microporous carbons for electrochemical double layer capacitors

Upload: aabcpapers

Post on 06-Apr-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Microporous Carbons for Electrochemical Double Layer Capacitors

    1/23

    Microporous Carbons for Electrochemical DoubleLayer Capacitors

    AABC Europe, ECCAP symposium, June7-8 2011

    Patrice SimonUniv. Paul Sabatier de Toulouse, CIRIMAT, UMR 5085,118 route de Narbonne, 31062 Toulouse FRANCE

    [email protected]

  • 8/3/2019 Microporous Carbons for Electrochemical Double Layer Capacitors

    2/23

    1. Electrochemical Capacitors (ECs)

    ECs (supercapacitors):- high power (10-20 kW/kg)

    - medium energy (5 Wh/kg)- time constant:1 5 s

    AABC Europe, ECCAP symposium, June7-8 2011

    performance betweencapacitors and batteries

    Complement to batteries

    ECs:- Oxide-based (pseudocapacitors)

    - Carbon-based (EDLCs)P. Simon and Y. Gogotsi, Nature Materials 7 (2008) 845-854

  • 8/3/2019 Microporous Carbons for Electrochemical Double Layer Capacitors

    3/23

    1. Charge storage in EDLC: electrostatic

    Electrochemical Double Layer Capacitor: no redox reaction

    Electro

    de

    Electrolyte

    Approaching

    AABC Europe, ECCAP symposium, June7-8 2011

    Cdl10-20 F/cm

    Capacitance Electrolytedielectricconstant

    Surface

    High-surface area CarbonSSA 1500 m.g-1 100 150 F.g-1 of AC

    Using non aqueous electrolyte Emax = 2.5 V

    Electrostatic (NO REDOX)

  • 8/3/2019 Microporous Carbons for Electrochemical Double Layer Capacitors

    4/23

    1.Hybrid (asymmetric) systemsCombination of a battery-like electrode with a SC electrode combines energy (faradic) and power (SC)

    1.2 EDLC (Challenges)

    Next Challenges for SupercapacitorsIncrease the energy density to >10 Wh/kg

    (E=1/2 C.V)

    AABC Europe, ECCAP symposium, June7-8 2011

    3. EDLCs: Carbons with controlled Pore Size Distribution

    Control the pore size to increase C

    2. Pseudo-capacitive charge storage pseudo-intercalation reactions in mesoporous oxides (B. Dunn, S. Tolbert

    groups)

  • 8/3/2019 Microporous Carbons for Electrochemical Double Layer Capacitors

    5/23

    2. Carbide-Derived Carbons

    Selective dissolution of a metal carbide (TiC, SiC, ZrC)

    TiC(s) + 2 Cl2(g) TiCl4(g) + C(s) (Tsynthesis, H2 annealing)

    1.1 nm

    Why CDCs? fine tuning of the pore size and pore size distribution

    Collaboration with Prof Y. Gogotsi, Drexel university in Philadelphia (USA)

    1700 1.2

    TiC: pores from 0.6 to 1.1 nm

    AABC Europe, ECCAP symposium, June7-8 2011

    6.8

    7.0

    7.4

    7.6

    8.1 600C

    800C

    1000C

    1000

    1100

    1200

    1300

    1400

    1500

    0.6

    0.7

    0.8

    0.9

    1.0

    1.1

    500 600 700 800 900 1000

    BETSSA

    (m2/g)

    Averageporesiz

    e(nm)

    Chlorination temperature (C)

  • 8/3/2019 Microporous Carbons for Electrochemical Double Layer Capacitors

    6/23

    4 cm Lab Cells

    2.1 CDCs in Organic Liquid Electrolyte

    Electrolyte(C2H5)4N+,BF4- 1.5M in ACN

    Et4N

    +

    BF4

    -

    AABC Europe, ECCAP symposium, June7-8 2011

    95% CDC, 5% PTFE cast onto Al foils

    4cm2 electrode area, 15 mg/cm

  • 8/3/2019 Microporous Carbons for Electrochemical Double Layer Capacitors

    7/23

    2.1 CDCs: Anomalous capacitance increase in1M (C2H5)4N+,BF4- in AN electrolyte

    Pores smaller thanthe solvated ion

    size are accessibleto the ions

    AABC Europe, ECCAP symposium, June7-8 2011

    J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P.L. Taberna and P. Simon, Science 313, 1760-1763 (2006)

    Hypothesis: micropores accessible thanks to the distortion of the ion solvation shell

    High capacitancein micropores;50% increase

  • 8/3/2019 Microporous Carbons for Electrochemical Double Layer Capacitors

    8/23

    2.1 Cavity -electrode (CME) in TEABF4 electrolyte

    How to evaluate from dynamic measurements (high-rate CV):- the effective ion size seen by the carbon?- the extent of solvation?

