microfossils, paleoenvironments and …aptian benthic foraminifera have been reported from the...

17
175 ABSTRACT Microfossils from an outcrop of the coral reef and rudist-bearing calcareous upper member of the Mal Paso Formation just north of Chumbítaro, State of Michoacán, Mexico, indicate a deepening trend and transition from nearshore through outer shelf depositional environments upward through the sampled stratigraphic interval. The microbiota is mostly composed of species of calcareous algae and foraminifera. The identified calcareous algae are: Pseudolithothamnium album Pfender, 1936; Cayeuxia kurdistanensis Elliott, 1957; Acicularia americana Konishi and Epis, 1962; and Dissocladella sp. cf. D. savitriae Rama Rao and Pia, 1936. The species of foraminifera are: Nezzazata sp. cf. N. isabellae Arnaud-Vanneau and Sliter, 1995; Buccicrenata subgoodlandensis (Vanderpool, 1933); Cuneolina parva Henson, 1948; Pseudolituonella sp.; Praechrysalidina sp.; and Rotalipora appenninica (Renz, 1936). In addition, a species of stromatoporoid is illustrated and an indeterminate tube-shaped calcitic microorganism is described as an incertae sedis. From the base of the section upward, four biofacies are defined by the co-occurrences of these taxa: a benthic foraminiferal assemblage, a coral assemblage, a caprinid - dasycladacean assemblage, and a coral - miliolid assemblage. This report documents the first detailed examination of the microbiota of the calcareous upper member of the Mal Paso Formation. Data from this analysis of the microbiota supplement earlier paleoenvironmental interpretations based on studies of macrofossils, mainly scleractinian corals, rudists, and other mollusks, and carbonate facies relationships. The combined stratigraphic ranges of the microfossil species identified from this measured section of the Mal Paso Formation support an age determination of late Albian. The occurrence of Rotalipora appenninica (Renz, 1936), a planktic foraminiferan, in the uppermost portion of the exposed stratigraphic section is especially significant because its presence indicates a marked deepening of the depositional environment which can be correlated with the onset of the global late Albian marine transgression and drowning of Tethyan carbonate platforms that is known as the R. appenninica - event. A late Albian age was also suggested by previous studies of other taxonomic groups that have been discovered in the same stratigraphic section, particularly the species of the rudist bivalve genus Mexicaprina Coogan, 1973. Key words: foraminfera, algae, paleoenvironment, Mal Paso Formation, Cretaceous, Albian, Mexico. Microfossils, paleoenvironments and biostratigraphy of the Mal Paso Formation (Cretaceous, upper Albian), State of Guerrero, Mexico Harry F. Filkorn 1,* and Robert W. Scott 2 1 Physics and Planetary Sciences Department, Los Angeles Pierce College, 6201 Winnetka Avenue, Woodland Hills, California 91371 USA. 2 Precision Stratigraphy Associates and University of Tulsa, 149 West Ridge Road, Cleveland, Oklahoma 74020, USA. * fi[email protected] Revista Mexicana de Ciencias Geológicas, v. 28, núm. 1, 2011, p. 175-191 Filkorn H.F., Scott, R.W., 2011, Microfossils, paleoenvironments and biostratigraphy of the Mal Paso Formation (Cretaceous, upper Albian), State of Guerrero, Mexico: Revista Mexicana de Ciencias Geológicas, v. 28, núm. 1, p. 175-191.

Upload: others

Post on 13-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Microfossils, paleoenvironments and …Aptian benthic foraminifera have been reported from the nearby El Cajon locality (Omaña-Pulido and Pantoja-Alor, 1998) which is stratigraphically

Microfossils, paleoenvironments and biostratigraphy of the Mal Paso Formation 175

ABSTRACT

Microfossils from an outcrop of the coral reef and rudist-bearing calcareous upper member of the Mal Paso Formation just north of Chumbítaro, State of Michoacán, Mexico, indicate a deepening trend and transition from nearshore through outer shelf depositional environments upward through the sampled stratigraphic interval. The microbiota is mostly composed of species of calcareous algae and foraminifera. The identified calcareous algae are: Pseudolithothamnium album Pfender, 1936; Cayeuxia kurdistanensis Elliott, 1957; Acicularia americana Konishi and Epis, 1962; and Dissocladella sp. cf. D. savitriae Rama Rao and Pia, 1936. The species of foraminifera are: Nezzazata sp. cf. N. isabellae Arnaud-Vanneau and Sliter, 1995; Buccicrenata subgoodlandensis (Vanderpool, 1933); Cuneolina parva Henson, 1948; Pseudolituonella sp.; Praechrysalidina sp.; and Rotalipora appenninica (Renz, 1936). In addition, a species of stromatoporoid is illustrated and an indeterminate tube-shaped calcitic microorganism is described as an incertae sedis. From the base of the section upward, four biofacies are defined by the co-occurrences of these taxa: a benthic foraminiferal assemblage, a coral assemblage, a caprinid - dasycladacean assemblage, and a coral - miliolid assemblage. This report documents the first detailed examination of the microbiota of the calcareous upper member of the Mal Paso Formation. Data from this analysis of the microbiota supplement earlier paleoenvironmental interpretations based on studies of macrofossils, mainly scleractinian corals, rudists, and other mollusks, and carbonate facies relationships.

The combined stratigraphic ranges of the microfossil species identified from this measured section of the Mal Paso Formation support an age determination of late Albian. The occurrence of Rotalipora appenninica (Renz, 1936), a planktic foraminiferan, in the uppermost portion of the exposed stratigraphic section is especially significant because its presence indicates a marked deepening of the depositional environment which can be correlated with the onset of the global late Albian marine transgression and drowning of Tethyan carbonate platforms that is known as the R. appenninica - event. A late Albian age was also suggested by previous studies of other taxonomic groups that have been discovered in the same stratigraphic section, particularly the species of the rudist bivalve genus Mexicaprina Coogan, 1973.

Key words: foraminfera, algae, paleoenvironment, Mal Paso Formation, Cretaceous, Albian, Mexico.

Microfossils,paleoenvironmentsandbiostratigraphyoftheMalPasoFormation(Cretaceous,upperAlbian),

StateofGuerrero,Mexico

Harry F. Filkorn1,* and Robert W. Scott2

1 Physics and Planetary Sciences Department, Los Angeles Pierce College, 6201 Winnetka Avenue, Woodland Hills, California 91371 USA.

2 Precision Stratigraphy Associates and University of Tulsa, 149 West Ridge Road, Cleveland, Oklahoma 74020, USA.

* [email protected]

Revista Mexicana de Ciencias Geológicas, v. 28, núm. 1, 2011, p. 175-191

FilkornH.F.,Scott,R.W.,2011,Microfossils,paleoenvironmentsandbiostratigraphyoftheMalPasoFormation(Cretaceous,upperAlbian),StateofGuerrero,Mexico:RevistaMexicanadeCienciasGeológicas,v.28,núm.1,p.175-191.

Page 2: Microfossils, paleoenvironments and …Aptian benthic foraminifera have been reported from the nearby El Cajon locality (Omaña-Pulido and Pantoja-Alor, 1998) which is stratigraphically

Filkorn and Scott176

RESUMEN

Microfósiles del miembro superior calcáreo de la Fomación Mal Paso colectados en un afloramiento justo al norte de Chumbítaro, Estado de Michoacán, indican una tendencia la profundización y una transición de un ambiente de depósito de plataforma interna a uno de plataforma externa hacia la porción superior del intervalo estratigráfico muestreado. La microbiota se compone mayoritariamente de especies de algas calcáreas y foraminíferos. Las algas calcáreas identificadas son: Pseudolithothamnium album Pfender, 1936; Cayeuxia kurdistanensis Elliott, 1957; Acicularia americana Konishi y Epis, 1962; y Dissocladella sp. cf. D. savitriae Rama Rao y Pia, 1936. Las especies de foraminíferos son: Nezzazata sp. cf. N. isabellae Arnaud-Vanneau y Sliter, 1995; Buccicrenata subgoodlandensis (Vanderpool, 1933); Cuneolina parva Henson, 1948; Pseudolituonella sp.; Praechrysalidina sp.; and Rotalipora appenninica (Renz, 1936). Adicionalmente, se ilustra una especie de estromatopórido y se describe como incertae sedis un organismo calcítico tubular no determinado. Desde la base y hacia la porción superior de la sección se definen cuatro biofacies por la concurrencia de estos taxa: un ensamble de foraminíferos, un ensamble de corales, un ensamble de caprínidos– dasycladáceas, y un ensamble de corales-miliólidos. Este reporte documenta el primer examen detallado de la microbiota del miembro superior calcáreo de la Formación Mal Paso. Los datos derivados de este análisis de la microbiota complementan interpretaciones paleoambientales previas basadas en estudios de microfósiles, principalmente corales escleractinios, rudistas, y otros moluscos, así como en relaciones de facies carbonatadas.

Los alcances estratigráficos combinados de las especies microfósiles identificadas en la sección medida de la Formación Mal Paso apoyan la determinación de una edad del Albiano tardío. La presencia de Rotalipora appenninica (Renz, 1936), un foraminífero planctónico, en la porción más alta de la sección estratigráfica expuesta es especialmente significativa dado que indica una marcada profundización del ambiente de depósito, el cual puede ser correlacionado con el inicio de la trasgresión marina global del Albiano tardío y con la inundación de las plataformas carbonatadas del Tethys conocido como evento R. appenninica. Una edad correspondiente al Albiano tardío había sido también sugerida en estudios previos de otros grupos taxonómicos que fueron descubiertos en la misma sección estratigráfica, particularmente las especies del género de rudistas Mexicaprina Coogan, 1973.

Palabras clave: foraminíferos, algas, paleoambiente, Formación Mal Paso, Cretácico, Albiano, México.

INTRODUCTION

The Albian Mal Paso Formation is a significant, thick lithostratigraphicunitinsouthwesternMexico(Pantoja-Alor,1959,1992).TheMalPasoFormationisdividedinformallyintotwoparts,alowersiliciclasticandvolca-niclasticunitandanuppercarbonateinterval.Theuppercarbonateintervalhasyieldeddiverseandabundantcorals,mollusks,echinoids,foraminifera,andcalcareousalgae(García-BarreraandPantoja-Alor,1991).Itwasdepositedinatectonicallyactiveisland-arcsettingduringthelateAlbianrelativesea-levelrise.Asimilarmicrofossilas-semblageisknownfromAlbianshallow-watercarbonatesinAhuacatlán,Querétaro(Buitrón-Sánchezet al.,1995).AptianbenthicforaminiferahavebeenreportedfromthenearbyElCajonlocality(Omaña-PulidoandPantoja-Alor,1998)whichisstratigraphicallybelowtheMalPasoFormation.Thissectionisadatapointrelevanttohypoth-esesaboutthereplacementofcoralcommunitiesbyrudistcommunities.

