.1016/j.jcmgh.2014.11.004http://dx.doi.org/10.1016/j.jcmgh.2014.11.004http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcmgh.2014.11.004&domain=pdfhttp://creativecommons.org/licenses/by-nc-nd/3.0/http://dx.doi.org/10.1016/j.jcmgh.2014.11.004

  • January 2015 Microbial Activities and Homeostasis 29Host Effects on the MicrobiotaGastrointestinal Tract Environment

    The intestinal microbiota is largely acquired during ourfirst few days of life, although recent studies have shownthat infants may not be bacteria free at birth.15,16 Speciesdiversity and stability increase to an adultlike microbiota bythe age of 3 years as children are exposed to a new milieuthat includes solid food and individuals with differentmicrobiota.1719 The wide topologic and geographic differ-ences that microorganisms encounter along the GI tractdictate their environmental niche for growth and ultimatelyshape the community as a whole (Figure 1).

    The acidity of the stomach limits bacterial growth andonly a sparse microbiota (

  • 30 Ohland and Jobin Cellular and Molecular Gastroenterology and Hepatology Vol. 1, No. 1increase along the length of the GI tract to the colon, whichhas 1012 bacteria/g.20

    The radial oxygen gradient with the gastrointestinal tract,whereby oxygen diffuses inward from the epithelium into themucous layer, creates a microaerophilic zone in whichfacultative anaerobes such as Proteobacteria thrive in ananaerobic lumen.26 Although nutrient absorption decreasesoxygenation of the mucosal layer by up to 40% due toincreased metabolic demands,27 this is unlikely to substan-tially affect the microbial community, as 4 days of hyperbaricoxygen treatment are needed to alter the microbiota.28

    However, survival in an atmosphere with fluctuating oxy-gen does require respiratory flexibility of commensal bacte-ria. Some strict anaerobes, such as Bacteroides fragilis,Clostridium acetobutylicum, Faecalibacterium prausnitzii,have developedmolecular switches and alternate respiratorychains, including extracellular thiols and flavins, that allowthem to tolerate low levels of oxygen over the short term andthereby achieve a selective growth advantage.2931

    In disease states, including these accompanied by in-testinal inflammation, diminished vascular perfusion andheightened immune cell metabolic activity result in localizedhypoxia or even anoxia within the intestines.32 It maytherefore be surprising that intestinal dysbiosis in IBD pa-tients is characterized by an enrichment of aerobic bacteriaincluding Enterobacteriaceae, which is also seen in experi-mental models of colitis (eg, Il10/, Tlr5/, TRUC).33,34

    This disparity is puzzling but may be explained by thefitness advantage of Enterobacteriaceae, which can use ni-trate generated during inflammation as an alternative ter-minal electron acceptor.35 Therefore, respiration has afundamental influence on the commensal bacteria that areable to thrive in an altered gut milieu.Dietary ComponentsCarbohydrates, proteins, and fats all have specific, pro-

    found effects on the composition of the intestinal microbiotaand have been extensively reviewed elsewhere.3639

    Notably, Bacteroidetes and Firmicutes such as Clostridialesare able to use host-indigestible polysaccharides and thusdominate in the colon, whereas Proteobacteria and Firmi-cutes such as Lactobacillales are found in the small intestinealong with high levels of monosaccharides and di-saccharides (Figure 1).40 Moreover, dietary vitamins candirectly affect bacterial growth, as some microbes such asRuminococcus bicirculans cannot synthesize their ownessential factors.41 Dietary vitamins can also modulate themicrobiota by promoting the fitness of Bacteroides species(vitamins B12, C, and E) or by decreasing microbial numbers(vitamin A, in particular for segmented filamentousbacteria).4244 However, it is not entirely clear whether thisis a direct effect on the bacteria or occurs indirectly via thehost epithelium or immune system, as with vitamin D.45 Inaddition to host nutrient requirements, Suez et al46 recentlydemonstrated that indigestible artificial sweeteners directlyincrease Bacteroidales and decrease Clostridiales in miceand humans. This elegant study demonstrates that theintricate relationship between our gut microbiota and whatwe consume includes indigestible components and affectswhole body health.

    Intestinal Immune System and Barrier FunctionThe gut also plays a very active role in shaping the mi-

    crobial community to protect the host from the high antigenicpotential of bacterial and unwarranted immune stimulation.The dynamic, responsive epithelial cells provide multipledeterrents, including the formation of a mucous layer bygoblet cells, secretion of antimicrobial peptides (AMP) byPaneth cells, intercellular tight junction complexes, andmicrobe-associated molecular pattern (MAMP) recognitionsystems.4749 Similarly, the underlying immune system isvery adept at tolerating nonharmful bacteria while recog-nizing and responding to invading pathogens and opportu-nistic commensal organisms. Luminal sampling bytolerogenic immune cells in the lamina propria, secretory IgAin the mucous layer, and the complement network operatetogether to maintain intestinal homeostasis.4853 Computer-based mathematical modeling of such a complex interactionsupports the theory that these defense systems, along withhost-derived nutrients, work together to shape the compo-sition of the microbiota and maintain its stability.54 Althoughdirect evidence of whether these systems impact microbialspecies present in the intestine is lacking, host defense is acritical factor in maintaining intestinal homeostasis.

    Microbial Influences on the HostEducating the Immune System

    Tolerance of the normal gut microbiota is an absolutelyvital element of enteric homeostasis, requiring an extensivenetwork of regulatory immune cells including Tregs andtolerogenic dendritic cells.55,56 The intestinal architecture ofthe uncolonized fetal or germ-free gut is immature, withreduced epithelial turnover, thin muscle wall and mucouslayers, a decreased number of immune cells, and disorga-nized gut-associated lymphoid tissue.5759 Microbial colo-nization of mice enhances the intestinal barrier function viaMAMP signaling and educates the immune system, resultingin maturation of the gut-associated lymphoid tissue into atolerant phenotype to prevent unregulated inflammation(Figure 2).2,60 However, there appears to be a window ofopportunity for this codevelopment, as colonization of adultgerm-free mice with healthy mouse microbiota does notinduce the same protective effects as when germ-free miceare colonized as neonates.61,62

    Segmented filamentous bacteria (SFB) are able to traversethe mucous layer and are found attached to the small intes-tinal epithelium of many vertebrates, including humans.63

    Although they are only present in low numbers, SFB areessential to the development of Th17 cells through epithelialcytokine production and dendritic cell processing,6466 andthey are required for full immune system maturation inmice.67 This is an important discovery, as aberrant Th17signaling has been documented in IBD, although evidencethat SFB have a similar function in humans is lacking.

    Alternatively, Bacteroides fragilis express polysaccharideA, which profoundly influences the development of enteric

  • Figure 2. Microbial effects on the host. The microbiota induces host immune tolerance to commensal bacteria directly via amicrobe-associated molecular pattern (MAMP) and polysaccharide (PSA) signaling, indirectly through the production of short-chain fatty acids (SCFA) and potentially through expression of epithelial intestinal alkaline phosphatase (IAP), which detoxifiesluminal lipopolysaccharides (LPS). Furthermore, segmented filamentous bacteria (SFB) promote immune development of Th17cells through epithelial cytokine production and antigen presentation by dendritic cells (DC), and the community as a whole isrequired for proper gut-associated lymphoid tissue (GALT) development. SCFA also induce IgA and mucus secretion into thelumen, promote epithelial barrier integrity, and prevent pathogen colonization. The microbiota also participates in the formationof the active, secondary forms of bile acids.

    January 2015 Microbial Activities and Homeostasis 31tolerance by converting proinflammatory CD4 T cells intoTregs during colonization68,69 and mediates equilibriumbetween TH1 and TH2 responses.

    70 Infants born by cesareandelivery have decreased microbial diversity, includingdelayed colonization by the B fragilis (Bacteroidetesphylum), which is associated with decreased TH1 activa-tion.71 Similarly, strains of Clostridium clusters IV and XIVa(Firmicutes phylum) can promote differentiation, expansion,and colonic homing of Treg cells through bacterial antigensignaling and short-chain fatty acids (SCFA) stimulation ofepithelial transforming growth factor-b1 production.72

    Thus, the far-reaching influences of the microbiota indi-cate the vital role of bacterial immunomodulation in main-taining whole-body health.Maintaining HomeostasisOnce an appropriately tolerant milieu is established,

    maintenance of healthy host-microbial communication isparamount for the host, as dysbiosis jeopardizes protectivemicrobial functions. A recent article by Zelante et al73 estab-lishes a role for microbial catabolism in balancing T-cell acti-vation of the mucosal immune system. When converted fromsugar to tryptophan as the primary energy source, the popu-lation of Lactobacilli expand and increase the production ofindole-3-aldehyde. This metabolite induces interleukin-22expression through activation of aryl hydrocarbon receptors,conferring both tolerance of the healthy microbiota and resis-tance to the opportunistic fungal pathogen Candida albicans.73

  • 32 Ohland and Jobin Cellular and Molecular Gastroenterology and Hepatology Vol. 1, No. 1Beyond regulation of the host immune system, themicrobiota influences many other normal functions of ahealthy intestinal tract (Figure 2). For example, the micro-biota convert bile acids into secondary forms in the lumen bydehydroxylation, dehydrogenation, and deconjugation.74,75

    Studies in germ-free mice demonstrate that bacterialsignaling via G protein-coupled and nuclear receptors(G protein-coupled bile acid receptor [TGR5] and farnesoid Xreceptor [FXR], respectively) not only controls levels of sec-ondary bile acids but also can modulate synthesis in theliver.76 Moreover, expression of intestinal alkaline phospha-tase, an epithelial-bound enzyme that detoxifies luminallipopolysaccharide to alleviate inflammation and promotetolerance,77 is affected by diet and antibiotics. It is tempting tospeculate that suchmodulation could occur via changes in themicrobiota.77,78 Maintaining symbiosis with our bacteria istherefore key to preserving intestinal health andhomeostasis.The Extensive Effects of Fatty AcidsFermentation, one of the key metabolic pathways

    employed by the enteric microbiota, produces SCFA,including acetate, propionate, and butyrate.79 SCFA havebeen shown to promote homeostatic mechanisms and pro-tect against inflammation in multiple models.80 This topicFigure 3. Bacteria use a complex communication networcombative (AC) and cooperative (DF) methods. (A) Antimicrobinhibit growth of surrounding microbes. (B) Contact-dependent g(CdiA) into the cytoplasm of target cells after contact. (C) Theattacking bacteria. Bacteria cooperate by increasing survivaltransfer (HGT) and (E) the formation of a protective biofilm. (F)group behavior, and has been implicated in T6SS expression, pthese mechanisms have not been observed in the healthy humaare T6SS toxin; and yellow stars are QS signaling molecules.has been thoroughly reviewed elsewhere.60,75,8183 Briefly,SCFA stimulate protective mucus and IgA production, pro-mote tolerance via Treg induction, inhibit the inflammatorymediator nuclear factor kB, enhance epithelial barrierintegrity and repair, and promote competitive exclusion ofpathogens (Figure 2). However, butyrate has also beenshown to be both protective and deleterious in differentmodels of colorectal cancer, highlighting the complexity ofSCFA biology with a disease-specific effect.80,84 Thus, evenpredominantly beneficial molecules or microbes canpotentially have negative effects in complex environmentssuch as the GI tract.Microbe-Microbe InteractionsIn addition to their host-mediated effect on microbial

    assembly, composition, and activities, microbial niches arealso under intense pressure from other surrounding bacte-ria. Bacteria use sophisticated intercommunication systemsto help maintain their niches; consequently, this microbialnetwork is essential to host homeostasis. These microbialrelationships can be antagonistic or mutualistic, dependingon the nature of the species (Figure 3). Commensal bacteriacombat other microbes using AMP production and targetedattacks by means of specialized secretion systems, and theyk to thrive in an environment. Bacteria interact throughial peptides (AMP) typically released after cell lysis either kill orrowth inhibition (CDI) systems deliver the toxic C-terminal endtype 6 secretion system (T6SS) forcefully injects toxins intoof similar microbes in their vicinity with (D) horizontal geneQuorum sensing (QS) allows bacteria to talk and coordinateroduction of AMP, and biofilm formation. However, several ofn intestinal tract. Red squares represent AMP; blue triangles