    AABC Europe, ECCAP symposium, June7-8 2011

    use Cavity -Electrode / CDCs combination to study

    electrochemical behaviorV. Vivier, C. Cachet-Vivier, et al., Electrochem. Solid-State Lett. V. 2, 385 (1999)

  • 8/3/2019 Microporous Carbons for Electrochemical Double Layer Capacitors

    9/23

  • 8/3/2019 Microporous Carbons for Electrochemical Double Layer Capacitors

    10/23

    2. CDCs: High power capability in1M (C2H5)4N+,BF4- in AN electrolyte

    120

    130

    140

    150

    CDC 500 CCDC 600 C

    acitance(F/g)

    B

    0.64 nm

    0.72 nm

    0.76 nm

    1.1 nm

    AABC Europe, ECCAP symposium, June7-8 2011

    Microporous CDCs: high capacitance and high power capability

    80

    90

    100

    110

    0 20 40 60 80 100

    CDC 800 CCDC1000 CNMACSMAC

    Specificc

    a

    Current density (mA/cm2)

    Activated

    Carbons

  • 8/3/2019 Microporous Carbons for Electrochemical Double Layer Capacitors

    11/23

    2.1 CDCs Structure

    Quenched Molecular Dynamics modelling of CDCs

    m

    CDC 1200C (1.2 nm)CDC 600C (0.74 nm)

    AABC Europe, ECCAP symposium, June7-8 2011J. C. Palmer, Y. Gogotsi et al, Carbon, 48. 1116-1123 (2010)

    4

    4 nm

    Highly disordered structures(no graphitic plans, no slit pores)

    interconnected, open porous structure

    4 nm

  • 8/3/2019 Microporous Carbons for Electrochemical Double Layer Capacitors

    12/23

    Limitation in ion adsorption

    -

    0

    0.002

    0.004

    0.006

    0.008

    100 mV/s

    Current/mA

    CDC 0.68nm in NEt4,BF4 in AN

    NEt4+ BF4-0

    0.005

    0.01100 mV/s

    Current/mA

    CDC 0.68nm in EMI,TFSI in AN

    TFSI-EMI+

    + EMI+ ? + BF4- ?

    AABC Europe, ECCAP symposium, June7-8 2011

    Limited pore accessibility: steric effect or surface saturation?

    -0.006

    -0.004

    - .

    -1.5 -1 -0.5 0 0.5 1

    E/V vs. Ag ref

    Limited NEt4+

    adsorption

    -0.01

    - .

    -1 -0.5 0 0.5 1

    E/V vs. Ag ref

    Limited TFSI-

    adsorption

    Addition of EMIBF4

  • 8/3/2019 Microporous Carbons for Electrochemical Double Layer Capacitors

    13/23

    Addition of EMIBF4NEt4BF4 1.5M in ACN +

    addition of EMIBF4

    0

    0.5

    1

    current

    Limited pore accessibility or surface saturation?

    EMI,TFSI 2M in ACN +addition of EMIBF4

    0.5

    1

    1.5

    100 mV/s

    urrent

    [EMIBF4] in EMITFSI 2M+ACN:

    0.68 nm CDC

    AABC Europe, ECCAP symposium, June7-8 2011

    -1.5

    -1

    -0.5

    -1.5 -1 -0.5 0 0.5 1

    0M

    0.2M

    0.5M

    1M

    2M

    Normaliz

    ed

    E/V vs. Ag ref

    [EMIBF4]:

    .

    Current increase with EMI,BF4 additions no C surface saturation

    1. Pore size/ion size relationship drives the capacitance2. Selective ion adsorption

    -1.5

    -1

    -0.5

    0

    -1 -0.5 0 0.5 1

    0.00 M0.2 M0.5 M

    1 M2 M

    Normalize

    d

    E/V vs. Ag ref

  • 8/3/2019 Microporous Carbons for Electrochemical Double Layer Capacitors

    14/23

    Limited pore accessibility or surface saturation?

    -0.5

    0

    0.5

    1 20 mV/s

    alizedcurrent

    0

    0.5

    1

    1.5 100 mV/s

    NEt4BF

    41.5M+ACN

    EMIBF4

    2M+ACNalizedcurrent

    EMI,TFSI

    AABC Europe, ECCAP symposium, June7-8 2011

    EMI,BF4 no limitation, ideal capacitive behavior

    No surface charge saturation, only steric (size) effect

    -1.5

    -1

    -1.5 -1 -0.5 0 0.5 1

    NEt4BF

    41.5M + ACN

    EMIBF4

    2M + ACN

    N

    or

    E/V vs. Ag ref

    -1.5

    -1

    -0.5

    -1 -0.5 0 0.5 1

    No

    r

    E/V vs. Ag ref

  • 8/3/2019 Microporous Carbons for Electrochemical Double Layer Capacitors

    15/23

    2.2 3-electrode cell in neat Ionic Liquid

    ElectrolyteEthyl-MethylImmidazolium-TriFluoro-methane-SulfonylImide (EMI-TFSI)4 cm Cell

    AABC Europe, ECCAP symposium, June7-8 2011

    EMI+: 0.76 nm(longest dimension)

    TFSI-

    : 0.79 nm(longest dimension) Same size

    Temp. 60C; Active materials: CDCs

    EMI+ TFSI-Galva.