Wedescribeforthefirst timethemicrofossilas-semblageoftheMalPasoFormation.ThemicrofossilsarefromafossiliferousoutcropofthecalcareousuppermemberoftheMalPasoFormationthatislocatedintheStateofGuerrero,onthewesternlimboftheMalPaso

syncline,approximately0.75kmnorthoftheruralvillageofChumbítaro,Michoacán(Figure1).Ameasuredstrati-graphicsectionatthislocalityiscomposedofacontinuoussequenceoflimestonestrataabout200mthick.Thisintervalcontains horizons with significant insituaccumulationsofoysters,reefcorals,stromatoporoids,andrudistbivalves(Figure2).Thestrataofthissectionhavebeenassignednumbersfromthebaseupward,unitsMP1throughMP18,inordertofacilitatelithologicdescriptionsandasarefer-enceframeforthepositionsoffossiliferoushorizonsandlithologicsamples.Thinsectionspreparedfromlitho-logicsamplestakenthroughoutthissectionhaveyieldedadiversemicrobiotathatcomplementsthepaleontologicalandpaleoecologicaldataderivedfrompreviousstudiesofothermacrofaunalgroupsoftheMalPasoFormationincludingscleractiniancorals(FilkornandPantoja-Alor,2004,2009),rudistbivalves(Filkorn,2002a),gastropods(Buitrón-SánchezandPantoja-Alor,1994,1996,1998),andechinoids(García-BarreraandPantoja-Alor,1991).The23thinsectionsexaminedinthisstudy(Table1)alsoincludedthreefromsamplesofbedsbelowthebaseoftheuppermember,intheclasticlowermemberoftheforma-tion(sampleslabeledHFLMP1,2,and3),butthesethinsectionsarebarrenofmicrofossils.All20ofthethinsec-tionsofsamplesfrombedsintheuppermembercontained

Page 3: Microfossils, paleoenvironments and …Aptian benthic foraminifera have been reported from the nearby El Cajon locality (Omaña-Pulido and Pantoja-Alor, 1998) which is stratigraphically

Microfossils, paleoenvironments and biostratigraphy of the Mal Paso Formation 177

90°95°100°105°110°

MEXICOTampico

AcapulcoTeloloapanZihuatanejo

Puerto Vallarta

Guerrero Terrane MexicoCity*

110° 105° 100° 95° 90°

TEXAS

250 km

20°

25°

15°

30°

15°

20°

25°

30°

Angao

La Estancia

Huetamo

San Lucas

TuritzioCharacoCumburindio

Las Eras

Highway 51

Zirándaro Chumbítaro

Ciudad Altamirano

Balsas River

MICHOACÁN

MICHOACÁN

GUERRERO

GUERRERO

X

fossillocality

5 km

Study area

2009).Atthescaleoftheoutcropandinhandsample,thesedimentsdepositedbetweenthelargercoralcoloniesandmollusks in the coral reef horizon could be classified as an echinoid spine wackestone or floatstone with local pack-stone.Notably,echinoidtestswerenotobservedinthesamebedandtheobviouspresenceofthemajorityofthelargertaxainthereeffaciesisnotevidentfromexaminationofthe fine-grained bioclastics of the intra-reef rock. Thus, the microbiotaofthecoralreefhorizoniswithinthecaprinid

identifiable microfossils (Table 1). Because facies of the Mal Pasochangegreatlylaterallyandverticallyatotherlocalities(García-BarreraandPantoja-Alor,1991),theconclusionspresentedhereinpertaintothissiteonly.

PALEOECOLOGY

ThestudiedsectionoftheuppermemberoftheMalPasoFormationrecordsamajorlateAlbianmarinetrans-gressionanddrowningoftheareafromthebaseofthesectionupwardthroughthehighestsampledbed.Theshiftfromcontinentalsiliciclasticsandvolcaniclasticsinthetopofthelowermembertopredominantlycalciumcarbonatesedimentsinthebasalpartoftheuppermembermarksasignificant shift in depositional setting and begins the tran-sitionofenvironmentsupwardthroughthesectionfromlagoonaltobackreef,coral-stromatoporoidreef,caprinidrudistforereef,distalreefbioclastics,andultimatelydepos-itsindeeperwater.Thepresenceofsmallcoloniesofcorals(Ovalastreasp.,Preverastraeasp.)andstromatoporoids,rudistbivalves,miliolidsandotherbenthicforaminiferasuspended in a fine-grained matrix in the lower part of thesectionindicatenormallyquietandrelativelyshallowmarineconditionsofalagoonalorinnershelfsetting.Abedwithabundantrecrystallizedfragmentsofabranchingdendroidcoralspeciesandaspeciesofredalga(unitMP7)occursjustbelowanin situdepositofoystershells(unitMP8).Abovethishorizon,thesedimentologyanddiversebiotaofsmall,isolatedcorallaofmassiveandphaceloidcolonialcoralspecies,speciesoftherudistRadiolites,andspeciesofothermolluskssuchasnerineidgastropodsandthepectinidbivalveNeithea[Pecten]roemeriHill,1889,indicate an increased affinity with a coral reef environment. Themicrobiotafromthissamepartofthesection(unitsMP9-MP12)isinthecaprinid-dasycladbiofaciesandmainlycomposedofadiverseassemblageofspeciesofcalcareousgreenalgae(CayeuxiaandDissocladella),encrustingredalgae(Pseudolithothamnium)andbenthicforaminifera(Table1).Thus,thebiotaclearlysupportstheinterpretationofdepositioninashallowmarineenvironmentthatwaswellwithinthedepthlimitsofthephoticzone.TherudistspeciesMexicaprinaalatahasitslowestrecognizedoccurrenceinthisstratigraphicsectionoftheuppermemberinunitMP12whereitoccurswithNeithearoemeriandabundantquanti-tiesofothermolluscanbioclastics.

A19m-thickcoralreefhorizon(unitMP13)overliesandwasinitiallyestablishedonthemolluscanbioclasticdebrisofunitMP12.Thefaunaofthecoralreefintervalincludesadiverseassemblageofatleast15in situcolonialscleractiniancoralspecieswithencrusting,massive,ramose,foliaceousandphaceloidgrowthforms,aspeciesofstro-matoporoid(Actinostromariasp.,whichismostabundantintheupperpartofthisunit),speciesoftherudistRadiolitesandMexicaprina,largearticulatedspecimensofNeithearoemeri,andnerineidgastropods(FilkornandPantoja-Alor,

Figure1.Mapofthelocationofthestudyarea.TheoutlinemapofMexicoin the upper part of the figure shows the Guerrero Terrane and three of its partsinsouthwesternMexico,theZihuatanejo,TeloloapanandHuetamosubterranes.ThestudyareaislocatedintheHuetamosubterraneandindicatedbythesmallblackrectanglewithanarrow.Thismarkedregionisenlargedandshowninthesketchmapofthestudyareashowninthelower part of the figure. The fossil locality is in the State of Guerrero andapproximately0.75kmnorthoftheruralvillageofChumbítaro,StateofMichoacán.TheterraneboundariesarefromFreydieret al.(1997)andCenteno-García(1994).ThedetailedmapofthestudyareaisbasedonMexican1:50,000scaletopographicmapsheetsCoyucadeCatalán (E14A74, first edition, 1976, second printing, 1981) and Huetamo (E14A64, first edition, 1976, third printing, 1989).

Page 4: Microfossils, paleoenvironments and …Aptian benthic foraminifera have been reported from the nearby El Cajon locality (Omaña-Pulido and Pantoja-Alor, 1998) which is stratigraphically

Filkorn and Scott178

covered

oyster bed

calcareoussandstone

Mexicaprina cornuta,miliolids, red algae

Cayeuxia,Dissocladella,Pseudolithothamnium

Acicularia

Mexicaprina alatavalves, miliolidsgreen and red algae

coral reef horizon,green algae

Mexicaprina alatahorizon, green algae

colonial corals, greenalgae, echinoid tests

Rotalipora, NezzazataCuneolina, miliolidsazooxanthellate corals

10 m

Mal

Paso

Form

atio

n,ca

lcar

eous

uppe

rmem

ber

–dasycladbiofaciesandthealgal–caprinidmicrofacies,similartothatofthestratigraphicallyadjacentbeds,andtheidentified elements are mostly caprinid rudist fragments, calcareousgreenalgae(Dissocladella)andbenthicfora-minifera(miliolids,Buccicrenata,Cuneolina).

ThecoralreefhorizonisconformablyoverlainbyabedofMexicaprina floatstone (unit MP14, samples M48 andM49inTable1)thatisapproximately6.5m-thick.LargecolonialcoralsareabsentfromthisstratumandthemacrofossilassemblageisalmostexclusivelycomposedofvalvesoftherudistspeciesMexicaprinaalata.Themi-crobiotaisprimarilycomposedofcalcareousgreenalgae(CayeuxiaandDissocladella),thereforetheobservedalgal–caprinidmicrofaciesandpetrographicallydeterminedcaprinid–dasycladbiofaciesarethesameasthoseofthe

underlyingcoralreefhorizon.Thus,thestratigraphicrela-tionship coupled with the identified biota indicate that the Mexicaprina floatstone was deposited in a forereef setting adjacenttothecoralreefenvironmentandthatthephysi-calconditionsofthehabitatalsowerewithinthelimitsoftheessentialecologicalrequirements(lightintensity,watertemperatureandbathymetry)ofcalcareousgreenalgae.ThedistributionoftheMexicaprinavalvesandcolonialcoralsinthestratigraphicintervalwhichspansunitsMP12-MP14,i.e.,Mexicaprinavalvestransportedintoandbehindthecoralreef,butnocoralstransportedintheoppositedirec-tionandforwardofthereeffrontintotheforereeffacies,suggeststhattheprevailingwatercurrentsandwaveenergywerefromanoffshoredirectionandtowardthereeffront,aswouldbeexpectedinmostcoastalsettings.

AbovethetopofunitMP14,inunitMP15,thetaxo-nomicdiversitydecreases,calcareousalgaeareabsent,andthemicrobiotaisprimarilycomposedofbenthicforamin-ifera(miliolidsandCuneolina).Inaddition,thebeddingchangesnoticeablyinthestrataaboveunitMP14,wherestratabecomethin-tomedium-beddedandanintercalatedargillaceousmudstoneandwackestonecomponentisintro-duced,concurrentwithadecreaseinmacrofossilsandanincrease in the degree of sorting of fine-grained bioclastics. ThetopofunitMP14isthehighestobservedoccurrenceofMexicaprinavalvesinthisstratigraphicsection.

Higherupthestratigraphicsection,ina1.2m-thickwackestonebed(unitMP17),sixspeciesofcolonialcor-alsoccurredasisolatedcorallaalongwithotherspeciesofcaprinidrudists,butthemacrofaunaisnotentirelythesameasthatoftheunderlyingunits.Thecoralfaunaofthisunitispredominantlycomposedofspecieswitharamosegrowthformandrelativelythinbranches.Althoughfourofthesesixcoralspeciesalsooccurredinthemaincoralreefhorizon(unitMP13),theothertwocoralspecieswerenotobservedanywherelowerinthestratigraphicsection.Thescattereddistributionofisolatedramosecorallawithinthisintervalsuggeststhatthesubstratemayhavebeenundergoinganinitialstageofcoralcolonization,butevi-dentlytheenvironmentalconditionswerenotoptimalforthegrowthofcoralthicketsorfurtherdevelopmentintoacoralreef.Notably,unitMP17containsthehigheststrati-graphicoccurrenceofcolonialreef-buildingcoralspeciesinthisstratigraphicsection.BenthicforaminiferaandrarecalcareousalgaalsooccurinunitMP17,anindicationthatconditionsmayhavebeenfavorableforcoralgrowthforarelativelybrieftime.ThisupperpartofunitMP17likelyrepresentsdepositionintheouterzoneofthemiddleshelfandatthelowerlimitsofthebathymetricrangessuitablefortheexistenceofzooxanthellatecolonialreefcoralsandcalcareousgreenalgae.

TheuppermostpartofunitMP17containsanargil-laceoushorizonwithabundantwholede-spinedtestsofregularechinoidsaswellasirregularechinoidtests,butthespinesarenotpreservedinthesamebed.Incontrast,echinoidspinesarecommonintheintra-reefrockofthe

Figure2.StratigraphiccolumnofthemeasuredsectionoftheUpperAlbiancalcareousuppermemberoftheMalPasoFormationatthelocal-itymarkedinFigure1.Thebedshavebeenassignednumbersfromthebaseofthesectionupward,unitsMP1throughMP18,andthehorizonsof studied thin section samples and identified biota are indicated. The topofthestratigraphicsectionatthislocalityistruncatedbythepres-entsurfaceoferosion.Theapproximatecoordinatesofthebaseandthetopofthemeasuredstratigraphicinterval,asdeterminedfromthegridmarksontheCoyucadeCatalántopographicmapsheet,are:latitudeN18°29’14.2”,longitudeW100°42’41.9”;andlatitudeN18°29’23.5”,longitudeW100°42’28.7”,respectively.