  • January 2015 Microbial Activities and Homeostasis 33compete for nutrients. Owing to their ruthless requirementsfor survival, bacteria have also developed cooperativemechanisms such as horizontal gene transfer, biofilm for-mation, and quorum sensing to ensure the fitness of theirown community as a whole.CombattingBacteria express highly potent bacteriocins, microcins,

    and colicins that fend off other species or pathogensinvading their niche without causing collateral damage toeukaryotic cells.85 Bacteriocins are pore-forming AMP pro-duced by Gram-positive bacteria; they directly relate tothe in vivo fitness and competitiveness of Lactobacillussalivarius and Streptococcus pneumoniae in the gut andnasopharynx, respectively.86,87 Microcins (

  • 34 Ohland and Jobin Cellular and Molecular Gastroenterology and Hepatology Vol. 1, No. 1catabolized by the microbiota but is not normally found inthe feces, as it is quickly consumed by other bacteria. Afterantibiotic treatment, there is a large spike in sialic acidavailability, which returns to baseline 3 days after treatmentas the microbiota is reestablished. These pathogens exploitthe vacant nutrient niche to establish themselves in theintestinal tract and initiate inflammation.122

    Theoretically, a pathobiont could also take advantage ofincreased sugar access to expand and cause pathology,similar to how Bilophila wadsworthia blooms when suppliedwith the bile acid taurocholic acid for sulfite reduction.123

    Inflammatory responses can further optimize the milieufor invading species by providing an alternative method ofrespiration, potentiating horizontal gene transfer of viru-lence factors such as colicins and allowing the pathogen tooutcompete commensal bacteria.35,99,124,125

    Beyond fighting for sugars as their main carbon source,intestinal microbes also exhibit fierce competition for nitro-gen, phosphorus, trace elements, vitamins, and other essen-tial cofactors.126,127 For instance, bacteria encode a widevariety of transporters for vitamin B12, which indicates thenecessity of these factors for survival.43 Moreover, theavailability of iron, zinc, and selenium have each been shownto modulate the microbiota in vivo, theoretically by allowingthe expansion of bacteria that aremore efficient at competingfor those trace elements.128131 In fact, Salmonella Typhi-murium infection causes up-regulation of intestinal epi-thelialderived lipocalin-2, an AMP that interferes withbacterial iron uptake. Sensitive bacteria are thus out-competed by the pathogen because Salmonella Typhimuriumis resistant to lipocalin-2 action.132 Interestingly, the pro-biotic E coli Nissle 1917 can reduce the Salmonella Typhi-murium burden after chronic infection has been established,as it has multiple lipocalin-2resistant iron uptake systemsand can outcompete the pathogen for iron.133

    The ability of bacteria to metabolize host carbohydratesand bile acids was recently shown to be critical duringmouse intestinal colonization, independent of the source ofthe microbes.134 Thus, nutrient competition is a key featureof the microbial community dynamic and may play a role inintestinal pathologies that exhibit nutrient deficiencies. Forexample, IBD is associated with deficiencies in manymicronutrient levels, including zinc, vitamin A, and iron,which could potentially influence the underlying dysbiosisand microbial activities.135,136Cooperating and CommunicatingDespite the cutthroat enteric battlefield, commensal

    bacteria also share byproducts rather than competing withtheir neighbors for the same food source. Intricate resourcenetworks have evolved within the microbiota employingthis waste not, want not attitude, and they form the mostbasic method of bacterial communication via detection ofneighboring microbes substrates. These networks arebeyond the scope of this article, but they have been exten-sively reviewed elsewhere.40,137

    Another method by which bacterial cooperation occurs ishorizontal gene transfer (HGT). Specifically, HGT of thesecretome is overrepresented in the intestinal microbiota, asthese molecules promote cooperation and social behaviorthrough the production of public goods.138,139 One well-established example where HGT promotes cooperation is inthe production of siderophores; iron chelators secreted toscavenge this essential element.140 Iron bound by side-rophores can be taken up by any bacterium in the vicinity,whether or not it expended the energy to create the chelator.Thus, cheaters arise in these communities,whodonot expresspublic goods but benefit from those who do, which hinderscooperation.141 In limiting conditions, HGT increases therelatedness of cheaters and thus enhancesmicrobiota stabilityby preventing the fitness advantage of cheating.142,143

    Secretion of an extracellular matrix, or biofilm, bindsbacteria together and protects the bacteria from outsideattacks, such as antibiotics or host immunity, while alsosmothering competing microbes.144146 Biofilms aid in thefitness of a bacterial population as a whole by decreasingthe diffusion of public goods through the viscous mediumand thus preventing others from acquiring them.147 Thisfunction is important as biofilms are especially vulnerable tocheaters, where any reduction in biofilm activity results in athinning of the biofilm matrix and increased susceptibility toantimicrobials.148 These structures are not regularly foundin the bowels of healthy humans, but are thick, dense, andadherent in untreated IBD patients.149 This could be relatedto the dysbiosis that occurs with IBD and may also explainwhy many patients are refractory to antibiotic treatmentdespite the apparent microbial involvement in disease.

    Tying many of these cooperative pathways together isquorum sensing (QS), the primary method by which bacteriacommunicate cell to cell and coordinate group behavior.Bacterial signaling molecules are released into the envi-ronment and initiate gene regulation once they reach athreshold concentration (typically in the picomolar range),thus providing a means of functionally measuring bacteriadensity.150 QS influences many survival mechanismsimportant to intestinal bacteria, including T6SS expres-sion,151 antibiotic production,126 and biofilm forma-tion.150,152 Cheaters exist within the QS world, and thesebacteria benefit from the protective signaling from othermembers of the same species without expending the energyto produce QS.153 Similarly, some Gram-negative bacteriaeavesdrop by only expressing the QS response transcriptionfactor and not the signaling molecule, which could allowcommensal bacteria such as E coli to sense the presence ofinvading pathogens.154 Alternatively, some bacteria,including multiple Proteobacteria species such as Klebsiellapneumoniae and P aeruginosa, and even mammalian cells,quench QS by degrading the signaling molecules to preventcompetitive colonization.155,156

    As most studies have examined pathogens, it is notentirely clear whether human commensal bacteria use QS tocommunicate despite intense speculation.157 However, QSsignaling has been identified in the probiotics E coli Nissle1917 and Lactobacillus species and may be involved in theirbeneficial effects.158160 It is likely that bacterial communi-cation is an important component of microbial communityassembly, composition, and activities. Further work is

  • January 2015 Microbial Activities and Homeostasis 35needed to establish the extent to which the various forms ofmicrobial communication are implicated in homeostasis anddiseases.Conclusions and PerspectiveThe human gut is a dynamic environment where

    eukaryotic and a multitude of prokaryotic cells establish acomplex network of communication that ultimately benefitsboth parties. It has become clear that disrupting this pro-ductive network has dire consequences for the host andmay contribute to intestinal pathologies, including IBD andcolorectal cancer, as well as extraintestinal disorders suchas diabetes and cardiovascular and liver diseases.2

    Although significant progress has been made in identi-fying host factors implicated in the disruption of the intes-tinal microbiota and associated pathologic consequences, apaucity of information is available about the functionalconsequences of commensal microbial communication. Ge-netic manipulation of genes implicated in these processes(eg, QS and biofilm formation in IBD) might allow dissectionof the roles of bacterial communication during health anddisease. Further advances will require the field of microbe-microbe communication to move from the test tube and intothe animal, as many of the fascinating interactions in vitrohave not been examined in vivo. Thus, a large piece of thehealth puzzle remains missing.

    Although the overwhelming majority of genes (99.1%)examined by metagenomic sequencing of the intestinal tractare bacterial in origin,1 the viruses, fungi, and archaeapresent may influence specific host response and intestinalhomeostasis.161,162 For example, susceptibility to entericviral infection is modulated by bacteria through enhancedviral replication.163 Bacteriophages in particular are anintriguing area of research as they can enhance bacterialfitness in vivo and alter its colonization.164,165

    Although there is value in definingwhich bacterial speciesare present in the gut, the field is moving toward regardingthe enteric microbial community as an organ, rather than asindividual parts. For example, does a global healthy micro-biota exist, and is it associated with a defined metabolomicfunction? Because microbial metabolism is intrinsicallylinked to the host, a holistic approach will be necessary todissect this complex relationship. Such an approach has beensuccessful in defining the relationship between diet, mi-crobes, and cardiovascular diseases.166 Although tremen-dous progress has been made in the field of microbiomeresearch, especially regarding intestinal microbiome andIBD, key elements of the dialogues are still missing, and thishinders the generation of novel therapeutic modalities.Replacing an altered microbiota has been validated as atherapeutic alternative to recurrent cases of C difficile infec-tion,167 but it is less clear whether IBD would be a logicalcandidate for this treatment.168 In addition, because of therole of host genetics in IBD, it is not clear how stable andfunctional a transplanted microbe would be. Consequently, atargetedmanipulation of microbial activities may represent abetter approach to disease treatment and management.Clearly, more research is needed to identify the microbialactivities implicated in health and disease and to harnesstheir full potential for therapeutic purposes.References1. Qin J, Li R, Raes J, et al. A human gut microbial gene

    catalogue established by metagenomic sequencing.Nature 2010;464:5965.

    2. Sommer F, Bckhed F. The gut microbiotamasters ofhost development and physiology. Nat Rev Microbiol2013;11:227238.

    3. Stephen AM, Cummings JH. The microbial contributionto human faecal mass. J Med Microbiol 1980;13:4556.

    4. Lozupone CA, Stombaugh JI, Gordon JI, et al. Diversity,stability and resilience of the human gut microbiota.Nature 2012;489:220230.

    5. David LA, Maurice CF, Carmody RN, et al. Diet rapidlyand reproducibly alters the human gut microbiome.Nature 2014;505:559563.

    6. De Filippo C, Cavalieri D, Di Paola M, et al. Impact ofdiet in shaping gut microbiota revealed by a compara-tive study in children from Europe and rural Africa. ProcNatl Acad Sci USA 2010;107:1469114696.

    7. Le Chatelier E, Nielsen T, Qin J, et al. Richness of hu-man gut microbiome correlates with metabolic markers.Nature 2013;500:541546.

    8. Pham TAN, Lawley TD. Emerging insights on intestinaldysbiosis during bacterial infections. Curr Opin Micro-biol 2014;17:6774.

    9. Keeney KM, Yurist-Doutsch S, Arrieta M-C, Finlay BB.Effect of antibiotics on human microbiota and subse-quent disease. Annu Rev Microbiol 2014;68:217235.

    10. Tsicopoulos A, de Nadai P, Glineur C. Environmentaland genetic contribution in airway epithelial barrier inasthma pathogenesis. Curr Opin Allergy Clin Immunol2013;13:495499.

    11. Zeeuwen PLJM, Kleerebezem M, Timmerman HM,Schalkwijk J. Microbiome and skin diseases. Curr OpinAllergy Clin Immunol 2013;13:514520.

    12. Lee YJ, Park KS. Irritable bowel syndrome: emergingparadigm in pathophysiology. World J Gastroenterol2014;20:24562469.

    13. Knights D, Lassen KG, Xavier RJ. Advances in inflam-matory bowel disease pathogenesis: linking host ge-netics and the microbiome. Gut 2013;62:15051510.

    14. Jostins L, Ripke S, Weersma RK, et al. Host-microbeinteractions have shaped the genetic architecture ofinflammatory bowel disease. Nature 2012;491:119124.

    15. Dominguez-Bello MG, Costello EK, Contreras M, et al.Delivery mode shapes the acquisition and structure of theinitial microbiota across multiple body habitats in new-borns. Proc Natl Acad Sci USA 2010;107:1197111975.