  • 8/3/2019 Microporous Carbons for Electrochemical Double Layer Capacitors

    16/23

    2.2 3-electrode cell in EMI-TFSI

    Cell Capacitance (F/g)

    Positive Electrode (F/g)

    Negative Electrode (F/g)

    100

    120

    140

    160

    180

    C(

    F/g)

    TFSI- EMI+

    AABC Europe, ECCAP symposium, June7-8 2011

    P. Simon, Y. Gogotsi Nature Materials, 7 (2008) 845-854

    R. Lin, P. Huang, J. Segalini, C. Largeot, PL Taberna, Y. Gogotsi and P. Simon., Electrochimica Acta 54 (2009)

    1. +50% increase capacitance vs YP17 AC2. Maximum at 0.72 nm when ion size ~ pore size!!!

    Ions aligned into the pores!

    60

    80

    0.6 0.7 0.8 0.9 1 1.1Pore Size (nm)

    YP17 AC

  • 8/3/2019 Microporous Carbons for Electrochemical Double Layer Capacitors

    17/23

    ElectrolyteEthyl-MethylImmidazolium-TriFluoro-methane-SulfonylImide (EMI-TFSI)

    3-electrode cell in neat Ionic Liquids

    Maximum Capacitance when pore size ~ ion size

    Ions aligned in pores capacitance increase

    AABC Europe, ECCAP symposium, June7-8 2011

    - potential well (K. Kaneko, Carbon 2010)?

    - screening effect (Kornyshev et al., 2011)?

    - exclusion of counter ions (Shim et al., 2010)?

    Combining Modelling with in-situ experiment are needed tounderstand ion adsorption in nanopores

  • 8/3/2019 Microporous Carbons for Electrochemical Double Layer Capacitors

    18/23

    2.2 3-electrode cell in PYR14-TFSI

    70 F.g-1 130 F.g-1 80 F.g-1

    High temperature EDLC in PYR14,TFSI

    2.5V supercapacitor cell operating at 100C

    AABC Europe, ECCAP symposium, June7-8 2011

    0.64 nm

    Small pore size: CV distortion

    0.8 nm

    Medium pore size: Ideal CV, high C

    1.1 nm

    Larger pore size: Ideal CV, low C

    5mV.s-1 5mV.s-1 5mV.s-1

    Adapt the carbon pore size to the ion size is the key to reach high C

    in-situ NMR (Prof C. Grey) and modelling (K. Kaneko) on-going

  • 8/3/2019 Microporous Carbons for Electrochemical Double Layer Capacitors

    19/23

    TiC bulk (ceramic)

    3. From powder to bulk films

    Bulk CDC films

    AABC Europe, ECCAP symposium, June7-8 2011

    1. Chlorination @ 500C TiC derivedcarbon film

    Monolithic TiC 2. Cell

    TiC plate CDC film

    Electrolyte + separator

    Teflon plates No binder, dense electrode

  • 8/3/2019 Microporous Carbons for Electrochemical Double Layer Capacitors

    20/23

    3.2 Electrochemistry (CVs)

    Aqueous electrolyte(H2SO4)

    Organic electrolyte(NEt4BF4 + ACN)

    AABC Europe, ECCAP symposium, June7-8 2011

    Similar capacitive behavior as for powder CDCs

    vol. capacitance ?

  • 8/3/2019 Microporous Carbons for Electrochemical Double Layer Capacitors

    21/23

    3.3 Volummetric capacitance

    BA

    ACN + 1M NEt4BF4 H2SO4 1M

    AABC Europe, ECCAP symposium, June7-8 2011

    Vol. Capacitance of 180 F/cm3 for e = 1 m (CA = 50 F/cm3) Thin films with high energy density (+300% !!!)

    CA CA

    J. Chmiola, C. Largeot, P.L. Taberna, P. Simon and Y. Gogotsi, Science 328, 480-483 (2010)

  • 8/3/2019 Microporous Carbons for Electrochemical Double Layer Capacitors

    22/23

    Chlorination(500C

  • 8/3/2019 Microporous Carbons for Electrochemical Double Layer Capacitors

    23/23

    4. Conclusions

    1. Capacitance increase thanks to partial desolvation twice volummetric capacitance; no power limitation

    Microporous Carbons (CDCs) for EDLCs

    AABC Europe, ECCAP symposium, June7-8 2011

    3. Thin-films high energy (x3) with bulk microporous carbons

    2. High capacitance when pore size ion size; mechanism? need for modelling coupled with in-situ experiments (NMR, XRD