Page 5: Microfossils, paleoenvironments and …Aptian benthic foraminifera have been reported from the nearby El Cajon locality (Omaña-Pulido and Pantoja-Alor, 1998) which is stratigraphically

Microfossils, paleoenvironments and biostratigraphy of the Mal Paso Formation 179

Sample Horizon Microfacies

Num

ber

of T

axa

Qua

rtz

Cal

care

ous A

lgae

Enc

rust

ing

Alg

ae

Ben

thic

For

amin

ifera

Rud

ists

Cor

als+

Stro

mat

opor

oids

Buc

cicr

enat

a

Cun

eolin

a

Nez

zaza

ta

Mili

olid

s

Rot

alip

ora

Aci

cula

ria

Cay

euxi

a

Dis

socl

adel

la

Pseu

dolit

hoth

amni

um

Bio

faci

es

Env

iron

men

t

M10 MP18 Pkst,coral-foram-peloid 8 10 10 F R F R

Cor

al-m

iliol

id

Out

erS

helfM09 MP18 Pkst,coral-foram-peloid 7 10 20 F R F

M08 MP18 Pkst,coral-foram-peloid 7 10 20 F R F M07 MP18 Pkst,coral-foram 8 10 5 20 F R F HFMP18 MP18 Pkst,coral-foram 7 20 20 O R O

HFMP17 MP17 Pkst,caprinid 7 2 2 20 R R R

Cap

rinid

-das

ycla

d

Mid

dle

Shel

fBui

ldup

HFMP15 MP15 Pkst,foram 5 11 0 R O M49 MP14 Pkst,algal-caprinid 10 22 1 20 5 R C M48 MP14 Pkst,algal-caprinid 10 7 20 R F HFMP13SW MP13 Wkst,algal-caprinid 9 10 3 5 R R R F HFMP12 MP12 Pkst,algal-caprinid 13 7 1 1 10 5 S S F RHFMP11 MP11 Wkst,algal 9 10 1 5 10 R F HFMP10 MP10 Wkst,algal 7 10 6 R F O HFMP9U MP9 Wkst,mollusk 10 1 2 5 S R R HFMP9L MP9 Pkst,caprinid 10 6 1 1 30 0.5 R F R R

HFMP7A MP7 Pkst,coral-strom 8 0.5 1 0.5 30 S R Coral

HFMP6 MP6 Gnst,bioclast 5 2 1 1 R S

Ben

thic

fora

m

Inne

rShe

lf

HFMP3 MP3 Gnst,bioclast 8 1 0.5 6 1 F R R S HFMP2 MP2 Gnst,bioclast 7 5 6 F R R HFMP1-2x3 MP1 Wkst,caprinid 9 20 5 S R R

HFLMP3 LMP3 Ss,calc,feldspar 0 60

Shor

e-lin

e

HFLMP2-2x3 LMP2 Ss,calc,feldspar,biot. 0 50 HFLMP1 LMP1 Ss,calc,feldspar 0 40

coralreefhorizon(unitMP13),butnoechinoidtestswerefoundinthesamebed.Thecombinationofthesekindsofoccurrenceshasbeeninterpretedasevidencethattheregu-larechinoidslivedintheshallow-watercoralreefhabitatwheretheywerede-spinedandthattheirwholetestswerelatertransportedintodeeperwaterbyweakbottomcurrentsflowing in an offshore direction.

Thestratigraphicallyhighestbedexposedinthismea-suredsectionoftheuppermemberisa1m-thickdepositoffine-grained wackestone, unit MP18. This bed has yielded twospeciesofscleractiniancorals:Blastozopsammiaguer-reroterionFilkornandPantoja-Alor,2004,athin-branched,ramose,colonialdendrophylliid,andParacycloseriseffre-natusFilkornandPantoja-Alor,2009,asmall,disc-shapedorcupolate,solitarycunnolitid.Thedendrophylliidspe-ciesB.guerreroterionbelongstoagroupofscleractinian

coralsthatisrecognizedasprimarilyinhabitingdeep-orcold-waterenvironments,thereforethisspeciespresum-ablylackedthekindofalgalsymbiontsthataretypicalofmodernreef-buildingcorals(i.e.,itwasazooxanthellate)andlivedbeneaththelowerlimitofthephoticzone.Thesmall,solitarycoralspeciesP.effrenatusalsowasnotareef-build-ingformanditislikelythatittoowasazooxanthellateandexisted in deeper water. The microbiota identified from unit MP18 is particularly significant because it is predominantly composedofbenthicforaminifera(Cuneolina,Nezzazata,miliolids),calcareousalgaeareabsent,andonespeciesofplankticforaminifera,Rotaliporaappenninica(Renz,1936) makes its first appearance in the section (see Table 1). Thelackofcalcareousalgae,acommonbioticcomponentoftheunderlyingstratainthissection,suggeststhatthedepositionalenvironmenthadbecomedeeperupwardinto

Relativeabundance:S:single;R:rare;F:few;O:occasional;C:common.Indeterminateforams,ostracodes,bivalves,gastropods,andechinodermsnotcharted.Microfacies:Pkst:packstone;Wkst:wackestone;Gnst:grainstone;Ss:sandstone;calc:calcareous;biot.:bioturbate.

Table 1. Thin section data, identified microfossils, and interpretation of sedimentary facies and depositional environments. Thin section samples are listed instratigraphicorderfromthebaseupwardintheleftcolumn.LMP:samplesfromhorizonsintheclasticlowermemberoftheMalPasoFormation;MP:samplesfromhorizonsinthecalcareousuppermemberoftheMalPasoFormation;M:samplesofmacrofossils(corals,rudists)withmatrixthatwasthinsectioned.RefertoFigure2forstratigraphicpositionsofsampledhorizons.Numbersarevisuallyestimatedrelativepercentages.

Page 6: Microfossils, paleoenvironments and …Aptian benthic foraminifera have been reported from the nearby El Cajon locality (Omaña-Pulido and Pantoja-Alor, 1998) which is stratigraphically

Filkorn and Scott180

assemblage.Likewisenodirectevidenceofperiodiclowoxygenwaterssupportsthenicheexclusionbysuccessivedysaerobicconditions.However,theprogressivedeepen-ingandverticalsuccessionofcoralsafterrudistssupportstheideathatcoralstendedtooccupydeepersubstratesthanmanyrudistassemblages.Inthiscase,theapparentcommunityreplacementmaybearesultofsuperpositionoflaterallyadjacentcarbonatefacies(Filkorn,2002b).AdditionalwellexposedUpperAlbian-LowerCenomaniancarbonatesectionsintheso-called“Supertethys”zoneneedtobedocumentedtounderstandtheapparentreplacementofcoralcommunitiesbyrudistcommunities.

BIOSTRATIGRAPHY

ThecalcareousalgaeandforaminiferaspeciesfromthissectionofthecalcareousuppermemberoftheMalPasoFormationsupportalateAlbianagedetermination.TheplankticforaminiferalRotalipora appenninicaZoneintheupperpartofthesection(unitMP18)hasbeencorrelatedwithlatestAlbianammonitezones(PremoliSilvaandSliter,2002; Scott, 2009). This zone is defined as the interval above the first occurrence (FO) of the nominate species up to the FOofRotalipora brotzeni(Sigal)thatisatthebaseoftheCenomanianStage.ThespeciesBuccicrenata subgood-landensis(Vanderpool,1933),Cuneolina parvaHenson,1948,Nezzazatasp.cf.N.isabellaeArnaud-VanneauandSliter,1995,Pseudolituonellasp.,andPraechrysalidinasp.ofthebenthicforaminiferalassemblageallhavelongerstratigraphicranges,buttheyalsoareconsistentwithalateAlbianage.Thus,thestratigraphicrangesoftheforamin-iferasupportthepreviousagedeterminationofthestrataatthislocalitythatwasmainlybasedupontheoccurrenceofspeciesofthecaprinidrudistMexicaprinaCoogan,1973(Filkorn,2002a).ThisgenuscharacterizestheuppermostAlbianrudistzoneintheGulfCoast(ScottandFilkorn,2007).

TheupperMalPasoFormationatthissiterecordsthelatestAlbianrelativeriseinsealevelandamarinetrans-gressionwhichcorrelatewithawidespreadsea-levelcycle.InnorthTexas,thePawpawandMainStreetformationsintheupperpartoftheWashitaGroup,cycleWA5,representa siliciclastic flooding and shoaling into a carbonate shelf (Scottet al.,2003).ThislatestAlbiansea-levelcycleisalsorecordedinEurope(Amédro,2008;AmédroandRobaszynski,2008).However,aswithmanyotherareasinsouthwesternMexico,depositionoftheMalPasoFormationwasalsoaffectedbylocaltectonics(García-BarreraandPantoja-Alor,1991).

SYSTEMATIC PALEONTOLOGY

ThethinsectionswhichcontainthefossilsdescribedhereinareinthecollectionsoftheMuseodePaleontología,

thishorizonoftheuppermemberandthatthesubstratewasnowbelowthephoticzone.ThepresenceoftheplankticforaminiferanspeciesR.appenninicainunitMP18isex-tremely significant because it adds further support to this interpretation.TheRotaliporaappenninicaZonespansanintervalofcarbonateplatformdrowningintheTethystypicallyreferredtoastheR.appenninica-event(Grötschet al.,1993).OncarbonateplatformsintheMediterraneanregionthisstratigraphicintervaloverliesakarsticcontactthatrepresentsasequenceboundary.Thus,theentirefossilassemblagefromunitMP18supportstheinterpretationthattheenvironmentofdepositionwasinadeeper-watersetting.Thisinterpretationcompletesthestratigraphictransitionofdepositionalenvironmentsupwardthroughtheuppermem-beroftheMalPasoFormationatthislocalityandsupportstheoverallinterpretationthatthissectionrecordsamajormarinetransgression.

Tosummarize,thefourbiofaciesintheMalPasoFormationaredefinedby theco-occurrenceoffossilgroups.Instratigraphicorderfromthebasetheyare:thebenthicforaminiferalassemblage;thecoralassemblage;thecaprinid-dasycladassemblage;andthecoral-miliolidassemblage(Table1).Thesebiofaciesdocumentaprogres-sionfromnearshoretooffshoredepositionalenvironmentsat this locality.Thebenthicforaminiferalassemblagerepresentstheinnershelfmiliolidassemblage(SliterandBaker,1972)andthemiddletoexternalcarbonateshelf(Tronchetti,1984).IntheMiddleEastthegenerarangeindepthfrom10to65m(BannerandSimmons,1994).ThecalcareousalgalassemblageofPseudolithothamnium album,Cayeuxia kurdistanensis,Acicularia americana,andDissocladellawithoutudoteaceanalgaecomposetheDasyclad-Rhodophyteassemblageandrepresentsdepthsof15to30m(BannerandSimmons,1994).Thesamemodelprojectsplankticforaminiferaappearingatouterplatformdepthsbelowabout60m.Thestratigraphicsuccessioninspecies diversity and composition reflects a progressive changeinenvironmentfromnearshorewithquartzsandinflux to shallow shelf followed by late stage deepening to approximately60to65m.