    16. Satokari R, Grnroos T, Laitinen K, et al. Bifidobacte-rium and Lactobacillus DNA in the human placenta. LettAppl Microbiol 2009;48:812.

    17. Bergstrm A, Skov TH, Bahl MI, et al. Establishment ofintestinal microbiota during early life: a longitudinal,explorative study of a large cohort of Danish infants.Appl Environ Microbiol 2014;80:28892900.

    http://refhub.elsevier.com/S2352-345X(14)00008-3/sref1http://refhub.elsevier.com/S2352-345X(14)00008-3/sref1http://refhub.elsevier.com/S2352-345X(14)00008-3/sref1http://refhub.elsevier.com/S2352-345X(14)00008-3/sref1http://refhub.elsevier.com/S2352-345X(14)00008-3/sref2http://refhub.elsevier.com/S2352-345X(14)00008-3/sref2http://refhub.elsevier.com/S2352-345X(14)00008-3/sref2http://refhub.elsevier.com/S2352-345X(14)00008-3/sref2http://refhub.elsevier.com/S2352-345X(14)00008-3/sref2http://refhub.elsevier.com/S2352-345X(14)00008-3/sref3http://refhub.elsevier.com/S2352-345X(14)00008-3/sref3http://refhub.elsevier.com/S2352-345X(14)00008-3/sref3http://refhub.elsevier.com/S2352-345X(14)00008-3/sref4http://refhub.elsevier.com/S2352-345X(14)00008-3/sref4http://refhub.elsevier.com/S2352-345X(14)00008-3/sref4http://refhub.elsevier.com/S2352-345X(14)00008-3/sref4http://refhub.elsevier.com/S2352-345X(14)00008-3/sref5http://refhub.elsevier.com/S2352-345X(14)00008-3/sref5http://refhub.elsevier.com/S2352-345X(14)00008-3/sref5http://refhub.elsevier.com/S2352-345X(14)00008-3/sref5http://refhub.elsevier.com/S2352-345X(14)00008-3/sref6http://refhub.elsevier.com/S2352-345X(14)00008-3/sref6http://refhub.elsevier.com/S2352-345X(14)00008-3/sref6http://refhub.elsevier.com/S2352-345X(14)00008-3/sref6http://refhub.elsevier.com/S2352-345X(14)00008-3/sref6http://refhub.elsevier.com/S2352-345X(14)00008-3/sref7http://refhub.elsevier.com/S2352-345X(14)00008-3/sref7http://refhub.elsevier.com/S2352-345X(14)00008-3/sref7http://refhub.elsevier.com/S2352-345X(14)00008-3/sref7http://refhub.elsevier.com/S2352-345X(14)00008-3/sref8http://refhub.elsevier.com/S2352-345X(14)00008-3/sref8http://refhub.elsevier.com/S2352-345X(14)00008-3/sref8http://refhub.elsevier.com/S2352-345X(14)00008-3/sref8http://refhub.elsevier.com/S2352-345X(14)00008-3/sref9http://refhub.elsevier.com/S2352-345X(14)00008-3/sref9http://refhub.elsevier.com/S2352-345X(14)00008-3/sref9http://refhub.elsevier.com/S2352-345X(14)00008-3/sref9http://refhub.elsevier.com/S2352-345X(14)00008-3/sref10http://refhub.elsevier.com/S2352-345X(14)00008-3/sref10http://refhub.elsevier.com/S2352-345X(14)00008-3/sref10http://refhub.elsevier.com/S2352-345X(14)00008-3/sref10http://refhub.elsevier.com/S2352-345X(14)00008-3/sref10http://refhub.elsevier.com/S2352-345X(14)00008-3/sref11http://refhub.elsevier.com/S2352-345X(14)00008-3/sref11http://refhub.elsevier.com/S2352-345X(14)00008-3/sref11http://refhub.elsevier.com/S2352-345X(14)00008-3/sref11http://refhub.elsevier.com/S2352-345X(14)00008-3/sref12http://refhub.elsevier.com/S2352-345X(14)00008-3/sref12http://refhub.elsevier.com/S2352-345X(14)00008-3/sref12http://refhub.elsevier.com/S2352-345X(14)00008-3/sref12http://refhub.elsevier.com/S2352-345X(14)00008-3/sref13http://refhub.elsevier.com/S2352-345X(14)00008-3/sref13http://refhub.elsevier.com/S2352-345X(14)00008-3/sref13http://refhub.elsevier.com/S2352-345X(14)00008-3/sref13http://refhub.elsevier.com/S2352-345X(14)00008-3/sref14http://refhub.elsevier.com/S2352-345X(14)00008-3/sref14http://refhub.elsevier.com/S2352-345X(14)00008-3/sref14http://refhub.elsevier.com/S2352-345X(14)00008-3/sref14http://refhub.elsevier.com/S2352-345X(14)00008-3/sref14http://refhub.elsevier.com/S2352-345X(14)00008-3/sref15http://refhub.elsevier.com/S2352-345X(14)00008-3/sref15http://refhub.elsevier.com/S2352-345X(14)00008-3/sref15http://refhub.elsevier.com/S2352-345X(14)00008-3/sref15http://refhub.elsevier.com/S2352-345X(14)00008-3/sref15http://refhub.elsevier.com/S2352-345X(14)00008-3/sref16http://refhub.elsevier.com/S2352-345X(14)00008-3/sref16http://refhub.elsevier.com/S2352-345X(14)00008-3/sref16http://refhub.elsevier.com/S2352-345X(14)00008-3/sref16http://refhub.elsevier.com/S2352-345X(14)00008-3/sref17http://refhub.elsevier.com/S2352-345X(14)00008-3/sref17http://refhub.elsevier.com/S2352-345X(14)00008-3/sref17http://refhub.elsevier.com/S2352-345X(14)00008-3/sref17http://refhub.elsevier.com/S2352-345X(14)00008-3/sref17

  • 36 Ohland and Jobin Cellular and Molecular Gastroenterology and Hepatology Vol. 1, No. 118. Koenig JE, Spor A, Scalfone N, et al. Succession of mi-crobial consortia in the developing infant gut microbiome.Proc Natl Acad Sci USA 2011;108(Suppl):45784585.

    19. Yatsunenko T, Rey FE, Manary MJ, et al. Human gutmicrobiome viewed across age and geography. Nature2012;486:222227.

    20. Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gutmicrobiota in health and disease. Physiol Rev 2010;90:859904.

    21. Andersson AF, Lindberg M, Jakobsson H, et al.Comparative analysis of human gut microbiota by bar-coded pyrosequencing. PLoS One 2008;3:e2836.

    22. Von Rosenvinge EC, Song Y, White JR, et al. Immunestatus, antibiotic medication and pH are associatedwith changes in the stomach fluid microbiota. ISME J2013;7:13541366.

    23. Bik EM, Eckburg PB, Gill SR, et al. Molecular analysis ofthe bacterial microbiota in the human stomach. ProcNatl Acad Sci USA 2006;103:732737.

    24. Cho I, Blaser MJ. The humanmicrobiome: at the interfaceof health and disease. Nat Rev Genet 2012;13:260270.

    25. Islam KBMS, Fukiya S, Hagio M, et al. Bile acid is a hostfactor that regulates the composition of the cecal micro-biota in rats. Gastroenterology 2011;141:17731781.

    26. Espey MG. Role of oxygen gradients in shaping redoxrelationships between the human intestine and itsmicrobiota. Free Radic Biol Med 2013;55:130140.

    27. Bohlen HG. Intestinal tissue PO2 and microvascularresponses during glucose exposure. Am J Physiol1980;238:H164H171.

    28. Albenberg L, Esipova TV, Judge CP, et al. Correlationbetween intraluminal oxygen gradient and radial parti-tioning of intestinal microbiota. Gastroenterology 2014;147:10551063.e8.

    29. Baughn AD, Malamy MH. The strict anaerobe Bacter-oides fragilis grows in and benefits from nanomolarconcentrations of oxygen. Nature 2004;427:441444.

    30. Hillmann F, Fischer R-J, Saint-Prix F, et al. PerR acts asa switch for oxygen tolerance in the strict anaerobeClostridium acetobutylicum. Mol Microbiol 2008;68:848860.

    31. Khan MT, Duncan SH, Stams AJM, et al. The gutanaerobe Faecalibacterium prausnitzii uses an extra-cellular electron shuttle to grow at oxic-anoxic in-terphases. ISME J 2012;6:15781585.

    32. Nizet V, Johnson RS. Interdependence of hypoxic andinnate immune responses. Nat Rev Immunol 2009;9:609617.

    33. Kostic AD, Xavier RJ, Gevers D. The microbiome in in-flammatory bowel disease: current status and the futureahead. Gastroenterology 2014;146:14891499.

    34. Lupp C, Robertson ML, Wickham ME, et al. Host-mediated inflammation disrupts the intestinal micro-biota and promotes the overgrowth of Enter-obacteriaceae. Cell Host Microbe 2007;2:119129.

    35. Winter SE, Winter MG, Xavier MN, et al. Host-derivednitrate boosts growth of E. coli in the inflamed gut.Science 2013;339:708711.

    36. Albenberg LG, Wu GD. Diet and the intestinal micro-biome: associations, functions, and implications forhealth and disease. Gastroenterology 2014;146:15641572.

    37. Hamaker BR, Tuncil YE. A perspective on the complexityof dietary fiber structures and their potential effect on thegut microbiota. J Mol Biol 2014;426:38383850.

    38. Morelli L. Postnatal development of intestinal microfloraas influenced by infant nutrition. J Nutr 2008;138:1791S1795S.

    39. Walsh CJ, Guinane CM, OToole PW, Cotter PD.Beneficial modulation of the gut microbiota. FEBS Lett2014;588:41204130.

    40. Koropatkin NM, Cameron EA, Martens EC. How glycanmetabolism shapes the human gut microbiota. Nat RevMicrobiol 2012;10:323335.

    41. Wegmann U, Louis P, Goesmann A, et al. Completegenome of a new Firmicutes species belonging to thedominant human colonic microbiota (Ruminococcusbicirculans) reveals two chromosomes and a selectivecapacity to utilize plant glucans. Environ Microbiol2014;16:28792890.

    42. Cha H-R, Chang S-Y, Chang J-H, et al. Downregulationof Th17 cells in the small intestine by disruption of gutflora in the absence of retinoic acid. J Immunol 2010;184:67996806.

    43. Degnan PH, Barry NA, Mok KC, et al. Human gut mi-crobes use multiple transporters to distinguish vitaminB12 analogs and compete in the gut. Cell Host Microbe2014;15:4757.

    44. Siddharth J, Holway N, Parkinson SJ. A Western dietecological module identified from the humanizedmouse microbiota predicts diet in adults and formulafeeding in children. PLoS One 2013;8:e83689.

    45. Cantorna MT, McDaniel K, Bora S, et al. Vitamin D, im-mune regulation, the microbiota, and inflammatory boweldisease. Exp Biol Med (Maywood) 2014;239:15241530.

    46. Suez J, Korem T, Zeevi D, et al. Artificial sweetenersinduce glucose intolerance by altering the gut micro-biota. Nature 2014;514:181186.

    47. Hasegawa M, Inohara N. Regulation of the gut micro-biota by the mucosal immune system in mice. IntImmunol 2014;26:481487.

    48. Hooper LV, Macpherson AJ. Immune adaptations thatmaintain homeostasis with the intestinal microbiota. NatRev Immunol 2010;10:159169.

    49. Spasova DS, Surh CD. Blowing on embers: commensalmicrobiota and our immune system. Front Immunol2014;5:318.

    50. Caricilli AM, Castoldi A, Cmara NOS. Intestinal barrier: agentlemens agreement between microbiota and immu-nity. World J Gastrointest Pathophysiol 2014;5:1832.

    51. Kaetzel CS. Cooperativity among secretory IgA, thepolymeric immunoglobulin receptor, and the gutmicrobiota promotes hostmicrobial mutualism. Immu-nol Lett 2014;162:1021.

    52. Macpherson AJ, Geuking MB, Slack E, et al. Thehabitat, double life, citizenship, and forgetfulness of IgA.Immunol Rev 2012;245:132146.