Theco-occurrenceofrudistsandcolonialcoralsandtheirformationofbuildupscanbeusedtotesthypothesesposedtoexplaintheapparentreplacementofcoralpaleo-communitiesbyrudistpaleocommunities.OnehypothesisproposesthatlateAlbianrudistsout-competedcoralsinahighsalinity“Supertethys”zone(KauffmanandJohnson,1988).Anotherhypothesis,so-called“Strangelove”pumpwithnicheexclusion,proposesthatAlbiancoralsoccupieddeeperpartsoftheshelfthanrudistsandwerestressedrepeatedlybyAlbiananoxiceventsOAE1b,1c,and1d(Scott,1995).Ifthepresentpositionofthissectionrela-tivetonorthernMexicoisthesameassuggestedbytheLate Aptian plate reconstruction of Mann (1999, fig.16), it waswellwithinthe“Supertethys”hypersalinezone.Thuscoralswerenotexcludedbythelocalsalinity,whichwasapproximately‘normal’assuggestedbythediversefossil

Page 7: Microfossils, paleoenvironments and …Aptian benthic foraminifera have been reported from the nearby El Cajon locality (Omaña-Pulido and Pantoja-Alor, 1998) which is stratigraphically

Microfossils, paleoenvironments and biostratigraphy of the Mal Paso Formation 181

InstitutodeGeología(=IGM),UniversidadNacionalAutónomadeMéxico,MexicoCity.Theillustratedspeci-mens are denoted by IGM specimen numbers in the figure captions.Thesupragenericclassificationofcalcareousalgaeisasyetdeveloping(SaundersandHommersand,2004). Thus, we use the classification of Wray (1978). For foraminifera, the suprageneric classification of Loeblich andTappan(1988)isfollowed.

PhylumRhodophytaClassRhodophyceae

OrderCryptonemialesFamilySquamaraceaeHauck,1885

GenusPseudolithothamniumPfender,1936

Pseudolithothamnium album Pfender, 1936Figure3.1,3.2

1936Pseudolithothamnium albumPfender,1936,p.304-308, pl. 19, figs. 1-5.

1963Ethelia alba(Pfender),Elliott,p.293-294,pl.47,figs. 1-3.

1969Ethelia alba (Pfender), Johnson, p. 31-32, pl. 19, figs. 1-2(previoussynonymyprovided).

1986Pseudolithothamnium albumPfender,1936,Kuss,p.232-233, fig. 6b.

1991Pseudolithothamnium albumPfender,1936,KussandConrad,p.878.

Remarks.Pseudolithothamnium albumencrustsmicritenodulesandlargebioclastsinthebasalbedoftheuppermemberoftheMalPasoFormationwhereitoccurswiththerudistMexicaprina cornuta.Thethalliare0.089–0.179mmthick and composed of curved tubes 7 to 21 μm in diameter. FulldescriptionsareprovidedbyJohnson(1969)andKussandConrad(1991).Stratigraphic range.ThisspecieshasbeenreportedfromUpperAlbianstratainTexas(Johnson,1969)andMaastrichtiantoPaleocenestratainEgypt,SinaiandJordan(KussandConrad,1991).IntheuppermemberoftheMalPasoFormation,thisspecieshasbeenrecognizedinseveralhorizonsinthelowerpartofthesection,belowthemaincoralreefinterval(MP13).

PhylumChlorophytaClassChlorophyaceae

OrderSiphonalesFamilyCodiaceaeKützing,1843

GenusCayeuxiaFrollo,1938

Cayeuxia kurdistanensisElliott, 1957Figure3.3

1957Cayeuxia kurdistanensisElliott,p.790-791,pl.25,figs. 8 - 10.

1969Cayeuxia kurdistanensisElliott,Johnson,p.37-38,pl. 26, fig. 1.

1970Cayeuxia kurdistanensis,Dragastan,p.120.1995Cayeuxia kurdistanensisElliott,Buitrón-Sánchezet

al., p. 150, pl. 3, fig. 1. 2005Cayeuxia (Rivularia) kurdistanensisElliott,Palmaet

al., p. 128, fig. 6C.Description.Thallusanodularmass,height1mm,width0.804mm,andcomposedofslenderovalradial tubes0.018–0.036mm(18–36microns)indiameter.Radialtubewalls0.007–0.014mm(7–14microns)thickandcomposedof microcrystalline calcite. Tubes filled with calcite spar; horizontalpartitionsabsent,althoughcalcitesparexhibitshorizontalfracturesandfaces.Tubesdivergetowarddistalmarginofnoduleandbifurcateatacuteanglesfrompreced-ingtubes.Tubesbranchatanglesapproaching45°onlyneartuftmargin(asdescribedbyJohnson,1969).Stratigraphic range.ThedimensionsofthespecimenfromtheMalPasoFormationaremostsimilartothoseofElliott’s(1957)species,whichhasbeenreportedfromIraq,France,andTexas(Johnson,1969).ThisspeciesalsoisknownfromotherCretaceouslocalitiesinMexico(Albian;Buitrón-Sánchezet al.,1995,andreferences therein),Europe(Dragastan,1970)andtheMiddleEast(Johnson,1969).ItalsohasbeenreportedfromMiddleJurassicnearshorecarbonatesinArgentina(Palmaet al.,2005).

OrderDasycladalesFamilyDasycladaceaeKützing,1843

GenusAciculariad’Archiac,1843

Acicularia americana Konishi and Epis, 1962Figure3.8

1962Acicularia americanaKonishiandEpis,p.71-72,pl.1, figs. 7 - 9, 11, 14.

Description.Spiculestemsolid,diameter0.232mm.Sporangiachambers12innumber,porediameter0.0179–0.027mm.Remarks.ThediameterofthespiculeandthediameterofthesporangialchambersareneartherangeofthosedescribedforAcicularia americana,0.088–0.122mmand0.025–0.040mm,respectively.ThisspeciesmaybeplacedinTerquemella(B.Granier,personalcommunication,June25,2010).Stratigraphic range.ThisspeciesiscommonintheAlbianofTexasandArizona(Johnson,1969;ScottandGonzález-León,1991).

GenusDissocladellaPiainRamaRaoandPia,1936

Dissocladella sp. cf. D. savitriae Rama Rao and Pia, 1936

Figure3.4-3.7

Description.Thalluselongate,cylindrical,withsubparallelmargins;wallmuchthinnerthanthallusdiameter;diameter

Page 8: Microfossils, paleoenvironments and …Aptian benthic foraminifera have been reported from the nearby El Cajon locality (Omaña-Pulido and Pantoja-Alor, 1998) which is stratigraphically

Filkorn and Scott182

Figure3.Calcareousalgae.1,2:Pseudolithothamnium albumPfender,1936,encrustingamicritenodule,IGM-1240-Mi,sampleHFMP1,scalebar=0.25mm.3:Cayeuxia kurdistanensisElliott,1957,longitudinalsection,IGM-1241-Mi,sampleHFMP3,scalebar=0.10mm.4-7:Dissocladellasp.cf.D.savitriaeRamaRaoandPia,1936,transversesectionsofthallus,IGM-1242-Mi,IGM-1243-Mi,IGM-1244-Mi,andIGM-1288-Mi,samplesHFMP11,-10,-12,and-13SW,respectively,scalebar=0.25mm.8:Acicularia americanaKonishiandEpis,1962,transversesection,IGM-1289-Mi,sampleHFMP6,scalebar=0.10mm.9-11:Indeterminatetubularfossil,IGM-1290-Mi,IGM-1291-Mi,andIGM-1292-Mi,samplesHFMP12,HFMP-10,andHFMP-9U,respectively,scalebar=0.10mm.

Page 9: Microfossils, paleoenvironments and …Aptian benthic foraminifera have been reported from the nearby El Cajon locality (Omaña-Pulido and Pantoja-Alor, 1998) which is stratigraphically

Microfossils, paleoenvironments and biostratigraphy of the Mal Paso Formation 183

ofaxialcavityabout60%oftotalthallusdiameter.Innerprimarybranchesnumerous,vase-shaped,taperedinwardtowardaxialcavity.Eachprimarybranchdividedinto2to4secondarybranches.Outersecondarybranchestypicallyslightlyv-shapedoutwards.Skeletoncomposedofblockycalcitespar,presumablyreplacingoriginalaragonite.Remarks. ThedimensionsandthelargenumberofprimarybranchesofthespecimensfromtheMalPasoFormationareverysimilartothoseofD. savitriae,whichisknownfromMaastrichtian-DanianbedsinIndia.However,theMexicanspeciesseemstohaveagreaternumberofprimarybranchesthantheIndianspeciesanditsprimarybranchesaresmaller.Also,theMexicanspeciesismuchlargerthantheCretaceousspeciesDissocladella undulata(Raineri)(Johnson,1969;Bassoulletet al.,1978;KussandConrad,1991).Dimensions.Table2.Measurementsaregiveninmm.Stratigraphic range.ThisspeciesoccursthroughoutafairlythickintervaloftheUpperAlbiancalcareousuppermemberoftheMalPasoFormation,fromunitMP9tounitMP17,anditiscommoninunitMP14,thehorizonwhichcontainsthemainaccumulationoftherudistMexicaprina alata.

Incertae SedisTube-within-a-tubefossil

Figure3.9-3.11

Description.Elongate,curvedtubewithaninternaltubeoraxis,circulartoovalincrosssection;diameter:outertube,0.232–0.214mm,innertube,0.125mm;wallsofeachtubecomposedofequantmicrogranularcalciteandperforatedbyminuteovalpores.Specimenswhichlackacentraltubepossess a wall composed of fine radial calcite fibers that originatefromcentralaxis;darkerconcentricgrowthringscloselyspaced.Remarks.SpecimensofthistaxonwererecognizedinthinsectionsamplesfromunitsMP9,MP10andMP12ofthecalcareousuppermemberoftheMalPasoFormation.

OrderForaminiferidaEichwald,1830SuborderTextulariinaDelageandHérouard,1896

SuperfamilyHaplophragmiaceaEimerandFickert,1899FamilyNezzazatidaeHamaouiandSaint-Marc,1970

SubfamilyNezzazatinaeHamaouiandSaint-Marc,1970GenusNezzazataOmara,1956

Type species.Nezzazata simplexOmara,1956,p.887.

Nezzazata sp. cf. N. isabellae Arnaud-Vanneau and Sliter, 1995

Figure4.1-4.5

1995 Nezzazata isabellaeArnaud-VanneauandSliter,p.552, figs. 7A-7D, pl. 2, figs. 11-24 (for comparison).

1995 Nezzazata isabellaeArnaud-VanneauandSliter,Arnaud-Vanneau and Premoli Silva, p. 206, pl. 2, figs. 1-3(forcomparison).

Description.Testlowtrochospiral,planoconvex;sixtoeightchambersperwhorl;peripheryrounded;diameterupto0.60mm.Shortprojectionsoninneredgesofseptadirectedintoprecedingchamber.Wallmicrogranularcalcite,imperforate.Remarks. Theseplanoconvexspecimensarelargerindi-ameterthantheAptiantoLowerAlbianNezzazata isabellaeArnaud-VanneauandSliter,1995,whichhasabiconvextest.ThespecimensfromtheMalPasoFormationdifferfromNezzazata gyra(Smout,1956)andotherCenomanianspe-cies(Fleury,1971)bytheirroundedperipheryandunforkedseptalplate.ThismaybeanewtransitionalspeciesrelatedtoN.isabellae.Stratigraphic range. AllofthespecimensarefromunitMP18,nearthetopofthemeasuredsectionofthecalcareousuppermemberoftheMalPasoFormation.ThismorphotypeofNezzazataispartoftheupperAlbianmicrobiotaassem-blagewhichoverliesspeciesoftherudistMexicaprina.

SuperfamilyLoftusiaceaBrady,1884FamilyCyclamminidaeMarie,1941

Diagnosis. Testenrolled,involutetouncoiled;wallag-glutinated,outerlayerimperforate,innerlayeralveolar;septalstructuredifferentiatedfromouterwall;apertureinterio-marginalnearseptalbase.Remarks.LoeblichandTappan(1988)andBannerandHighton(1990)placedthefamilyCyclamminidaeinthesuperfamilyLoftusiaceabecauseofthealveolarinnerwalllayer.However,BouDagher-Fadel(2001)placedthisfamilyinthesuperfamilyLituolaceadeBlainville.

SubfamilyBuccicrenatinaeLoeblichandTappan,1985

Diagnosis. Fewchambersperwhorl,wallandseptaofearlywhorlsmaybesolid,laterstagewiththinwallwithlargeovatealveolae;baseofseptathickenedwithtriangularchomata;chambercavityopen;apertureslit-liketozig-zagincoilingplane.

GenusBuccicrenataLoeblichandTappan,1949

Type species.Ammobaculites subgoodlandensisVanderpool,1933,p.407.

Thinsection-specimen 10-1 10-2 10-3 11-4 12-5Thallusdiameter 1.47 1.68 1.87 1.78 1.91Centralcavitydiameter 0.98 1.15 1.07 1.24Primarypores 0.143 0.089 0.071 0.063Secondarypores 0.014 0.018 0.018 0.018

Table2.Parameters(inmm)ofDissocladellasp.cf.D.savitriaeRamaRaoandPia,1936.

Page 10: Microfossils, paleoenvironments and …Aptian benthic foraminifera have been reported from the nearby El Cajon locality (Omaña-Pulido and Pantoja-Alor, 1998) which is stratigraphically

Filkorn and Scott184

Page 11: Microfossils, paleoenvironments and …Aptian benthic foraminifera have been reported from the nearby El Cajon locality (Omaña-Pulido and Pantoja-Alor, 1998) which is stratigraphically

Microfossils, paleoenvironments and biostratigraphy of the Mal Paso Formation 185

Diagnosis.Testcompressed,innerwallalveolaemaybi-furcate;septasolidorlocallyperforate;zig-zagaperture;otherfeaturesofthesubfamily.Remarks. Buccicrenataischaracterizedbylessthanacom-pletewhorlinitsplanispirallycoiledstageanditschambersarearcuatereniform;theagglutinateouterwallhasfewtubularalveolaeseparatedbylargecalciteandbioclasticgrains;chamberseptaareunperforatedtolocallyperforated;baseofseptanexttoprecedingwhorlarethickenedtriangle;thezigzagaperturespansthefaceofthelastseptum.

Everticyclammina Redmond, 1964, also in thesubfamilyBuccicrenatinae,ismorelenticularandlesscompressed thanBuccicrenata,has twowhorls in itsplanispirallycoiledstageanditschambersarewedge-shaped;theagglutinateouterwallhassmallalveolaeandseptaareunperforated;andthesinglesimpleapertureiswide(LoeblichandTappan,1988;BannerandHighton,1990).

PseudocyclamminaYabeandHanzawa,1926,inthesubfamilyChoffatellinaeMaync,ischaracterizedbyitstypespeciesP. lituus(Yokoyama,1890),whichhastwotothreewhorlsinitsplanispirallycoiledstagewithnar-rowarcuatechambers;numerouscloselyspacedalveolaetransectboththeagglutinatewallandthesepta;andthecribrate aperture fills the face of the last septum (Loeblich andTappan,1988).

Buccicrenata subgoodlandensis (Vanderpool, 1933)Figure4.7,4.8

1933Ammobaculites subgoodlandensisVanderpool,p.407,pl. 49, figs. 1-3;

1944Ammobaculites subgoodlandensisVanderpool,Lozo,p. 540, pl. 1, figs. 2-3, pl. 4, fig. 1, text-figs. 15A-G.

1949 Buccicrenata subgoodlandensis (Vanderpool),Loeblich and Tappan, p. 253, pl. 47, figs. 5-15b.

1954Lituola subgoodlandensis(Vanderpool),Frizzell,p.66.

1965Lituola subgoodlandensis(Vanderpool),ApplinandApplin, pl. 1, fig. 11.

1966Pseudocyclamminaaff.hedbergi(Maync),Banner,pl. 3, figs. 5a-5b.

1970Pseudocyclamminaaff.hedbergi(Maync),Banner,pl. 5, figs. 7, 7a.

1985 Buccicrenata subgoodlandensis (Vanderpool),Loeblich and Tappan, p. 100, pl. 2, figs. 4-10.

1987 Buccicrenata subgoodlandensis (Vanderpool),Simmons and Hart, pl. 10.5, fig. 1.

1988 Buccicrenata subgoodlandensis (Vanderpool),Loeblich and Tappan, p. 99, pl. 96, figs. 1-9.

1990Buccicrenata subgoodlandensis(Vanderpool),BannerandHighton,p.12.

1991Pseudocyclammina hedbergiMaync,ScottandGonzález-León,p.58;

1999Pseudocyclammina hedbergiMaync,ScottandFinch,1999, fig. 4D, E.

2001 Buccicrenata subgoodlandensis (Vanderpool),BouDagher-Fadel, p. 168-169, pl. 1, figs. 5-7.

Diagnosis. Test planispiral to uniserial, four to five hemi-sphericalchambersincoil;uniserialpartwithonetothreeellipsoidalchambers;simpleterminalaperture.Remarks.ThefiveotherspeciesofBuccicrenataaredescribedbyBouDagher-Fadel(2001).MeasurementsofspecimensfromtheWalnutFormation:length0.71to4.73mm,coildiameter1.38mmto2.69mm,testthickness0.58mm(Vanderpool,1933;LoeblichandTappan,1949).ThespecimensfromtheMalPasoFormationrangeinlengthfrom0.98mmto1.79mm,axialwidth0.64to1.27mm,andproloculusdiameter0.125mm.Stratigraphic range.ThetypespecimensarefromtheMiddleAlbianWalnutFormationinsouthernOklahoma(Vanderpool,1933).ThespeciesrangesthroughouttheAlbianinTethyansectionsfromNorthAmericatotheMiddleEast.InTexasthespeciesoccursintheLowerAlbianGlenRoseFormationandintheLowertoUpperAlbianWalnutandGoodlandformationsoftheFredericksburgGroup. In Florida the species was identified as Lituola sub-goodlanensiswhereitoccurswithCoskinolinoides texanusKeijzerintheFredericksburgGroup(ApplinandApplin,1965).InMexicoandHondurasthespecieswasreportedinMiddletoUpperAlbianstrataasP. hedbergibyScottandGonzález-León(1991)andScottandFinch(1999).IntheUnitedArabEmiratesandOmanitrangesthroughouttheLowertoUpperAlbianNahrUmrFormation(SimmonsandHart,1987;BannerandHighton,1990;BouDagher-Fadel,2001).InSpainthespeciesisreportedfromUpperAlbiantoLowerCenomanianstrata(GonzálezFernándezet al.,2004).

Figure4.Foraminifera(allbenthicspeciesexceptfortheplankticspeciesshowninFigure4.14)andastromatoporoid(Figure4.6),scalebar=0.10mm.1,2:Nezzazatasp.cf.N.isabellaeArnaud-VanneauandSliter,1995,equatorialandobliqueequatorialsections,IGM-1293-MiandIGM-1294-Mi,respectively,sampleM10.3,4:Nezzazatasp.cf.N.isabellaeArnaud-VanneauandSliter,1995,axialandequatorialsections,IGM-1295-MiandIGM-1296-Mi,respectively,sampleM07.5:Nezzazatasp.cf.N.isabellaeArnaud-VanneauandSliter,1995,axialsection,IGM-1297-Mi,sampleM10.6:Stromatoporoid,diameteroftubes0.14-0.18mm,IGM-1298-Mi,sampleHFMP7A.7,8:Buccicrenata subgoodlandensis(Vanderpool,1933),axialsections,IGM-1299-MiandIGM-1300-Mi,samplesHFMP7AandHFMP13SW,respectively.9-12:Cuneolina parvaHenson,1948,axialplanarsec-tion,IGM-1301-Mi,sampleHFMP3,transversesectionnormaltogrowthdirection,IGM-1302-MiandIGM-1303-Mi,samplesHFMP9LandM07,andlongitudinalsection,IGM-1304-Mi,sampleHFMP2,respectively.13:Pseudolituonellasp.,longitudinalsection,IGM-1305-Mi,sampleHFMP10.14:Rotalipora appenninica(Renz,1936),axialsection,IGM-1306-Mi,sampleM10.15,16:Praechrysalidinasp.,longitudinalsections,IGM-1314-MiandIGM-1316-Mi,samplesHFMP10andHFMP6,respectively.

Page 12: Microfossils, paleoenvironments and …Aptian benthic foraminifera have been reported from the nearby El Cajon locality (Omaña-Pulido and Pantoja-Alor, 1998) which is stratigraphically

Filkorn and Scott186

SuperfamilyAtaxophragmiaceaSchwager,1877FamilyCuneolinidaeSaidova,1981

SubfamilyCuneolininaeSaidova,1981GenusCuneolinad’Orbigny,1839

Type species. Cuneolina pavoniad’Orbigny,1846,p.253.Emended Diagnosis. “Testfree,somewhatcompressedparallel to the plane of biseriality and conical to flabel-liform.Theembryonicapparatusconsistsofaglobulartoovalprotoconchcoveredbyadeuteroconchthatisdividedbybeamsandrafters.Thefollowingbiserialstageconsistsofbroad,lowchambersthataredividedbyradialbeamsextendingfromtheouterwalltowardtheplaneofbiserial-ityand,sometimes,byhorizontalrafters.Thewallisag-glutinatedormicrogranularandkeriothecal.Theapertureconsistsofarowofporesatthebaseoftheseptalface”(Arnaud-VanneauandSliter,1995,p.554).

Cuneolina parva Henson, 1948Figure4.9-4.12

1948Cuneolina pavoniad’Orbignyvar.parvavar.nov.Henson, p. 624-627, pl. XIV, figs. 1-6, pl. XVII, figs. 7-12, pl. XVIII, figs. 12-14.

1991Cuneolina walteriCushmanandApplin,1947,notp. 30, pl. 10, figs. 4, 5a, b; Scott and González-León, p. 58, fig. 5O.

1995Cuneolina parvaHenson,Arnaud-VanneauandSliter,p. 554, pl. 4, figs. 6-9.

1995Cuneolina parvaHenson,Arnaud-VanneauandPremoliSilva,p.207.

1999Cuneolina walteriCushmanandApplin,ScottandFinch, fig. 4A-C.

Diagnosis. Test moderate size, biserial flabelliform to tri-angular,apicalanglegenerallylessthan90°.Wallagglu-tinatedandcomposedofuniformmicritegrainswithsmallalveolae.Proloculusattestapexslightlyeccentricandoval;uptotwelvebiserialarcuateconcentricchambersexpandfromapex;chambersdividedintochamberletsbyradialseptathatalignwithseptainadjacentchambers,butseptainsertedbetweenolderseptainyoungerabapicalchambers;oneortwoshortlateralpartitionsprojectfromouterwallofconcentricchambersandinsertanarrowconcentriclinebetweenchambersepta;septalfacescurvedtowardmedianwallbetweenchambers.Remarks.AstratigraphicsuccessionofspeciesrangesfromAptiantoMaastrichtianandhasbeendiscriminatedbytestsizes,apicalanglesandsutures(Henson,1948;Arnaud-VanneauandSliter,1995).However,thetwospe-ciesreportedmostoftenareCuneolina pavoniad’Orbigny,1846,andCuneolina parvaHenson,1948(Arnaud-VanneauandSliter,1995;Arnaud-VanneauandPremoliSilva,1995).Cuneolina pavonia is flabelliform and tends to be slightly largerandhaveagreaterapicalanglethanC. parva,whichis conical to flabelliform (Table 3; Figure 5, graphs a, b).

ThemeanapicalangleofparatypesofC. parvais48° andrangesfrom18°to96°(Henson,1948).ThechambersofC. pavoniaarewiderthanthoseofC. parvaandC. pavoniahastwotothreetransverseraftersinthechamberscomparedtoonetotwoinC. parva(Arnaud-VanneauandSliter,1995;ArnaudVanneauandPremoliSilva,1995).Cuneolina parvaisreportedfromAlbian-CenomanianstrataandC. pavoniafromuppermostAlbiantoSantonian.TheAptianspecies,Cuneolina sliteriArnaudVaneauandPremoliSilva,1995,hasasmalltriangulartoconicaltestandlacksthehorizontalrafters in its first chambers.