    53. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Com-plement: a key system for immune surveillance andhomeostasis. Nat Immunol 2010;11:785797.

    http://refhub.elsevier.com/S2352-345X(14)00008-3/sref18http://refhub.elsevier.com/S2352-345X(14)00008-3/sref18http://refhub.elsevier.com/S2352-345X(14)00008-3/sref18http://refhub.elsevier.com/S2352-345X(14)00008-3/sref18http://refhub.elsevier.com/S2352-345X(14)00008-3/sref19http://refhub.elsevier.com/S2352-345X(14)00008-3/sref19http://refhub.elsevier.com/S2352-345X(14)00008-3/sref19http://refhub.elsevier.com/S2352-345X(14)00008-3/sref19http://refhub.elsevier.com/S2352-345X(14)00008-3/sref20http://refhub.elsevier.com/S2352-345X(14)00008-3/sref20http://refhub.elsevier.com/S2352-345X(14)00008-3/sref20http://refhub.elsevier.com/S2352-345X(14)00008-3/sref20http://refhub.elsevier.com/S2352-345X(14)00008-3/sref21http://refhub.elsevier.com/S2352-345X(14)00008-3/sref21http://refhub.elsevier.com/S2352-345X(14)00008-3/sref21http://refhub.elsevier.com/S2352-345X(14)00008-3/sref22http://refhub.elsevier.com/S2352-345X(14)00008-3/sref22http://refhub.elsevier.com/S2352-345X(14)00008-3/sref22http://refhub.elsevier.com/S2352-345X(14)00008-3/sref22http://refhub.elsevier.com/S2352-345X(14)00008-3/sref22http://refhub.elsevier.com/S2352-345X(14)00008-3/sref23http://refhub.elsevier.com/S2352-345X(14)00008-3/sref23http://refhub.elsevier.com/S2352-345X(14)00008-3/sref23http://refhub.elsevier.com/S2352-345X(14)00008-3/sref23http://refhub.elsevier.com/S2352-345X(14)00008-3/sref24http://refhub.elsevier.com/S2352-345X(14)00008-3/sref24http://refhub.elsevier.com/S2352-345X(14)00008-3/sref24http://refhub.elsevier.com/S2352-345X(14)00008-3/sref25http://refhub.elsevier.com/S2352-345X(14)00008-3/sref25http://refhub.elsevier.com/S2352-345X(14)00008-3/sref25http://refhub.elsevier.com/S2352-345X(14)00008-3/sref25http://refhub.elsevier.com/S2352-345X(14)00008-3/sref26http://refhub.elsevier.com/S2352-345X(14)00008-3/sref26http://refhub.elsevier.com/S2352-345X(14)00008-3/sref26http://refhub.elsevier.com/S2352-345X(14)00008-3/sref26http://refhub.elsevier.com/S2352-345X(14)00008-3/sref27http://refhub.elsevier.com/S2352-345X(14)00008-3/sref27http://refhub.elsevier.com/S2352-345X(14)00008-3/sref27http://refhub.elsevier.com/S2352-345X(14)00008-3/sref27http://refhub.elsevier.com/S2352-345X(14)00008-3/sref28http://refhub.elsevier.com/S2352-345X(14)00008-3/sref28http://refhub.elsevier.com/S2352-345X(14)00008-3/sref28http://refhub.elsevier.com/S2352-345X(14)00008-3/sref28http://refhub.elsevier.com/S2352-345X(14)00008-3/sref28http://refhub.elsevier.com/S2352-345X(14)00008-3/sref29http://refhub.elsevier.com/S2352-345X(14)00008-3/sref29http://refhub.elsevier.com/S2352-345X(14)00008-3/sref29http://refhub.elsevier.com/S2352-345X(14)00008-3/sref29http://refhub.elsevier.com/S2352-345X(14)00008-3/sref30http://refhub.elsevier.com/S2352-345X(14)00008-3/sref30http://refhub.elsevier.com/S2352-345X(14)00008-3/sref30http://refhub.elsevier.com/S2352-345X(14)00008-3/sref30http://refhub.elsevier.com/S2352-345X(14)00008-3/sref30http://refhub.elsevier.com/S2352-345X(14)00008-3/sref31http://refhub.elsevier.com/S2352-345X(14)00008-3/sref31http://refhub.elsevier.com/S2352-345X(14)00008-3/sref31http://refhub.elsevier.com/S2352-345X(14)00008-3/sref31http://refhub.elsevier.com/S2352-345X(14)00008-3/sref31http://refhub.elsevier.com/S2352-345X(14)00008-3/sref32http://refhub.elsevier.com/S2352-345X(14)00008-3/sref32http://refhub.elsevier.com/S2352-345X(14)00008-3/sref32http://refhub.elsevier.com/S2352-345X(14)00008-3/sref32http://refhub.elsevier.com/S2352-345X(14)00008-3/sref33http://refhub.elsevier.com/S2352-345X(14)00008-3/sref33http://refhub.elsevier.com/S2352-345X(14)00008-3/sref33http://refhub.elsevier.com/S2352-345X(14)00008-3/sref33http://refhub.elsevier.com/S2352-345X(14)00008-3/sref34http://refhub.elsevier.com/S2352-345X(14)00008-3/sref34http://refhub.elsevier.com/S2352-345X(14)00008-3/sref34http://refhub.elsevier.com/S2352-345X(14)00008-3/sref34http://refhub.elsevier.com/S2352-345X(14)00008-3/sref34http://refhub.elsevier.com/S2352-345X(14)00008-3/sref35http://refhub.elsevier.com/S2352-345X(14)00008-3/sref35http://refhub.elsevier.com/S2352-345X(14)00008-3/sref35http://refhub.elsevier.com/S2352-345X(14)00008-3/sref35http://refhub.elsevier.com/S2352-345X(14)00008-3/sref36http://refhub.elsevier.com/S2352-345X(14)00008-3/sref36http://refhub.elsevier.com/S2352-345X(14)00008-3/sref36http://refhub.elsevier.com/S2352-345X(14)00008-3/sref36http://refhub.elsevier.com/S2352-345X(14)00008-3/sref36http://refhub.elsevier.com/S2352-345X(14)00008-3/sref37http://refhub.elsevier.com/S2352-345X(14)00008-3/sref37http://refhub.elsevier.com/S2352-345X(14)00008-3/sref37http://refhub.elsevier.com/S2352-345X(14)00008-3/sref37http://refhub.elsevier.com/S2352-345X(14)00008-3/sref38http://refhub.elsevier.com/S2352-345X(14)00008-3/sref38http://refhub.elsevier.com/S2352-345X(14)00008-3/sref38http://refhub.elsevier.com/S2352-345X(14)00008-3/sref38http://refhub.elsevier.com/S2352-345X(14)00008-3/sref39http://refhub.elsevier.com/S2352-345X(14)00008-3/sref39http://refhub.elsevier.com/S2352-345X(14)00008-3/sref39http://refhub.elsevier.com/S2352-345X(14)00008-3/sref39http://refhub.elsevier.com/S2352-345X(14)00008-3/sref40http://refhub.elsevier.com/S2352-345X(14)00008-3/sref40http://refhub.elsevier.com/S2352-345X(14)00008-3/sref40http://refhub.elsevier.com/S2352-345X(14)00008-3/sref40http://refhub.elsevier.com/S2352-345X(14)00008-3/sref41http://refhub.elsevier.com/S2352-345X(14)00008-3/sref41http://refhub.elsevier.com/S2352-345X(14)00008-3/sref41http://refhub.elsevier.com/S2352-345X(14)00008-3/sref41http://refhub.elsevier.com/S2352-345X(14)00008-3/sref41http://refhub.elsevier.com/S2352-345X(14)00008-3/sref41http://refhub.elsevier.com/S2352-345X(14)00008-3/sref41http://refhub.elsevier.com/S2352-345X(14)00008-3/sref42http://refhub.elsevier.com/S2352-345X(14)00008-3/sref42http://refhub.elsevier.com/S2352-345X(14)00008-3/sref42http://refhub.elsevier.com/S2352-345X(14)00008-3/sref42http://refhub.elsevier.com/S2352-345X(14)00008-3/sref42http://refhub.elsevier.com/S2352-345X(14)00008-3/sref43http://refhub.elsevier.com/S2352-345X(14)00008-3/sref43http://refhub.elsevier.com/S2352-345X(14)00008-3/sref43http://refhub.elsevier.com/S2352-345X(14)00008-3/sref43http://refhub.elsevier.com/S2352-345X(14)00008-3/sref43http://refhub.elsevier.com/S2352-345X(14)00008-3/sref44http://refhub.elsevier.com/S2352-345X(14)00008-3/sref44http://refhub.elsevier.com/S2352-345X(14)00008-3/sref44http://refhub.elsevier.com/S2352-345X(14)00008-3/sref44http://refhub.elsevier.com/S2352-345X(14)00008-3/sref45http://refhub.elsevier.com/S2352-345X(14)00008-3/sref45http://refhub.elsevier.com/S2352-345X(14)00008-3/sref45http://refhub.elsevier.com/S2352-345X(14)00008-3/sref45http://refhub.elsevier.com/S2352-345X(14)00008-3/sref46http://refhub.elsevier.com/S2352-345X(14)00008-3/sref46http://refhub.elsevier.com/S2352-345X(14)00008-3/sref46http://refhub.elsevier.com/S2352-345X(14)00008-3/sref46http://refhub.elsevier.com/S2352-345X(14)00008-3/sref47http://refhub.elsevier.com/S2352-345X(14)00008-3/sref47http://refhub.elsevier.com/S2352-345X(14)00008-3/sref47http://refhub.elsevier.com/S2352-345X(14)00008-3/sref47http://refhub.elsevier.com/S2352-345X(14)00008-3/sref48http://refhub.elsevier.com/S2352-345X(14)00008-3/sref48http://refhub.elsevier.com/S2352-345X(14)00008-3/sref48http://refhub.elsevier.com/S2352-345X(14)00008-3/sref48http://refhub.elsevier.com/S2352-345X(14)00008-3/sref49http://refhub.elsevier.com/S2352-345X(14)00008-3/sref49http://refhub.elsevier.com/S2352-345X(14)00008-3/sref49http://refhub.elsevier.com/S2352-345X(14)00008-3/sref50http://refhub.elsevier.com/S2352-345X(14)00008-3/sref50http://refhub.elsevier.com/S2352-345X(14)00008-3/sref50http://refhub.elsevier.com/S2352-345X(14)00008-3/sref50http://refhub.elsevier.com/S2352-345X(14)00008-3/sref51http://refhub.elsevier.com/S2352-345X(14)00008-3/sref51http://refhub.elsevier.com/S2352-345X(14)00008-3/sref51http://refhub.elsevier.com/S2352-345X(14)00008-3/sref51http://refhub.elsevier.com/S2352-345X(14)00008-3/sref51http://refhub.elsevier.com/S2352-345X(14)00008-3/sref51http://refhub.elsevier.com/S2352-345X(14)00008-3/sref52http://refhub.elsevier.com/S2352-345X(14)00008-3/sref52http://refhub.elsevier.com/S2352-345X(14)00008-3/sref52http://refhub.elsevier.com/S2352-345X(14)00008-3/sref52http://refhub.elsevier.com/S2352-345X(14)00008-3/sref53http://refhub.elsevier.com/S2352-345X(14)00008-3/sref53http://refhub.elsevier.com/S2352-345X(14)00008-3/sref53http://refhub.elsevier.com/S2352-345X(14)00008-3/sref53

  • January 2015 Microbial Activities and Homeostasis 3754. Schluter J, Foster KR. The evolution of mutualism in gutmicrobiota via host epithelial selection. PLoS Biol 2012;10:e1001424.

    55. Mann ER, Landy JD, Bernardo D, et al. Intestinal den-dritic cells: their role in intestinal inflammation, manip-ulation by the gut microbiota and differences betweenmice and men. Immunol Lett 2013;150:3040.

    56. Veenbergen S, Samsom JN. Maintenance of small in-testinal and colonic tolerance by IL-10-producing reg-ulatory T cell subsets. Curr Opin Immunol 2012;24:269276.

    57. Bauer E, Williams BA, Smidt H, et al. Influence of thegastrointestinal microbiota on development of the im-mune system in young animals. Curr Issues IntestMicrobiol 2006;7:3551.

    58. Di Mauro A, Neu J, Riezzo G, et al. Gastrointestinalfunction development and microbiota. Ital J Pediatr2013;39:15.

    59. Walker WA. Initial intestinal colonization in the humaninfant and immune homeostasis. Ann Nutr Metab 2013;63(Suppl 2):815.

    60. Belkaid Y, Hand TW. Role of the microbiota in immunityand inflammation. Cell 2014;157:121141.

    61. El Aidy S, Hooiveld G, Tremaroli V, et al. The gutmicrobiota and mucosal homeostasis: colonized atbirth or at adulthood, does it matter? Gut Microbes2013;4:118124.

    62. Olszak T, An D, Zeissig S, et al. Microbial exposureduring early life has persistent effects on natural killer Tcell function. Science 2012;336:489493.

    63. Schnupf P, Gaboriau-Routhiau V, Cerf-Bensussan N.Host interactions with segmented filamentous bacteria:an unusual trade-off that drives the post-natal matura-tion of the gut immune system. Semin Immunol 2013;25:342351.

    64. Goto Y, Panea C, Nakato G, et al. Segmented fila-mentous bacteria antigens presented by intestinaldendritic cells drive mucosal Th17 cell differentiation.Immunity 2014;40:594607.

    65. Ivanov II, Atarashi K, Manel N, et al. Induction of in-testinal Th17 cells by segmented filamentous bacteria.Cell 2009;139:485498.

    66. Gaboriau-Routhiau V, Rakotobe S, Lcuyer E, et al. Thekey role of segmented filamentous bacteria in the co-ordinated maturation of gut helper T cell responses.Immunity 2009;31:677689.

    67. Chung H, Pamp SJ, Hill JA, et al. Gut immune matu-ration depends on colonization with a host-specificmicrobiota. Cell 2012;149:15781593.

    68. Mazmanian SK, Round JL, Kasper DL. A microbialsymbiosis factor prevents intestinal inflammatory dis-ease. Nature 2008;453:620625.

    69. Round JL, Mazmanian SK. Inducible Foxp3 regulatoryT-cell development by a commensal bacterium of theintestinal microbiota. Proc Natl Acad Sci USA 2010;107:1220412209.

    70. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. Animmunomodulatory molecule of symbiotic bacteria di-rects maturation of the host immune system. Cell 2005;122:107118.71. Jakobsson HE, Abrahamsson TR, Jenmalm MC, et al.Decreased gut microbiota diversity, delayed Bacter-oidetes colonisation and reduced Th1 responses in in-fants delivered by caesarean section. Gut 2014;63:559566.

    72. Atarashi K, Tanoue T, Oshima K, et al. Treg induction bya rationally selected mixture of Clostridia strains fromthe human microbiota. Nature 2013;500:232236.

    73. Zelante T, Iannitti RG, Cunha C, et al. Tryptophan ca-tabolites from microbiota engage aryl hydrocarbon re-ceptor and balance mucosal reactivity via interleukin-22. Immunity 2013;39:372385.

    74. Jones ML, Ganopolsky JG, Martoni CJ, et al. Emergingscience of the human microbiome. Gut Microbes 2014;5:446457.

    75. Shapiro H, Thaiss CA, Levy M, Elinav E. The cross talkbetween microbiota and the immune system: metabo-lites take center stage. Curr Opin Immunol 2014;30C:5462.

    76. Sayin SI, Wahlstrm A, Felin J, et al. Gut microbiotaregulates bile acid metabolism by reducing the levels oftauro-beta-muricholic acid, a naturally occurring FXRantagonist. Cell Metab 2013;17:225235.

    77. Lalls J-P. Intestinal alkaline phosphatase: novel func-tions and protective effects. Nutr Rev 2014;72:8294.

    78. Arnal M-E, Zhang J, Messori S, et al. Early changes inmicrobial colonization selectively modulate intestinalenzymes, but not inducible heat shock proteins inyoung adult swine. PLoS One 2014;9:e87967.

    79. Krajmalnik-Brown R, Ilhan Z-E, Kang D-W, DiBaise JK.Effects of gut microbes on nutrient absorption and en-ergy regulation. Nutr Clin Pract 2012;27:201214.

    80. Singh N, Gurav A, Sivaprakasam S, et al. Activation ofGpr109a, receptor for niacin and the commensalmetabolite butyrate, suppresses colonic inflammationand carcinogenesis. Immunity 2014;40:128139.

    81. El Aidy S, van den Abbeele P, van de Wiele T, et al.Intestinal colonization: how key microbial playersbecome established in this dynamic process: microbialmetabolic activities and the interplay between the hostand microbes. Bioessays 2013;35:913923.

    82. Russell WR, Hoyles L, Flint HJ, Dumas M-E. Colonicbacterial metabolites and human health. Curr OpinMicrobiol 2013;16:246254.

    83. Thorburn AN, Macia L, Mackay CR. Diet, metabolites,and Western-lifestyle inflammatory diseases. Immu-nity 2014;40:833842.

    84. Belcheva A, Irrazabal T, Robertson SJ, et al. Gut mi-crobial metabolism drives transformation of Msh2-deficient colon epithelial cells. Cell 2014;158:288299.

    85. Ohland CL, Macnaughton WK. Probiotic bacteria andintestinal epithelial barrier function. Am J Physiol Gas-trointest Liver Physiol 2010;298:G807G819.

    86. Dawid S, Roche AM, Weiser JN. The blp bacteriocins ofStreptococcus pneumoniae mediate intraspeciescompetition both in vitro and in vivo. Infect Immun2007;75:443451.

    87. Walsh MC, Gardiner GE, Hart OM, et al. Predominanceof a bacteriocin-producing Lactobacillus salivariuscomponent of a five-strain probiotic in the porcine ileum

    http://refhub.elsevier.com/S2352-345X(14)00008-3/sref54http://refhub.elsevier.com/S2352-345X(14)00008-3/sref54http://refhub.elsevier.com/S2352-345X(14)00008-3/sref54http://refhub.elsevier.com/S2352-345X(14)00008-3/sref55http://refhub.elsevier.com/S2352-345X(14)00008-3/sref55http://refhub.elsevier.com/S2352-345X(14)00008-3/sref55http://refhub.elsevier.com/S2352-345X(14)00008-3/sref55http://refhub.elsevier.com/S2352-345X(14)00008-3/sref55http://refhub.elsevier.com/S2352-345X(14)00008-3/sref56http://refhub.elsevier.com/S2352-345X(14)00008-3/sref56http://refhub.elsevier.com/S2352-345X(14)00008-3/sref56http://refhub.elsevier.com/S2352-345X(14)00008-3/sref56http://refhub.elsevier.com/S2352-345X(14)00008-3/sref56http://refhub.elsevier.com/S2352-345X(14)00008-3/sref57http://refhub.elsevier.com/S2352-345X(14)00008-3/sref57http://refhub.elsevier.com/S2352-345X(14)00008-3/sref57http://refhub.elsevier.com/S2352-345X(14)00008-3/sref57http://refhub.elsevier.com/S2352-345X(14)00008-3/sref57http://refhub.elsevier.com/S2352-345X(14)00008-3/sref58http://refhub.elsevier.com/S2352-345X(14)00008-3/sref58http://refhub.elsevier.com/S2352-345X(14)00008-3/sref58http://refhub.elsevier.com/S2352-345X(14)00008-3/sref59http://refhub.elsevier.com/S2352-345X(14)00008-3/sref59http://refhub.elsevier.com/S2352-345X(14)00008-3/sref59http://refhub.elsevier.com/S2352-345X(14)00008-3/sref59http://refhub.elsevier.com/S2352-345X(14)00008-3/sref60http://refhub.elsevier.com/S2352-345X(14)00008-3/sref60http://refhub.elsevier.com/S2352-345X(14)00008-3/sref60http://refhub.elsevier.com/S2352-345X(14)00008-3/sref61http://refhub.elsevier.com/S2352-345X(14)00008-3/sref61http://refhub.elsevier.com/S2352-345X(14)00008-3/sref61http://refhub.elsevier.com/S2352-345X(14)00008-3/sref61http://refhub.elsevier.com/S2352-345X(14)00008-3/sref61http://refhub.elsevier.com/S2352-345X(14)00008-3/sref62http://refhub.elsevier.com/S2352-345X(14)00008-3/sref62http://refhub.elsevier.com/S2352-345X(14)00008-3/sref62http://refhub.elsevier.com/S2352-345X(14)00008-3/sref62http://refhub.elsevier.com/S2352-345X(14)00008-3/sref63http://refhub.elsevier.com/S2352-345X(14)00008-3/sref63http://refhub.elsevier.com/S2352-345X(14)00008-3/sref63http://refhub.elsevier.com/S2352-345X(14)00008-3/sref63http://refhub.elsevier.com/S2352-345X(14)00008-3/sref63http://refhub.elsevier.com/S2352-345X(14)00008-3/sref63http://refhub.elsevier.com/S2352-345X(14)00008-3/sref64http://refhub.elsevier.com/S2352-345X(14)00008-3/sref64http://refhub.elsevier.com/S2352-345X(14)00008-3/sref64http://refhub.elsevier.com/S2352-345X(14)00008-3/sref64http://refhub.elsevier.com/S2352-345X(14)00008-3/sref64http://refhub.elsevier.com/S2352-345X(14)00008-3/sref65http://refhub.elsevier.com/S2352-345X(14)00008-3/sref65http://refhub.elsevier.com/S2352-345X(14)00008-3/sref65http://refhub.elsevier.com/S2352-345X(14)00008-3/sref65http://refhub.elsevier.com/S2352-345X(14)00008-3/sref66http://refhub.elsevier.com/S2352-345X(14)00008-3/sref66http://refhub.elsevier.com/S2352-345X(14)00008-3/sref66http://refhub.elsevier.com/S2352-345X(14)00008-3/sref66http://refhub.elsevier.com/S2352-345X(14)00008-3/sref66http://refhub.elsevier.com/S2352-345X(14)00008-3/sref67http://refhub.elsevier.com/S2352-345X(14)00008-3/sref67http://refhub.elsevier.com/S2352-345X(14)00008-3/sref67http://refhub.elsevier.com/S2352-345X(14)00008-3/sref67http://refhub.elsevier.com/S2352-345X(14)00008-3/sref68http://refhub.elsevier.com/S2352-345X(14)00008-3/sref68http://refhub.elsevier.com/S2352-345X(14)00008-3/sref68http://refhub.elsevier.com/S2352-345X(14)00008-3/sref68http://refhub.elsevier.com/S2352-345X(14)00008-3/sref69http://refhub.elsevier.com/S2352-345X(14)00008-3/sref69http://refhub.elsevier.com/S2352-345X(14)00008-3/sref69http://refhub.elsevier.com/S2352-345X(14)00008-3/sref69http://refhub.elsevier.com/S2352-345X(14)00008-3/sref69http://refhub.elsevier.com/S2352-345X(14)00008-3/sref69http://refhub.elsevier.com/S2352-345X(14)00008-3/sref70http://refhub.elsevier.com/S2352-345X(14)00008-3/sref70http://refhub.elsevier.com/S2352-345X(14)00008-3/sref70http://refhub.elsevier.com/S2352-345X(14)00008-3/sref70http://refhub.elsevier.com/S2352-345X(14)00008-3/sref70http://refhub.elsevier.com/S2352-345X(14)00008-3/sref71http://refhub.elsevier.com/S2352-345X(14)00008-3/sref71http://refhub.elsevier.com/S2352-345X(14)00008-3/sref71http://refhub.elsevier.com/S2352-345X(14)00008-3/sref71http://refhub.elsevier.com/S2352-345X(14)00008-3/sref71http://refhub.elsevier.com/S2352-345X(14)00008-3/sref71http://refhub.elsevier.com/S2352-345X(14)00008-3/sref72http://refhub.elsevier.com/S2352-345X(14)00008-3/sref72http://refhub.elsevier.com/S2352-345X(14)00008-3/sref72http://refhub.elsevier.com/S2352-345X(14)00008-3/sref72http://refhub.elsevier.com/S2352-345X(14)00008-3/sref73http://refhub.elsevier.com/S2352-345X(14)00008-3/sref73http://refhub.elsevier.com/S2352-345X(14)00008-3/sref73http://refhub.elsevier.com/S2352-345X(14)00008-3/sref73http://refhub.elsevier.com/S2352-345X(14)00008-3/sref73http://refhub.elsevier.com/S2352-345X(14)00008-3/sref74http://refhub.elsevier.com/S2352-345X(14)00008-3/sref74http://refhub.elsevier.com/S2352-345X(14)00008-3/sref74http://refhub.elsevier.com/S2352-345X(14)00008-3/sref74http://refhub.elsevier.com/S2352-345X(14)00008-3/sref75http://refhub.elsevier.com/S2352-345X(14)00008-3/sref75http://refhub.elsevier.com/S2352-345X(14)00008-3/sref75http://refhub.elsevier.com/S2352-345X(14)00008-3/sref75http://refhub.elsevier.com/S2352-345X(14)00008-3/sref75http://refhub.elsevier.com/S2352-345X(14)00008-3/sref76http://refhub.elsevier.com/S2352-345X(14)00008-3/sref76http://refhub.elsevier.com/S2352-345X(14)00008-3/sref76http://refhub.elsevier.com/S2352-345X(14)00008-3/sref76http://refhub.elsevier.com/S2352-345X(14)00008-3/sref76http://refhub.elsevier.com/S2352-345X(14)00008-3/sref77http://refhub.elsevier.com/S2352-345X(14)00008-3/sref77http://refhub.elsevier.com/S2352-345X(14)00008-3/sref77http://refhub.elsevier.com/S2352-345X(14)00008-3/sref78http://refhub.elsevier.com/S2352-345X(14)00008-3/sref78http://refhub.elsevier.com/S2352-345X(14)00008-3/sref78http://refhub.elsevier.com/S2352-345X(14)00008-3/sref78http://refhub.elsevier.com/S2352-345X(14)00008-3/sref79http://refhub.elsevier.com/S2352-345X(14)00008-3/sref79http://refhub.elsevier.com/S2352-345X(14)00008-3/sref79http://refhub.elsevier.com/S2352-345X(14)00008-3/sref79http://refhub.elsevier.com/S2352-345X(14)00008-3/sref80http://refhub.elsevier.com/S2352-345X(14)00008-3/sref80http://refhub.elsevier.com/S2352-345X(14)00008-3/sref80http://refhub.elsevier.com/S2352-345X(14)00008-3/sref80http://refhub.elsevier.com/S2352-345X(14)00008-3/sref80http://refhub.elsevier.com/S2352-345X(14)00008-3/sref81http://refhub.elsevier.com/S2352-345X(14)00008-3/sref81http://refhub.elsevier.com/S2352-345X(14)00008-3/sref81http://refhub.elsevier.com/S2352-345X(14)00008-3/sref81http://refhub.elsevier.com/S2352-345X(14)00008-3/sref81http://refhub.elsevier.com/S2352-345X(14)00008-3/sref81http://refhub.elsevier.com/S2352-345X(14)00008-3/sref82http://refhub.elsevier.com/S2352-345X(14)00008-3/sref82http://refhub.elsevier.com/S2352-345X(14)00008-3/sref82http://refhub.elsevier.com/S2352-345X(14)00008-3/sref82http://refhub.elsevier.com/S2352-345X(14)00008-3/sref83http://refhub.elsevier.com/S2352-345X(14)00008-3/sref83http://refhub.elsevier.com/S2352-345X(14)00008-3/sref83http://refhub.elsevier.com/S2352-345X(14)00008-3/sref83http://refhub.elsevier.com/S2352-345X(14)00008-3/sref84http://refhub.elsevier.com/S2352-345X(14)00008-3/sref84http://refhub.elsevier.com/S2352-345X(14)00008-3/sref84http://refhub.elsevier.com/S2352-345X(14)00008-3/sref84http://refhub.elsevier.com/S2352-345X(14)00008-3/sref85http://refhub.elsevier.com/S2352-345X(14)00008-3/sref85http://refhub.elsevier.com/S2352-345X(14)00008-3/sref85http://refhub.elsevier.com/S2352-345X(14)00008-3/sref85http://refhub.elsevier.com/S2352-345X(14)00008-3/sref86http://refhub.elsevier.com/S2352-345X(14)00008-3/sref86http://refhub.elsevier.com/S2352-345X(14)00008-3/sref86http://refhub.elsevier.com/S2352-345X(14)00008-3/sref86http://refhub.elsevier.com/S2352-345X(14)00008-3/sref86http://refhub.elsevier.com/S2352-345X(14)00008-3/sref87http://refhub.elsevier.com/S2352-345X(14)00008-3/sref87http://refhub.elsevier.com/S2352-345X(14)00008-3/sref87