TheMiddleCenomanianFloridaspeciesCuneolina walteri Cushman and Applin, 1947 (pl.10, figs. 4, 5a, 5b) is also illustrated by Applin and Applin (1965, pl. 2, fig. 2). ThisnamewasusedforspecimensinMexico(ScottandGonzález-León,1991)andinHonduras(ScottandFinch,1999).ThedimensionsofthetypesofC. walteriareintherangeoftopotypesoftheoldernameC. pavonia(Figure5,graphsA,B)andiftheinternalstructureofC. walteriislikethatofC. pavonia,thentheformerwouldbeajuniorsyn-onymofthelatter.ThesizesoftheMexicanandHonduranspecimensareinthesizerangeofC. parvaandoverlapwiththesmallerspecimensofC. pavonia.However,measure-mentsofCuneolinaspecimenstakenfromthinsectionstendtobeincompletebecausemostspecimensareunorientedandthecrosssectionsareobliquetothegrowthaxes.Thus,distinguishingspeciesofCuneolinabysizesofthinsectionspecimenshassomedegreeofuncertainty.

Cuneolina conicad’Orbigny,1846,intheConiacian-SantonianisanarrowcylindricalspeciesandCuneolina fleuriausianad’Orbigny,1839,hasaveryacuteapicalangle(Henson,1948).Cuneolina cylindricaHenson,1948,intheMaastrichtianhasanapicalangleof7°to14°.ClearlythesizesandapicalanglesdonotreadilyseparatethesespeciesandastudyofthetypesandcollectionsoffreespecimensisneededtoclarifythetaxonomyofCuneolinaspecies.Stratigraphic range. ThetypespecimensofC. pavoniaarefromtheCenomanianofFranceandthespeciesrangesfromuppermostAlbiantoSantonianintheEuropeanandNorthAfricanTethys(Arnaud-VanneauandPremoliSilva,1995).ThetypesofC. parvaarefromEgyptinpresumedAlbianstrata,notSantonianasstatedbyHenson(Arnaud-VanneauandPremoliSilva,1995).ThisspeciesisknownfromAlbiantoCenomanianstrataintheTethys,includingUpperAlbianstratainMexicoandHonduras.ThetypesofC. walteriarefromthelowermemberoftheAtkinsonFormationinthesubsurfaceofFlorida,whichiscorrelatedwiththeMiddleCenomanianWoodbineGroupinnorthTexas(ApplinandApplin,1965).SpecimensofC.parvawererecognizedinmostofthesampledbedsofthecalcareousuppermemberoftheMalPasoFormation.

FamilyCoskinolinidaeMoullade,1965GenusPseudolituonellaMarie,1955

Type species.Pseudolituonella reicheliMarie,1955.

Page 13: Microfossils, paleoenvironments and …Aptian benthic foraminifera have been reported from the nearby El Cajon locality (Omaña-Pulido and Pantoja-Alor, 1998) which is stratigraphically

Microfossils, paleoenvironments and biostratigraphy of the Mal Paso Formation 187

Table3.Mainparameters(inmm)offourspeciesofCuneolinatakenfrompublishedmeasurementsormeasurementsofpublishedimages.

Species Reference Specimen Length Width

Thi

ckne

ss

Cha

mbe

r w

idth

Prol

ocul

us

diam

eter

Api

cal a

ngle

StratigraphyC

uneo

lina

pavo

nia

Loeb

lich

and

Tapp

an(1

988)

To

poty

pes pl. 155 figs. 1-2 1.1 1.46 0.38 0.15 90

Cenomanianpl. 155 fig. 3 1.49 1.4 0.17 80

Grö

tsch

et a

l.(1

993)

fig. 5B 1.33 0.4 0.13 0.15–0.2

UpperAlbianfig. 5C >1.75 0.35 0.15

fig. 5D >1.73 0.15

fig. 5E 1.88 0.33

Arn

aud-

Vann

eau

and

Slite

r(19

95) pl. 4 fig. 1 1.88 0.44

UpperAlbian

pl. 4 fig. 2 1.3 0.28

pl. 4 fig. 3 1.6 0.42 0.16

pl. 4 fig. 4 0.3 0.2 0.15–0.17

pl. 4 fig. 5 0.2–0.22

Arn

aud

V.a

nd

Prem

oliS

.(1

995)

pl. 3 fig. 10 0.13–0.2

UpperAlbianpl. 3 fig. 11 1.6 0.12

pl. 3 fig. 12 0.96 0.35

Cun

eolin

a pa

rva

Hen

son

(194

8) Meanof52specimens 1.3 0.3 0.2 48 AlbianinArnaud

andSliter(1995)

Arn

aud

and

Slite

r(19

95) pl. 4 fig. 6 0.1 0.2–0.3

UpperAlbianpl. 4 fig. 7 0.24 0.1 pl. 4 fig. 8 0.64 0.6 0.2 70pl. 4 fig. 9 0.6 0.32 0.1 0.14–0.1

ArnaudandPremoli(1995) Intext 1.3 0.9 UpperAlbian

Cun

eolin

a sl

iteri

Arn

aud-

Vann

eau

and

Prem

oliS

ilva

(199

5)

Intext 1.15 0.78

UpperAlbiantoUpperAptian

pl. 3 fig. 1 0.1–0.1 pl. 3 fig. 2 0.11–0.12 pl. 3 fig. 3 0.1–0.11 pl. 3 fig. 4 0.1–0.1 pl. 3 fig. 5 0.55 0.4 0.1 pl. 3 fig. 6 0.05–0.1 pl. 3 fig. 7 0.5 0.37 pl. 3 fig. 8 pl. 3 fig. 9 0.12

Cun

eolin

a w

alte

ri

App

lina

nd

App

lin

(196

5) pl. 2 fig. 2 1.1 1.38 0.1 110Cenomanian

pl. 2 figs. 1a,1b 0.47 0.53 0.5 78

ScottandGonzalez(1991)

Intext 1 1.4 0.3 0.07–0.11 MiddleAlbianfig. 5O 1.08 0.19

Scot

tand

Fi

nch

(199

9)

fig. 4A 0.1–0.08 UpperAlbianfig. 4B 1.07 1 0.12 70

fig. 4C 1.09 0.31 0.09

Page 14: Microfossils, paleoenvironments and …Aptian benthic foraminifera have been reported from the nearby El Cajon locality (Omaña-Pulido and Pantoja-Alor, 1998) which is stratigraphically

Filkorn and Scott188

Pseudolituonella sp.Figure4.13

Description.Testuniserial,conical,withatrochospiralproloculus,twojuvenileovatechambersandfourarcuatechambers.Testlength0.52mm,width0.34mm.Walloftestmicrocrystallinecalciteandsolid.Proloculusasingleovalchamberwithathickprismaticwall;innerdiameter0.053mm,outerdiameter0.120mm.Remarks.Thespeciesdescriptionisbasedonaspeci-menfromthecalcareousuppermemberoftheMalPasoFormation.ThespecimenismuchsmallerthananddiffersfromPseudolituonella reichelibytheabsenceoftubularpillarsontheadapicalsideoftheapertures.ItisverysimilartoaspecimenintheUpperAlbiansectioninthePyreneesidentified as Pseudolituonellasp.?(Peybernes,1976,pl.34,fig. 12), which is 1.62 mm in length and 0.85 mm in width. TheolderandlargerPseudolituonella gavonensisFoury,1968,hasastreptospiralearlystage.Stratigraphic range.AccordingtoLoeblichandTappan(1988)thegenusrangesfromCenomaniantoCampanianintheMediterraneanpartoftheTethys.However,P. gavonesisisaBarremianspecies.InEurope,Pseudolituonellasp.?hasbeenreportedwiththeUpperAlbianNeorbitolinopsis conulus(Douvillé)(Peybernes,1976).TheMexicanspeci-menisfromunitMP10ofthecalcareousuppermemberoftheMalPasoFormation.

SuperfamilyTextulariaceaEhrenberg,1838FamilyChrysalidinidaeNeagu,1968

SubfamilyChrysalidininaeNeagu,1968GenusPraechrysalidinaLupertoSinni,1979

Type species.Praechrysalidina infracretaceaLupertoSinni,1979.

Praechrysalidina sp.Figure4.15,4.16

Description.Testsmall,conical,withoverlappingaperturalfaces.Testlength0.119–0.385mm,width0.098–0.210mm. No interior marginal flaps or other structures present. Proloculusnotobserved.Remarks.Thespeciesdescription isbasedonspeci-mensfromthecalcareousuppermemberoftheMalPasoFormation.Banneret al.(1991)placedPraechrysalidinainthefamilyChrysalidinidaeNeagubecauseofitsinferredphylogeneticrelationshipwithChrysalidinaratherthaninthefamilyAtaxophragmiidaeSchwager,asdidLoeblichandTappan(1988).TheMalPasospecimensaresimilartothejuvenileportionofaspecimenfromtheAlbianofIraq(Banneret al., 1991, fig. 9). The Mexican specimens do notshowthecharactersofPraechrysalidina infracretaceaandtheyaresmaller;additionalmaterialisneededinordertomakeamoredetailedspeciesdescriptionandamoreaccuratespeciesdetermination.

Stratigraphic range.ThespeciesoccursinunitsMP6andMP10ofthecalcareousuppermemberoftheMalPasoFormation.TheoverallstratigraphicrangeofthespeciesreferredtothisgenusisValanginiantoAlbianinTethyanstrata(Banneret al.,1991).

SuborderGlobigerininaDelageandHérouard,1896SuperfamilyRotaliporaceaSigal,1958

FamilyRotaliporidaeSigal,1958SubfamilyTicinellinaeLongoria,1974

GenusRotaliporaBrotzen,1942

Type species. Rotalipora turonica Brotzen, 1942(=Globorotalia cushmaniMorrow,1934).

Rotalipora appenninica (Renz, 1936)Figure4.14

1936Globotruncana appenninica Renz, p. 20, pl.6, figs. 1-11; pl. 7, fig. 1; pl. 8, fig. 4; text-figs. 2, 7a.

1977Rotalipora appenninica(Renz,1936),Masters,p.

Figure5.ComparisonofsomespeciesofCuneolina.a:HistogramoflengthsofC. pavonia,C. parva,C. walteri,andC. sliteri.b:Crossplotoflengthtowidthoftypespecimens.

Page 15: Microfossils, paleoenvironments and …Aptian benthic foraminifera have been reported from the nearby El Cajon locality (Omaña-Pulido and Pantoja-Alor, 1998) which is stratigraphically

Microfossils, paleoenvironments and biostratigraphy of the Mal Paso Formation 189

497-501, pl. 30, figs. 1, 3, not fig. 2 (prior synonymy provided).

2002Rotalipora appenninica(Renz,1936),PremoliSilvaand Sliter, p. 71, pl. 8, figs. 1a-1c, 2a-c, 3a-c, pl. 9, figs. 1a-1c, 2a-c, 3a-c.

Description.Testchamberstrapezoidalinoutline;keelwell-developedalongperipheralmargin.DimensionsoftwospecimensobservedinthinsectionM10:testdiameter0.378mm,height0.126mm;andtestdiameter0.252mm,height0.105mm.Remarks.ThebriefdescriptionisbasedontwospecimensobservedinthinsectionM10fromunitMP18.TheoverallformoftheMexicanspecimensismostsimilartothatofR. appenninica,exceptthewallisthickerthannormal,es-peciallyintheearlywhorls(MarkLeckieandBrianHuber,personalcommunications,December2009).Thethickenedwallmaybetheresultofrecrystallization.Stratigraphic range.TheMexicanspecimensarefromunitMP18,nearthetopofthemeasuredsectionofthecalcareousuppermemberoftheMalPasoFormation.ThefullrangeofR.appenninicaisUpperAlbiantoLowerCenomanian.TheRotalipora appenninica Zone is defined as the interval above the first occurrence (FO) of the nominate species and the FO ofRotalipora brotzeni(Sigal)anditcorrelateswithlatestAlbianammonitezones(PremoliSilvaandSliter,2002).

ACKNOWLEDGMENTS

Theauthorsthankthetwoanonymousreviewersfortheirusefulcommentsonthemanuscript;Dr.FranciscoVegafortheSpanishversionoftheabstractandkeywords;andDra.MariadelCarmenPerrilliatforassistancewithcatalog-ingtheillustratedspecimensintheIGMcollections.

REFERENCES

Applin,P.L.,Applin,E.R.,1965,TheComancheanSeriesandassociatedrocksinthesubsurfaceincentralandsouthFlorida:UnitedStatesGeologicalSurveyProfessional,447,84pp.

Amédro,F.,2008,SupportforaVraconianStagebetweentheAlbiansensu stricto andtheCenomanian(CretaceousSystem):CarnetsdeGéologie/NotebooksonGeology,Brest,Memoir2008/02(CG2008_M02),83pp.

Amédro,F.,Robaszynski,F.,2008,ZonationbyammonitesandforaminifersoftheVraconian-Turonianinterval:AcomparisonoftheBorealandTethyandomains(NWEurope/CentralTunisia):CarnetsdeGéologie/NotebooksonGeology,Memoir2008/02(CG2008_L02),5pp.

Archiac,A.,d’,1843,Descriptiongéologiquedudépartmentdel’Aisne:MémoiresdelaSociétéGéologiquedeFrance,5(3),129-420.

Arnaud-Vanneau,A.,Sliter,W.V.,1995,EarlyCretaceousshallow-waterbenthicforaminifersandfecalpelletsfromLeg143comparedwith coeval faunas from the Pacific Basin, Central America, and theTethys,in Winterer,E.L.,Sager,W.W.,Firth,J.V.,Sinton,J.M. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results:Texas,CollegeStation,OceanDrillingProgram,143,537-564.

Arnaud-Vanneau,A.,PremoliSilva,I.,1995,Biostratigraphyandsystematic

descriptionofbenthicforaminifersfromMid-Cretaceousshallow-watercarbonateplatformsedimentsatsites878and879(MITandTakuyo-DaisanGuyots, in Haggerty,J.A.,PremoliSilva,I.,Rack,F.,McNutt,M.K.(eds.),ProceedingsoftheOceanDrillingProgram,ScientificResults:Texas,CollegeStation,OceanDrillingProgram,144,199-219.

Banner,F.T.,1966,Morfologiya,klassificatsiyaistratigraficheskoeznacheniespirotsiklinid:VoprosiMicro-paleontologii,10,201-234.

Banner,F.T.,1970,AsynopsisoftheSpirocyclinidae:RevistaEspañolaMicropaleontologia,2(3),243-290.

Banner, F.T., Highton, J., 1990, On Everticyclammina Redmond(Foraminifera),especiallyE. kelleri (Henson): JournalofMicropaleontology,9(1),1-14.

Banner,F.T.,Simmons,M.D.,Whittaker,J.E.,1991,TheMesozoicChrysalidiinidae(Foraminifera,Textulariacea)oftheMiddleEast:theRedmond(Aramco)taxaandtheirrelatives:BulletinBritishMuseumofNaturalHistory(Geology),47,101-152.

Banner,F.T.,Simmons,M.D.,1994,Calcareousalgaeandforaminiferaaswater-depthindicators:anexamplefromtheEarlyCretaceouscarbonatesofnortheastArabia, in Simmons,M.D., (ed.),MicropalaeontologyandhydrocarbonexplorationintheMiddleEast:London,ChapmanandHall,243-252.

Bassoullet,J.P.,Bernier,P.,Conrad,M.,Deloffre,R.,Jaffrezo,M.,1978,LesalguesDasycladalesduJurassiqueetduCrétacé:Geobios,mémoirespécial2,330pp.

BouDagher-Fadel,M.K.,2001,Thetaxonomyandevolutionof theforaminiferal genus Buccicrenata Loeblich andTappan:Micropaleontology,47(2),168-172.

Brady,H.B.,1884,ReportontheforaminiferacollectedbyH.M.S.Challengerduringtheyears1873-1876(online), inReporton the Scientific Results of the Voyage of H.M.S. Challenger duringtheyears1873-1876,v.9,Zoology,part22:Bossard,D.C.,publicaciónmayode2004,http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-22/htm/doc.html

Brotzen,F.,1942,DieForaminiferengattungGavelinellanov.gen.unddieSystematikderRotaliiformes:ÅrsbokSverigesGeologiskaUndersökning,36(8),1-60.

Buitrón-Sánchez,B.E.,Pantoja-Alor,J.,1994,EsponjasperforantesdemoluscosdelCretácicoTempranoenlaregióncentrooccidentaldeMéxico:RevistaMexicanadeCienciasGeológicas,11(2),222-231.

Buitrón-Sánchez,B.E.,Carrillo-Martinez,M.,Aguilera-Franco,N.,1995,AMiddleAlbianbiota(algae,foraminiferaandgastropoda)fromAhuacatlán,StateofQuerétaro,Mexico:RevistaMexicanadeCienciasGeológicas,12(2),145-156.

Buitrón-Sánchez,B.E.,Pantoja-Alor,J.,1996,Albiangastropodsoftherudist–bearingMalPasoFormationoftheChumbitaroregion,SWMexico(resumen), in QuatrièmeCongrèsInternationalsurlesRudistes(FourthInternationalConferenceonRudists),UniversitédeProvence,CentredeSédimentologie-Paléontologie:Marseille,France,p.3.

Buitrón-Sánchez,B.E.,Pantoja-Alor,J.,1998,Albiangastropodsoftherudist–bearingMalPasoFormation,Chumbítaroregion,Guerrero,Mexico:RevistaMexicanadeCienciasGeológicas,15(1),14-20.

Centeno-García,E.,1994,TectonicEvolutionoftheGuerreroTerrane,WesternMexico:UniversityofArizona,Ph.D.Dissertation,220pp.

Coogan,A.H.,1973,NuevosrudistasdelAlbianoyCenomanianodeMexicoydelsurdeTexas:RevistadelInstitutoMexicanodelPetróleo,5,51–83.

Cushman,J.A.,Applin,E.R.,1947,TwonewspeciesofLowerCretaceousforaminiferafromFlorida:CushmanLaboratoryforForaminiferalResearchContribution,23(291),29-30.

Delage,Y.,Hérouard,E.,1896,TraitédeZoologieConcrète,vol.1,LaCelluleetlesProtozoaires:Paris,SchleicherFrères,584pp.

Dragastan,O.,1970,NewspeciesofDasycladaceae(calcareousalgae)intheLowerCretaceousoftheeasternCarpathians(Rumania):ReviewofPalaeobotanyandPalynology,10(2),117-129.

Page 16: Microfossils, paleoenvironments and …Aptian benthic foraminifera have been reported from the nearby El Cajon locality (Omaña-Pulido and Pantoja-Alor, 1998) which is stratigraphically

Filkorn and Scott190

Dragastan,O.,1981,MesozoicDasycladaceaefromRomania:Distributionandbiostratigraphicalimportance:Facies,4,165-195.

Ehrenberg,C.G.,1838,ÜberdemblossenAugeunsichbareKalkthierchenundKieselthierchenalsHauptbestandtheilederKrediegebirge:BerichtüberdiezuBekanntmachunggeeignetenVerhandlungendeKöniglichenPreussischenAkademiederWissenschaftenzuBerlin,1938,p.192-200.

Eichwald,C.E.von,1830,Zoologiaspecialis,v.2:Vilnae,D.E.Eichwaldus,323pp.

Eimer,G.H.T.,Fickert,C.,1899,DieArtbildungundVerwandtschaftbeidenForaminiferen.EntwurfeinernatürlichenEintheilungderselben.ZeitschriftfürWissenschaftlicheZoologie,v.65,p.599-708.

Elliott,G.F.,1956,FurtherrecordsoffossilcalcareousalgaefromtheMiddleEast:Micropaleontology,2(4),327-334.

Elliott,G.F.,1957,Alguescalcairescodiacéesfossilesd’Iraq,nouvellesetpeuconnues:BulletindelaSociétéGéologiquedeFrance,6(6),789-795.

Elliott,G.F.,1963,ProblematicalmicrofossilsfromtheCretaceousandPalaeoceneoftheMiddleEast:Palaeontology,6(2),293-300.

Filkorn,H.F.,2002a,AnewspeciesofMexicaprina (Caprinidae,Coalcomaninae)andreviewoftheageandpaleobiogeographyofthegenus:JournalofPaleontology,76(4),672-691.

Filkorn,H.F.,2002b,RudistbivalvesandreefcoralsintheLowerCretaceousofsouthwesternMexico:tieredcoexistence,competitionforthesameecologicniche,andfaciessuperposition(resumen), in GeologicalSocietyofAmerica,AbstractswithPrograms,34(6),538.

Filkorn,H.F.,Pantoja-Alor,J.,2004,AnewEarlyCretaceouscoral(Anthozoa;Scleractinia;Dendrophylliina)anditsevolutionarysignificance: Journal of Paleontology, 78(3), 501-512.

Filkorn,H.F.,Pantoja-Alor,J.,2009,CretaceouscoralsfromtheHuetamoregion, Michoacán and Guerrero, southwestern Mexico:UniversidadNacionalAutónomadeMéxico,InstitutodeGeología,Boletín116,168pp.

Fleury,J.J.,1971,LeCénomanianaforaminifèresbenthoniquesdumassifduVarassove(zoneduGavrovo,Akarnanie,Grececontinentale):RevuedeMicropaléontologie,14,181-194.

Foury,G.,1968,LeCrétacéinférieurdesAlpillescontributionaL’étudestratigraphiqueetmicropaléontologique:Geobios,1,119-164.

Freydier,C.,Lapierre,H.,Briqueu,L.,Tardy,M.,Coulon,C.,Martínez-Reyes,J.,1997,Volcaniclasticsequenceswithcontinentalaffinities within the Late Jurassic - Early Cretaceous Guerrero intra-oceanicarcterrane(westernMexico):JournalofGeology,105(4),483-502.

Frizzell,D.L.,1954,HandbookofCretaceousForaminiferaofTexas:UniversityofTexas,BureauofEconomicGeology,ReportofInvestigationNo.22,232pp.

Frollo,M.M.,1938,SurunNouveaugeneredeCodiacéeduJurassiqueSupérieurdesCarpatesOrientales:SociétéGéologiquedeFranceBulletin,5(8),269-271.

García-Barrera,P.,Pantoja-Alor,J.,1991,EquinoidesdelAlbianotardíodelaFormaciónMalPaso,delaregiónChumbítaro,estadosGuerreroyMichoacán,México:RevistadelaSociedadMexicanadePaleontología,4,23-41.

GonzálezFernández,B.,MenéndezCasares,E.,GutiérrezClaverol,M.,García-Ramos,J.C.,2004,LitoestratigrafíadelsectoroccidentaldelacuencacretácicadeAsturias:TrabajosdeGeología,UniversitadeOviedo,24,43-80.

GGrötschJ.,Schroeder,R.,Noé,S.,andFlügel,E.,1993,Carbonateplattformsasrecordersofhigh-amplitudeeustaticsea-levelfluctuations: the late Albian appenninica-event: Basin Research, 5,197-212.

Hamaoui,M.andSaint-Marc,P.,1970,MicrofaunesetmicrofacièsduCénomanienduProche-Orient:BulletinCentreRecherchesPau-SNPA,v.4,p.257-352.

Hauck,F.,1885,DieMeeresalgen,in Rabenhorst, L. (ed.), Kryptogamen.― FloravonDeutschland,ÖsterreichundderSchweiz:Leipzig,Kummer,334-410.