  • 38 Ohland and Jobin Cellular and Molecular Gastroenterology and Hepatology Vol. 1, No. 1and effects on host immune phenotype. FEMS Micro-biol Ecol 2008;64:317327.

    88. Braun V, Patzer SI. Intercellular communication by relatedbacterial protein toxins: colicins, contact-dependent in-hibitors, and proteins exported by the type VI secretionsystem. FEMS Microbiol Lett 2013;345:1321.

    89. Rebuffat S. Microcins in action: amazing defence stra-tegies of Enterobacteria. Biochem Soc Trans 2012;40:14561462.

    90. Jozefiak D, Sip A, Rawski M, et al. Dietary divercinmodifies gastrointestinal microbiota and improvesgrowth performance in broiler chickens. Br Poult Sci2011;52:492499.

    91. Rea MC, Dobson A, OSullivan O, et al. Effect of broad-and narrow-spectrum antimicrobials on Clostridiumdifficile and microbial diversity in a model of the distalcolon. Proc Natl Acad Sci USA 2011;108(Suppl):46394644.

    92. Riboulet-Bisson E, Sturme MHJ, Jeffery IB, et al. Effectof Lactobacillus salivarius bacteriocin Abp118 on themouse and pig intestinal microbiota. PLoS One 2012;7:e31113.

    93. Frank DN, St Amand AL, Feldman RA, et al. Molecular-phylogenetic characterization of microbial communityimbalances in human inflammatory bowel diseases.Proc Natl Acad Sci USA 2007;104:1378013785.

    94. Lepage P, Hsler R, Spehlmann ME, et al. Twin studyindicates loss of interaction between microbiota andmucosa of patients with ulcerative colitis. Gastroenter-ology 2011;141:227236.

    95. Murphy EF, Cotter PD, Hogan A, et al. Divergentmetabolic outcomes arising from targeted manipulationof the gut microbiota in diet-induced obesity. Gut 2013;62:220226.

    96. Cullen TW, Giles DK, Wolf LN, et al. Helicobacter pyloriversus the host: remodeling of the bacterial outermembrane is required for survival in the gastric mucosa.PLoS Pathog 2011;7:e1002454.

    97. Wang X, Ribeiro AA, Guan Z, et al. Attenuated virulenceof a Francisella mutant lacking the lipid A 40-phospha-tase. Proc Natl Acad Sci USA 2007;104:41364141.

    98. Hol F, Voges MJ, Dekker C, Keymer JE. Nutrient-responsive regulation determines biodiversity in a colicin-mediated bacterial community. BMC Biol 2014;12:68.

    99. Nedialkova LP, Denzler R, Koeppel MB, et al. Inflamma-tion fuels colicin Ib-dependent competition of Salmonellaserovar Typhimurium and E. coli in enterobacterialblooms. PLoS Pathog 2014;10:e1003844.

    100. Aoki SK,Diner EJ, deRoodenbekeCT, et al. Awidespreadfamily of polymorphic contact-dependent toxin deliverysystems in bacteria. Nature 2010;468:439442.

    101. Holberger LE, Garza-Snchez F, Lamoureux J, et al.A novel family of toxin/antitoxin proteins in Bacillusspecies. FEBS Lett 2012;586:132136.

    102. Ruhe ZC, Low DA, Hayes CS. Bacterial contact-dependent growth inhibition. Trends Microbiol 2013;21:230237.

    103. Webb JS, Nikolakakis KC, Willett JLE, et al. Delivery ofCdiA nuclease toxins into target cells during contact-dependent growth inhibition. PLoS One 2013;8:e57609.104. Blanchard AE, Celik V, Lu T. Extinction, coexistence,and localized patterns of a bacterial populationwith contact-dependent inhibition. BMC Syst Biol 2014;8:23.

    105. Anderson MS, Garcia EC, Cotter PA. Kind discrimina-tion and competitive exclusion mediated by contact-dependent growth inhibition systems shape biofilmcommunity structure. PLoS Pathog 2014;10:e1004076.

    106. Garcia EC, Anderson MS, Hagar JA, Cotter PA. Bur-kholderia BcpA mediates biofilm formation indepen-dently of interbacterial contact-dependent growthinhibition. Mol Microbiol 2013;89:12131225.

    107. Kapitein N, Mogk A. Deadly syringes: type VI secretionsystem activities in pathogenicity and interbacterialcompetition. Curr Opin Microbiol 2013;16:5258.

    108. Basler M, Ho BT, Mekalanos JJ. Tit-for-tat: type VIsecretion system counterattack during bacterial cell-cellinteractions. Cell 2013;152:884894.

    109. Ho BT, Basler M, Mekalanos JJ. Type 6 secretionsystem-mediated immunity to type 4 secretion system-mediated gene transfer. Science 2013;342:250253.

    110. Hood RD, Singh P, Hsu F, et al. A type VI secretionsystem of Pseudomonas aeruginosa targets a toxin tobacteria. Cell Host Microbe 2010;7:2537.

    111. Russell AB, Wexler AG, Harding BN, et al. A type VIsecretion-related pathway in bacteroidetes mediatesinterbacterial antagonism. Cell Host Microbe 2014;16:227236.

    112. Schwarz S, West TE, Boyer F, et al. Burkholderia type VIsecretion systems have distinct roles in eukaryotic andbacterial cell interactions. PLoS Pathog 2010;6:e1001068.

    113. Unterweger D, Miyata ST, Bachmann V, et al. The Vibriocholerae type VI secretion system employs diverseeffector modules for intraspecific competition. NatCommun 2014;5:3549.

    114. Fu Y, Waldor MK, Mekalanos JJ. Tn-Seq analysis ofVibrio cholerae intestinal colonization reveals a role forT6SS-mediated antibacterial activity in the host. CellHost Microbe 2013;14:652663.

    115. Ma L-S, Hachani A, Lin J-S, et al. Agrobacteriumtumefaciens deploys a superfamily of type VI secretionDNase effectors as weapons for interbacterial compe-tition in planta. Cell Host Microbe 2014;16:94104.

    116. Aschtgen M-S, Bernard CS, de Bentzmann S, et al.SciN is an outer membrane lipoprotein required for typeVI secretion in enteroaggregative Escherichia coli.J Bacteriol 2008;190:75237531.

    117. de Pace F, Boldrin de Paiva J, Nakazato G, et al.Characterization of IcmF of the type VI secretion systemin an avian pathogenic Escherichia coli (APEC) strain.Microbiology 2011;157:29542962.

    118. Mulder DT, Cooper CA, Coombes BK. Type VI secretionsystem-associated gene clusters contribute to patho-genesis of Salmonella enterica serovar Typhimurium.Infect Immun 2012;80:19962007.