Henson,F.R.S.,1948,NewTrochamminidaeandVerneuilinidaefromthe

MiddleEast:AnnalsandMagazineofNaturalHistory,11(14),605-636.

Johnson,J.H.,1969,AreviewoftheLowerCretaceousalgae:ColoradoSchoolofMines,ProfessionalContributions,6,180pp.

Kauffman,E.G.,Johnson,C.C.,1988,ThemorphologicalandecologicalevolutionofmiddleandUpperCretaceousreef-buildingrudistids:Palaios,3(2),194-216.

Konishi,K.,Epis,R.C.,1962,SomeEarlyCretaceouscalcareousalgaefromChochiseCounty,Arizona:Micropaleontology,8(1),67-76.

Kuss,J.,1986,UpperCretaceousalgaefromtheEasternDesertofEgypt:NeuesJahrbuchfürGeologieandPaläontologie,Monatshefte,1986,223-238.

Kuss,J.,Conrad,M.A.,1991,CalcareousalgaefromCretaceouscarbonatesofEgypt,Sinai,andsouthernJordan:JournalofPaleontology,65(5),869-882.

Kützing,F.T.,1843,Phycologiageneralis:Leipzig,Perthes,458pp.Loeblich,A.R.Jr.,Tappan,H.,1949,ForaminiferafromtheWalnut

Formation(LowerCretaceous)ofNorthernTexasandSouthernOklahoma:JournalofPaleontology,23(3),245-266.

Loeblich, A.R.Jr., Tappan, H., 1985, Some new and redefined genera and familiesofagglutinatedforaminiferaI:JournalofForaminiferalResearch,15(2),91-104.

Loeblich,A.R.,Jr.,Tappan,H.,1988,Foraminiferalgeneraandtheirclassification:NewYork,VanNostrandReinholdCompany,970pp.

Longoria,J.F.,1974,Stratigraphic,morphologicandstratigraphicstudiesofAptianplanktonic foraminiferida:RevistaEspañoladeMicropaleontologia,Numeroextraordinario,1-107.

Lozo,F.E.Jr.,1944,BiostratigraphicrelationsofsomeNorthTexasTrinityandFredericksburg(Comanchean)foraminifera:AmericanMidlandsNaturalist,31(3),513-382.

LupertoSinni,E.,1979,Praechrysalidina infracretacean.gen.,n.sp.(Foraminiferida)delCretaceoInferioredelleMurgeBaresi:Bari,UniversitàdegliStudidiBari,StudiGeologicieMorphologicisullaRegionePuglieseV,IstitutodiGeologiaePaleontologia,1-16.

Mann, P., 1999, Caribbean sedimentary basins: classification and tectonic settingfromJurassictoPresent,in Mann,P.(ed.),CaribbeanBasins.SedimentaryBasinsoftheWorld.4:Amsterdam,ElsevierScienceB.V.,3-31.

Marie,P.,1941,LesforaminifèresdelaCraieàBelemnitella mucronataduBassindeParis:MémoiresduMuseumNationaled’HistoireNaturelle,12(1),1-296.

Marie,P.,1955,QuelquesgenresnouveauxdeforaminifèresduCrétacéàfaciesrécifal:CompteRendus19thCongrèsGéologiqueInternational,Alger1952,13(15),117-124.

Masters,B.A.,1977,Mesozoicplanktonicforaminifera,inRamsay,A.T.S.(ed.),OceanicMicropaleontology,vol.1:London,AcademicPress,301-731.

Morrow,A.L.,1934,ForaminiferaandostracodafromtheUpperCretaceousofKansas:JournalofPaleontology,8,186-205.

Moullade, M., 1965, Contribution au problème de la classification des Orbitolinidae(Foraminiferida,Lituolacea):CompteRendusHebdomadairesdesSéances,AcadémiedesSciences,Paris,260,4031-4034.

Neagu,T.,1968,Andersenia rumanan.gen.,n.sp.,andsometaxonomicobservationson thesubfamilyValvulininae:ContributionsfromtheCushmanFoundationforForaminiferalResearch,19,120-122.

Omaña-Pulido,L.,Pantoja-Alor,J.,1998,EarlyAptianbenthicforaminiferafromtheElCajónFormation,Huetamo,Michoacán,SWMéxico:RevistaMexicanadeCienciasGeológicas,15(1),64-72.

Omara,S.,1956,NewforaminiferafromtheCenomanianofSinai,Egypt:JournalofPaleontology,30,883-890.

d’Orbigny,A.,1839,Foraminifères,in Sagra,R.(ed.),Histoirephysique,politiqueetnaturelledel’îledeCuba:Paris,ArthusBertrand.

d’Orbigny,A.,1846,ForaminifèresfossilesduBassinTertiairedeVienne(Autriche):Paris,GideetComp,4.

Palma,R.M.,LoForte,G.L.,Medhli,M.,Piethé,R.D.,2005,High

Page 17: Microfossils, paleoenvironments and …Aptian benthic foraminifera have been reported from the nearby El Cajon locality (Omaña-Pulido and Pantoja-Alor, 1998) which is stratigraphically

Microfossils, paleoenvironments and biostratigraphy of the Mal Paso Formation 191

frequencysubtidal-peritidalcyclesoftheCallovianCalabozoFormation(NeuquénBasin,westernArgentina):preliminaryapproach:GeologicaActa,3,119-132.

Pantoja-Alor,J.,1959,EstudiogeológicodereconocimientodelaregióndeHuetamo,EstadodeMichoacán:ConsejodeRecursosNaturalesNo-Renovables(Mexico),Boletín50,36pp.

Pantoja-Alor,J.,1992,LaFormaciónMalPasoysuimportanciaenlaestratigrafíadelsurdeMéxico:SociedadGeológicaMexicana,ConvenciónGeológicaNacional,11,121-123.

Peybernès,B.,1976,LeJurassiqueetleCrétacéinférieurdesPyrénéesFranco-Espagnoles,entrelaGaronneetlaMéditerranée:Tulouse,ThèsedeDoctoratSciencesNaturelles,459p.

Pia,J.,1936,CalcareousGreenalgaefromtheUpperCretaceousofTripoli(NorthAfrica):JournalofPaleontology,10(1),3-13.

Pfender,J.,1936,Surunorganismeconstucteurdescalcairescretacesetnummulitiques,Pseudolithothamnium album,n.g.,nov.sp.:BulletinSocietegeologiqueFrance,5,303-308.

PremoliSilva,I.,Sliter,W.V.,2002,PracticalmanualofCretaceousplanktonicForaminifera:Perugia,UniversityofPerugia,DipartimentodiScienzedellaTerra,462pp.

RamaRao,L.,Pia,J.,1936,FossilalgaefromtheuppermostCretaceousbeds(theNiniyurGroup)oftheTrichinopolyDistrict,S.India:Calcutta,PalaeontologicaIndica,NewSeries,21(4),1-49.

Redmond,C.D.,1964,LituolidforaminiferafromtheJurassicandCretaceous of SaudiArabia: Micropaleontology, 10(4),405-414.

Renz,O.,1936,StratigraphischeundmikropaläontologischeUnterschungderScaglia(ObereKreide-Tertiär)imzentralenApennin:EclogaegeolgicaeHelvetiae,29,1-149.

Saidova,Kh.M.,1981,OsovremennomsostoyaniisistemynadvidovykhtaksonovKaynozoyskikhbentosnykhforaminifer[Onanup-to-date system of supraspecific taxonomy of Cenozoic benthonic foraminifera]:Moscow,InstitutOkeanologiiP.P.Shirshova,AkademiyaNaukSSR.

Saunders,G.W.,Hommersand,M.H.,2004,Assessingredalgalsupraordinaldiversity and taxonomy in the context of contemporarysystematicdata:AmericanJournalofBotany,91,1494-1507.doi:10.3732/ajb.91.10.1494.

Schwager, C., 1877, Quadro del proposto sistema di classificazione dei formanifericonguscio:BolletinoR.ComitatoGeologicod’Italia,8,18-27.

Scott,R.W.,1995,GlobalenvironmentalcontrolsonCretaceousreefalecosystems:Palaeogeography,Palaeoclimatology,Palaeoecology,119(1-2),187-199.

Scott , R.W., 2009, Uppermost Albian Biostrat igraphy andChronostratigraphy:CarnetsdeGéologie/NotebooksonGeology,Article2009/03(CG2009_A03),16pp.

Scott,R.W.,Finch,R.C.,1999,CretaceousCarbonateBiostratigraphyandEnvironmentsinHonduras,in Mann,P.(ed.),CaribbeanBasins.SedimentaryBasinsoftheWorld,4:Amsterdam,ElsevierScienceB.V.,151-165.

Scott,R.W.,González-León,C.,1991,PaleontologyandbiostratigraphyofCretaceousrocks,Lampazosarea,Sonora,Mexico:GeologicalSocietyofAmericaSpecialPaper254,51-67.

Scott,R.W.,Filkorn,H.F.,2007,Barremian-AlbianRudistZones,U.S.GulfCoast,inScott,R.W.(ed.),CretaceousRudistsandCarbonatePlatforms:EnvironmentalFeedback:SEPMSpecialPublication87,167-180.

Scott,R.W.,Benson,D.G.,Morin,R.W.,Shaffer,B.L.,Oboh-Ikuenobe,F.E.,2003.IntegratedAlbian-LowerCenomanianChronostratigraphyandPaleoecology,TexasandMexico:PerkinsMemorialVolume:GCSSEPMFoundation,SpecialPublicationsinGeology,No.1,CDbook,p.277-334.

Sigal, J., 1958, La classification actuelle des familles de foraminifères planctoniquesduCrétacé:CompteRendudesSéances,SociétéGéologiquedeFrance,1958,262-265.

Simmons,M.D.,Hart,M.B.,1987,ThebiostratigraphyandmicrofaciesoftheEarlytomid-CretaceouscarbonatesofWadiMi’aidin,CentralOmanMountains, inHart,M.B.(ed.),MicropalaeontologyofCarbonateEnvironments:Chichester,EllisHorwoodLtd.,176-207.

Sliter,W.V.,Baker,R.A.,1972,Cretaceousbathymetricdistributionofbenthicforaminifers:JournalofForaminiferalResearch,2,167-183.

Smout,A.H.,1956,ThreenewCretaceousgeneraofForaminiferarelatedtotheCeratobuliminidae:Micropalentology,2,335-348.

Sokač, B., Nikler, L., 1973, Calcareous algae from the Lower Cretaceous oftheenvironsofNiksic,CrnaGora(Montenegro):Paleontologiejugoslavica,Zagreb,13,1-57.

Tronchetti, G., 1984, Influence du substrat et de la salinité dans la répartition desforaminifèresbenthiques:exampleduCrétacémoyenetsupérieurdeProvence(SEFrance):PauandBordeaux,Benthos’83,2ndInternationalSymposiumonBenthicForaminifera,567-571.

Vanderpool,H.C.,1933,UpperTrinitymicrofossils fromsouthernOklahoma:JournalofPaleontology,7(4),406-411.

Wray,J.L.,1978,Calcareousalgae,inHaq,B.U.,Boersma,A.(eds.),IntroductiontoMarineMicropaleontology:NewYork,Elsevier,171-187.

Yabe, H., Hanzawa, S., 1926, Choffatella Schlumberger andPseudocyclammina,anewgenusofarenaceousforaminifera:Sendai,ScienceReportsoftheTohokuUniversity,series2,Geology9,9-11.

Yokoyama,M.,1890,ForaminiferenausdemKalksteinevonTorinosuundKompira:Wien,DenkschriftenderKaiserlichenAkademiederWissenschaften,Mathematisch-NaturwissenschaftlicheClasse,57,26-27.

Manuscriptreceived:April6,2010Correctedmanuscriptreceived:October14,2010Manuscriptaccepted:December13,2010