    119. Parsons DA, Heffron F. sciS, an icmF homolog in Sal-monella enterica serovar Typhimurium, limits intracel-lular replication and decreases virulence. Infect Immun2005;73:43384345.

    http://refhub.elsevier.com/S2352-345X(14)00008-3/sref87http://refhub.elsevier.com/S2352-345X(14)00008-3/sref87http://refhub.elsevier.com/S2352-345X(14)00008-3/sref87http://refhub.elsevier.com/S2352-345X(14)00008-3/sref88http://refhub.elsevier.com/S2352-345X(14)00008-3/sref88http://refhub.elsevier.com/S2352-345X(14)00008-3/sref88http://refhub.elsevier.com/S2352-345X(14)00008-3/sref88http://refhub.elsevier.com/S2352-345X(14)00008-3/sref88http://refhub.elsevier.com/S2352-345X(14)00008-3/sref89http://refhub.elsevier.com/S2352-345X(14)00008-3/sref89http://refhub.elsevier.com/S2352-345X(14)00008-3/sref89http://refhub.elsevier.com/S2352-345X(14)00008-3/sref89http://refhub.elsevier.com/S2352-345X(14)00008-3/sref90http://refhub.elsevier.com/S2352-345X(14)00008-3/sref90http://refhub.elsevier.com/S2352-345X(14)00008-3/sref90http://refhub.elsevier.com/S2352-345X(14)00008-3/sref90http://refhub.elsevier.com/S2352-345X(14)00008-3/sref90http://refhub.elsevier.com/S2352-345X(14)00008-3/sref91http://refhub.elsevier.com/S2352-345X(14)00008-3/sref91http://refhub.elsevier.com/S2352-345X(14)00008-3/sref91http://refhub.elsevier.com/S2352-345X(14)00008-3/sref91http://refhub.elsevier.com/S2352-345X(14)00008-3/sref91http://refhub.elsevier.com/S2352-345X(14)00008-3/sref91http://refhub.elsevier.com/S2352-345X(14)00008-3/sref92http://refhub.elsevier.com/S2352-345X(14)00008-3/sref92http://refhub.elsevier.com/S2352-345X(14)00008-3/sref92http://refhub.elsevier.com/S2352-345X(14)00008-3/sref92http://refhub.elsevier.com/S2352-345X(14)00008-3/sref93http://refhub.elsevier.com/S2352-345X(14)00008-3/sref93http://refhub.elsevier.com/S2352-345X(14)00008-3/sref93http://refhub.elsevier.com/S2352-345X(14)00008-3/sref93http://refhub.elsevier.com/S2352-345X(14)00008-3/sref93http://refhub.elsevier.com/S2352-345X(14)00008-3/sref94http://refhub.elsevier.com/S2352-345X(14)00008-3/sref94http://refhub.elsevier.com/S2352-345X(14)00008-3/sref94http://refhub.elsevier.com/S2352-345X(14)00008-3/sref94http://refhub.elsevier.com/S2352-345X(14)00008-3/sref94http://refhub.elsevier.com/S2352-345X(14)00008-3/sref95http://refhub.elsevier.com/S2352-345X(14)00008-3/sref95http://refhub.elsevier.com/S2352-345X(14)00008-3/sref95http://refhub.elsevier.com/S2352-345X(14)00008-3/sref95http://refhub.elsevier.com/S2352-345X(14)00008-3/sref95http://refhub.elsevier.com/S2352-345X(14)00008-3/sref96http://refhub.elsevier.com/S2352-345X(14)00008-3/sref96http://refhub.elsevier.com/S2352-345X(14)00008-3/sref96http://refhub.elsevier.com/S2352-345X(14)00008-3/sref96http://refhub.elsevier.com/S2352-345X(14)00008-3/sref97http://refhub.elsevier.com/S2352-345X(14)00008-3/sref97http://refhub.elsevier.com/S2352-345X(14)00008-3/sref97http://refhub.elsevier.com/S2352-345X(14)00008-3/sref97http://refhub.elsevier.com/S2352-345X(14)00008-3/sref97http://refhub.elsevier.com/S2352-345X(14)00008-3/sref98http://refhub.elsevier.com/S2352-345X(14)00008-3/sref98http://refhub.elsevier.com/S2352-345X(14)00008-3/sref98http://refhub.elsevier.com/S2352-345X(14)00008-3/sref99http://refhub.elsevier.com/S2352-345X(14)00008-3/sref99http://refhub.elsevier.com/S2352-345X(14)00008-3/sref99http://refhub.elsevier.com/S2352-345X(14)00008-3/sref99http://refhub.elsevier.com/S2352-345X(14)00008-3/sref100http://refhub.elsevier.com/S2352-345X(14)00008-3/sref100http://refhub.elsevier.com/S2352-345X(14)00008-3/sref100http://refhub.elsevier.com/S2352-345X(14)00008-3/sref100http://refhub.elsevier.com/S2352-345X(14)00008-3/sref101http://refhub.elsevier.com/S2352-345X(14)00008-3/sref101http://refhub.elsevier.com/S2352-345X(14)00008-3/sref101http://refhub.elsevier.com/S2352-345X(14)00008-3/sref101http://refhub.elsevier.com/S2352-345X(14)00008-3/sref102http://refhub.elsevier.com/S2352-345X(14)00008-3/sref102http://refhub.elsevier.com/S2352-345X(14)00008-3/sref102http://refhub.elsevier.com/S2352-345X(14)00008-3/sref102http://refhub.elsevier.com/S2352-345X(14)00008-3/sref103http://refhub.elsevier.com/S2352-345X(14)00008-3/sref103http://refhub.elsevier.com/S2352-345X(14)00008-3/sref103http://refhub.elsevier.com/S2352-345X(14)00008-3/sref104http://refhub.elsevier.com/S2352-345X(14)00008-3/sref104http://refhub.elsevier.com/S2352-345X(14)00008-3/sref104http://refhub.elsevier.com/S2352-345X(14)00008-3/sref104http://refhub.elsevier.com/S2352-345X(14)00008-3/sref105http://refhub.elsevier.com/S2352-345X(14)00008-3/sref105http://refhub.elsevier.com/S2352-345X(14)00008-3/sref105http://refhub.elsevier.com/S2352-345X(14)00008-3/sref105http://refhub.elsevier.com/S2352-345X(14)00008-3/sref106http://refhub.elsevier.com/S2352-345X(14)00008-3/sref106http://refhub.elsevier.com/S2352-345X(14)00008-3/sref106http://refhub.elsevier.com/S2352-345X(14)00008-3/sref106http://refhub.elsevier.com/S2352-345X(14)00008-3/sref106http://refhub.elsevier.com/S2352-345X(14)00008-3/sref107http://refhub.elsevier.com/S2352-345X(14)00008-3/sref107http://refhub.elsevier.com/S2352-345X(14)00008-3/sref107http://refhub.elsevier.com/S2352-345X(14)00008-3/sref107http://refhub.elsevier.com/S2352-345X(14)00008-3/sref108http://refhub.elsevier.com/S2352-345X(14)00008-3/sref108http://refhub.elsevier.com/S2352-345X(14)00008-3/sref108http://refhub.elsevier.com/S2352-345X(14)00008-3/sref108http://refhub.elsevier.com/S2352-345X(14)00008-3/sref109http://refhub.elsevier.com/S2352-345X(14)00008-3/sref109http://refhub.elsevier.com/S2352-345X(14)00008-3/sref109http://refhub.elsevier.com/S2352-345X(14)00008-3/sref109http://refhub.elsevier.com/S2352-345X(14)00008-3/sref110http://refhub.elsevier.com/S2352-345X(14)00008-3/sref110http://refhub.elsevier.com/S2352-345X(14)00008-3/sref110http://refhub.elsevier.com/S2352-345X(14)00008-3/sref110http://refhub.elsevier.com/S2352-345X(14)00008-3/sref111http://refhub.elsevier.com/S2352-345X(14)00008-3/sref111http://refhub.elsevier.com/S2352-345X(14)00008-3/sref111http://refhub.elsevier.com/S2352-345X(14)00008-3/sref111http://refhub.elsevier.com/S2352-345X(14)00008-3/sref111http://refhub.elsevier.com/S2352-345X(14)00008-3/sref112http://refhub.elsevier.com/S2352-345X(14)00008-3/sref112http://refhub.elsevier.com/S2352-345X(14)00008-3/sref112http://refhub.elsevier.com/S2352-345X(14)00008-3/sref112http://refhub.elsevier.com/S2352-345X(14)00008-3/sref113http://refhub.elsevier.com/S2352-345X(14)00008-3/sref113http://refhub.elsevier.com/S2352-345X(14)00008-3/sref113http://refhub.elsevier.com/S2352-345X(14)00008-3/sref113http://refhub.elsevier.com/S2352-345X(14)00008-3/sref114http://refhub.elsevier.com/S2352-345X(14)00008-3/sref114http://refhub.elsevier.com/S2352-345X(14)00008-3/sref114http://refhub.elsevier.com/S2352-345X(14)00008-3/sref114http://refhub.elsevier.com/S2352-345X(14)00008-3/sref114http://refhub.elsevier.com/S2352-345X(14)00008-3/sref115http://refhub.elsevier.com/S2352-345X(14)00008-3/sref115http://refhub.elsevier.com/S2352-345X(14)00008-3/sref115http://refhub.elsevier.com/S2352-345X(14)00008-3/sref115http://refhub.elsevier.com/S2352-345X(14)00008-3/sref115http://refhub.elsevier.com/S2352-345X(14)00008-3/sref116http://refhub.elsevier.com/S2352-345X(14)00008-3/sref116http://refhub.elsevier.com/S2352-345X(14)00008-3/sref116http://refhub.elsevier.com/S2352-345X(14)00008-3/sref116http://refhub.elsevier.com/S2352-345X(14)00008-3/sref116http://refhub.elsevier.com/S2352-345X(14)00008-3/sref117http://refhub.elsevier.com/S2352-345X(14)00008-3/sref117http://refhub.elsevier.com/S2352-345X(14)00008-3/sref117http://refhub.elsevier.com/S2352-345X(14)00008-3/sref117http://refhub.elsevier.com/S2352-345X(14)00008-3/sref117http://refhub.elsevier.com/S2352-345X(14)00008-3/sref118http://refhub.elsevier.com/S2352-345X(14)00008-3/sref118http://refhub.elsevier.com/S2352-345X(14)00008-3/sref118http://refhub.elsevier.com/S2352-345X(14)00008-3/sref118http://refhub.elsevier.com/S2352-345X(14)00008-3/sref118http://refhub.elsevier.com/S2352-345X(14)00008-3/sref119http://refhub.elsevier.com/S2352-345X(14)00008-3/sref119http://refhub.elsevier.com/S2352-345X(14)00008-3/sref119http://refhub.elsevier.com/S2352-345X(14)00008-3/sref119http://refhub.elsevier.com/S2352-345X(14)00008-3/sref119

  • January 2015 Microbial Activities and Homeostasis 39120. Suarez G, Sierra JC, Sha J, et al. Molecular character-ization of a functional type VI secretion system from aclinical isolate of Aeromonas hydrophila. Microb Pathog2008;44:344361.

    121. Lee SM, Donaldson GP, Mikulski Z, et al. Bacterialcolonization factors control specificity and stability ofthe gut microbiota. Nature 2013;501:426429.

    122. Ng KM, Ferreyra JA, Higginbottom SK, et al. Microbiota-liberated host sugars facilitate post-antibiotic expansionof enteric pathogens. Nature 2013;502:9699.

    123. Devkota S, Wang Y, Musch MW, et al. Dietary-fat-induced taurocholic acid promotes pathobiont expan-sion and colitis in Il10/ mice. Nature 2012;487:104108.

    124. Winter SE, Thiennimitr P, Winter MG, et al. Gut inflam-mation provides a respiratory electron acceptor forSalmonella. Nature 2010;467:426429.

    125. Stecher B, Robbiani R, Walker AW, et al. Salmonellaenterica serovar Typhimurium exploits inflammation tocompete with the intestinal microbiota. PLoS Biol 2007;5:21772189.

    126. Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bac-terial competition: surviving and thriving in the microbialjungle. Nat Rev Microbiol 2010;8:1525.

    127. Seth EC, Taga ME. Nutrient cross-feeding in the mi-crobial world. Front Microbiol 2014;5:350.

    128. Gielda LM, DiRita VJ. Zinc competition among the in-testinal microbiota. MBio 2012;3:e00171e00212.

    129. Kasaikina MV, Kravtsova MA, Lee BC, et al. Dietary se-lenium affects host selenoproteome expression by influ-encing the gut microbiota. FASEB J 2011;25:24922499.

    130. Tompkins GR, ODell NL, Bryson IT, Pennington CB.The effects of dietary ferric iron and iron deprivation onthe bacterial composition of the mouse intestine. CurrMicrobiol 2001;43:3842.

    131. Werner T, Wagner SJ, Martnez I, et al. Depletion ofluminal iron alters the gut microbiota and preventsCrohns disease-like ileitis. Gut 2011;60:325333.

    132. Raffatellu M, George MD, Akiyama Y, et al. Lipocalin-2resistance confers an advantage to Salmonella entericaserotype Typhimurium for growth and survival in theinflamed intestine. Cell Host Microbe 2009;5:476486.

    133. Deriu E, Liu JZ, Pezeshki M, et al. Probiotic bacteriareduce Salmonella Typhimurium intestinal colonizationby competing for iron. Cell Host Microbe 2013;14:2637.

    134. Seedorf H, Griffin NW, Ridaura VK, et al. Bacteria fromdiverse habitats colonize and compete in the mousegut. Cell 2014;159:253266.

    135. Alkhouri RH, Hashmi H, Baker RD, et al. Vitamin andmineral status in patients with inflammatory bowel dis-ease. J Pediatr Gastroenterol Nutr 2013;56:8992.

    136. Guagnozzi D, Lucendo AJ. Anemia in inflammatorybowel disease: a neglected issue with relevant effects.World J Gastroenterol 2014;20:35423551.

    137. Fischbach MA, Sonnenburg JL. Eating for two: howmetabolism establishes interspecies interactions in thegut. Cell Host Microbe 2011;10:336347.

    138. Dimitriu T, Lotton C, Benard-Capelle J, et al. Geneticinformation transfer promotes cooperation in bacteria.Proc Natl Acad Sci USA 2014;111:1110311108.139. Nogueira T, Rankin DJ, Touchon M, et al. Horizontal genetransfer of the secretome drives the evolution of bacterialcooperation and virulence. Curr Biol 2009;19:16831691.

    140. Griffin AS, West SA, Buckling A. Cooperation andcompetition in pathogenic bacteria. Nature 2004;430:10241027.

    141. Harrison F, Buckling A. Hypermutability impedescooperation in pathogenic bacteria. Curr Biol 2005;15:19681971.

    142. Jousset A, Eisenhauer N, Materne E, Scheu S. Evolu-tionary history predicts the stability of cooperation inmicrobial communities. Nat Commun 2013;4:2573.

    143. Mc Ginty S, Lehmann L, Brown SP, Rankin DJ. Theinterplay between relatedness and horizontal genetransfer drives the evolution of plasmid-carried publicgoods. Proc Biol Sci 2013;280:20130400.

    144. Nadell CD, Bassler BL. A fitness trade-off between localcompetition and dispersal in Vibrio cholerae biofilms.Proc Natl Acad Sci USA 2011;108:1418114185.

    145. Vlamakis H, Chai Y, Beauregard P, et al. Stickingtogether: building a biofilm the Bacillus subtilis way. NatRev Microbiol 2013;11:157168.

    146. Xavier JB, Foster KR. Cooperation and conflict in mi-crobial biofilms. Proc Natl Acad Sci USA 2007;104:876881.

    147. Drescher K, Nadell CD, Stone HA, et al. Solutions to thepublic goods dilemma in bacterial biofilms. Curr Biol2014;24:5055.

    148. Popat R, Crusz SA, Messina M, et al. Quorum-sensingand cheating in bacterial biofilms. Proc Biol Sci 2012;279:47654771.

    149. Swidsinski A, Weber J, Loening-Baucke V, et al. Spatialorganization and composition of the mucosal flora inpatients with inflammatory bowel disease. J ClinMicrobiol 2005;43:33803389.

    150. Williams P, Winzer K, Chan WC, Cmara M. Look whostalking: communication and quorum sensing in thebacterial world. Philos Trans R Soc Lond B Biol Sci2007;362:11191134.

    151. Zheng J, Shin OS, Cameron DE, Mekalanos JJ. Quorumsensing and a global regulator TsrA control expressionof type VI secretion and virulence in Vibrio cholerae.Proc Natl Acad Sci USA 2010;107:2112821133.

    152. Dickschat JS. Quorum sensing and bacterial biofilms.Nat Prod Rep 2010;27:343369.

    153. Sandoz KM, Mitzimberg SM, Schuster M. Socialcheating in Pseudomonas aeruginosa quorum sensing.Proc Natl Acad Sci USA 2007;104:1587615881.

    154. Swearingen MC, Sabag-Daigle A, Ahmer BMM. Arethere acyl-homoserine lactones within mammalian in-testines? J Bacteriol 2013;195:173179.

    155. Hong K-W, Koh C-L, Sam C-K, et al. Quorumquenching revisitedfrom signal decays to signallingconfusion. Sensors (Basel) 2012;12:46614696.

    156. Kalia VC. Quorum sensing inhibitors: an overview.Biotechnol Adv 2013;31:224245.

    157. Luks F, Gorenc G, Kopecn J. Detection of possibleAI-2-mediated quorum sensing system in commensalintestinal bacteria. Folia Microbiol (Praha) 2008;53:221224.

    http://refhub.elsevier.com/S2352-345X(14)00008-3/sref120http://refhub.elsevier.com/S2352-345X(14)00008-3/sref120http://refhub.elsevier.com/S2352-345X(14)00008-3/sref120http://refhub.elsevier.com/S2352-345X(14)00008-3/sref120http://refhub.elsevier.com/S2352-345X(14)00008-3/sref120http://refhub.elsevier.com/S2352-345X(14)00008-3/sref121http://refhub.elsevier.com/S2352-345X(14)00008-3/sref121http://refhub.elsevier.com/S2352-345X(14)00008-3/sref121http://refhub.elsevier.com/S2352-345X(14)00008-3/sref121http://refhub.elsevier.com/S2352-345X(14)00008-3/sref122http://refhub.elsevier.com/S2352-345X(14)00008-3/sref122http://refhub.elsevier.com/S2352-345X(14)00008-3/sref122http://refhub.elsevier.com/S2352-345X(14)00008-3/sref122http://refhub.elsevier.com/S2352-345X(14)00008-3/sref123http://refhub.elsevier.com/S2352-345X(14)00008-3/sref123http://refhub.elsevier.com/S2352-345X(14)00008-3/sref123http://refhub.elsevier.com/S2352-345X(14)00008-3/sref123http://refhub.elsevier.com/S2352-345X(14)00008-3/sref123http://refhub.elsevier.com/S2352-345X(14)00008-3/sref123http://refhub.elsevier.com/S2352-345X(14)00008-3/sref123http://refhub.elsevier.com/S2352-345X(14)00008-3/sref124http://refhub.elsevier.com/S2352-345X(14)00008-3/sref124http://refhub.elsevier.com/S2352-345X(14)00008-3/sref124http://refhub.elsevier.com/S2352-345X(14)00008-3/sref124http://refhub.elsevier.com/S2352-345X(14)00008-3/sref125http://refhub.elsevier.com/S2352-345X(14)00008-3/sref125http://refhub.elsevier.com/S2352-345X(14)00008-3/sref125http://refhub.elsevier.com/S2352-345X(14)00008-3/sref125http://refhub.elsevier.com/S2352-345X(14)00008-3/sref125http://refhub.elsevier.com/S2352-345X(14)00008-3/sref126http://refhub.elsevier.com/S2352-345X(14)00008-3/sref126http://refhub.elsevier.com/S2352-345X(14)00008-3/sref126http://refhub.elsevier.com/S2352-345X(14)00008-3/sref126http://refhub.elsevier.com/S2352-345X(14)00008-3/sref127http://refhub.elsevier.com/S2352-345X(14)00008-3/sref127http://refhub.elsevier.com/S2352-345X(14)00008-3/sref128http://refhub.elsevier.com/S2352-345X(14)00008-3/sref128http://refhub.elsevier.com/S2352-345X(14)00008-3/sref128http://refhub.elsevier.com/S2352-345X(14)00008-3/sref129http://refhub.elsevier.com/S2352-345X(14)00008-3/sref129http://refhub.elsevier.com/S2352-345X(14)00008-3/sref129http://refhub.elsevier.com/S2352-345X(14)00008-3/sref129http://refhub.elsevier.com/S2352-345X(14)00008-3/sref130http://refhub.elsevier.com/S2352-345X(14)00008-3/sref130http://refhub.elsevier.com/S2352-345X(14)00008-3/sref130http://refhub.elsevier.com/S2352-345X(14)00008-3/sref130http://refhub.elsevier.com/S2352-345X(14)00008-3/sref130http://refhub.elsevier.com/S2352-345X(14)00008-3/sref131http://refhub.elsevier.com/S2352-345X(14)00008-3/sref131http://refhub.elsevier.com/S2352-345X(14)00008-3/sref131http://refhub.elsevier.com/S2352-345X(14)00008-3/sref131http://refhub.elsevier.com/S2352-345X(14)00008-3/sref132http://refhub.elsevier.com/S2352-345X(14)00008-3/sref132http://refhub.elsevier.com/S2352-345X(14)00008-3/sref132http://refhub.elsevier.com/S2352-345X(14)00008-3/sref132http://refhub.elsevier.com/S2352-345X(14)00008-3/sref132http://refhub.elsevier.com/S2352-345X(14)00008-3/sref133http://refhub.elsevier.com/S2352-345X(14)00008-3/sref133http://refhub.elsevier.com/S2352-345X(14)00008-3/sref133http://refhub.elsevier.com/S2352-345X(14)00008-3/sref133http://refhub.elsevier.com/S2352-345X(14)00008-3/sref134http://refhub.elsevier.com/S2352-345X(14)00008-3/sref134http://refhub.elsevier.com/S2352-345X(14)00008-3/sref134http://refhub.elsevier.com/S2352-345X(14)00008-3/sref134http://refhub.elsevier.com/S2352-345X(14)00008-3/sref135http://refhub.elsevier.com/S2352-345X(14)00008-3/sref135http://refhub.elsevier.com/S2352-345X(14)00008-3/sref135http://refhub.elsevier.com/S2352-345X(14)00008-3/sref135http://refhub.elsevier.com/S2352-345X(14)00008-3/sref136http://refhub.elsevier.com/S2352-345X(14)00008-3/sref136http://refhub.elsevier.com/S2352-345X(14)00008-3/sref136http://refhub.elsevier.com/S2352-345X(14)00008-3/sref136http://refhub.elsevier.com/S2352-345X(14)00008-3/sref137http://refhub.elsevier.com/S2352-345X(14)00008-3/sref137http://refhub.elsevier.com/S2352-345X(14)00008-3/sref137http://refhub.elsevier.com/S2352-345X(14)00008-3/sref137http://refhub.elsevier.com/S2352-345X(14)00008-3/sref138http://refhub.elsevier.com/S2352-345X(14)00008-3/sref138http://refhub.elsevier.com/S2352-345X(14)00008-3/sref138http://refhub.elsevier.com/S2352-345X(14)00008-3/sref138http://refhub.elsevier.com/S2352-345X(14)00008-3/sref139http://refhub.elsevier.com/S2352-345X(14)00008-3/sref139http://refhub.elsevier.com/S2352-345X(14)00008-3/sref139http://refhub.elsevier.com/S2352-345X(14)00008-3/sref139http://refhub.elsevier.com/S2352-345X(14)00008-3/sref140http://refhub.elsevier.com/S2352-345X(14)00008-3/sref140http://refhub.elsevier.com/S2352-345X(14)00008-3/sref140http://refhub.elsevier.com/S2352-345X(14)00008-3/sref140ht