microtubule +tips at a 123 glance · kinesins tea2 and kip2, the microtubule-depolymerising kinesin...

5
Microtubule +TIPs at a glance Anna Akhmanova 1 and Michel O. Steinmetz 2 1 Department of Cell Biology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands 2 Biomolecular Research, Structural Biology, Paul Scherrer Insititut, CH-5232 Villigen PSI, Switzerland ([email protected]; [email protected]) Journal of Cell Science 123, 3415-3419 © 2010. Published by The Company of Biologists Ltd doi:10.1242/jcs.062414 This article is part of a Minifocus on microtubule dynamics. For further reading, please see related articles: ‘Kinesins at a glance’ by Sharyn A. Endow et al., (J. Cell Sci. 123, pp. 3420-3424), ‘Tubulin depolymerization may be an ancient biological motor process’ by J. Richard McIntosh et al. (J. Cell Sci. 123, pp. 3425-3434), ‘Towards a quantitative understanding of mitotic spindle assembly and mechanics’ by Alex Mogilner and Erin Craig (J. Cell Sci. 123, pp. 3435-3445) and ‘Post-translational modifications of microtubules’ by Dorota Wloga and Jacek Gaertig (J. Cell Sci. 123, pp. 3447-3455). Microtubules are highly dynamic hollow tubes that are involved in many vital cellular activities, including maintenance of cell shape, division, migration and intracellular transport. They are assembled from heterodimers of - and -tubulin that align in a head-to-tail fashion. Microtubules are, thus, intrinsically polar because they contain two structurally distinct ends: a slow-growing minus end, exposing - tubulin subunits; and a fast-growing plus end, exposing -tubulin subunits (for a review, see Nogales and Wang, 2006). In mammalian cells, microtubule minus ends are often stably anchored, whereas the plus ends are highly dynamic and stochastically switch between phases of growth and shrinkage, a process that is powered by GTP hydrolysis. Microtubule plus-end tracking proteins (+TIPs) are a structurally and functionally diverse group of proteins that are distinguished by their specific accumulation at microtubule plus ends (Mimori-Kiyosue et al., 2000; Perez et al., 1999; Schuyler and Pellman, 2001). +TIPs typically target growing but not shrinking microtubule ends; however +TIP association with depolymerizing ends can occur and, in some organisms such as budding yeast, is even quite common. In this Cell Science at a Glance article we review and illustrate the current knowledge of these peculiar proteins, summarize their structural and functional properties, and discuss the proposed molecular mechanisms that they use to track microtubule ends. Classification of +TIPs The first reported +TIP was cytoplasmic linker protein of 170 kDa (CLIP-170, officially known as CLIP1) (Perez et al., 1999). Since its discovery, more than 20 different +TIP families have been identified. +TIPs are usually 3415 Cell Science at a Glance (See poster insert) © Journal of Cell Science 2010 (123, pp. 3414–3418) Microtubule +TIPs at a Glance Anna Akhmanova and Michel O. Steinmetz Abbreviations: AAA, ATPase family associated with various cellular activities; APC, adenomateous polyposis coli protein; Arm, armadillo repeat; basic-S/P, sequence regions enriched in basic, serine and proline residues; CAP-Gly, cytoskeleton-associated protein glycine-rich; CDK5RAP2, CDK5 regulatory subunit- associated protein 2; CH, calponin homology; CLASP, CLIP-associated protein; CLIP-170, cytoplasmic linker protein of 170 kDa; Dam1, DUO1- and MPS1-interacting protein 1; EB, end-binding protein; EBH, EB homology; EEY/F, C-terminal Glu-Glu- Tyr/Phe tripeptide motif; EF-hand, Ca2+-binding motif; FOP, FGFR1 oncogene partner; Gas2, growth-arrest-specific protein 2; HC, heavy chain; Lis1, lissencephaly-1 protein; LisH, Lis1 homology; MACF, microtubule-actin crosslinking factor; MCAK, mitotic centromere-associated kinesin; MT, microtubule; Ncd, non-claret disjunctional; p140Cap, p130Cas-associated protein of 140 kDa (also known as SRCIN1, SRC kinase signaling inhibitor 1, SNIP, SNAP-25-interacting protein); RhoGEF2, Rho-type guanine nucleotide-exchange factor 2; SAM, sterile α-motif domain; SAMP, Ser-Ala-Met-Pro repeat; STIM1, stromal interaction molecule 1; SxIP, Ser-x-Ile-Pro tetrapeptide motif, where x denotes any amino acid residue; +TIP, microtubule plus-end tracking protein; TIP150, +TIP of 150 kDa; TM, transmembrane domain; TOG, named after the discovery in human chTOG; WD40, ~40 amino acid motifs, often terminating in a Trp-Asp dipeptide; XMAP215, microtubule-associated protein of 215 kDa. +TIP classification What is a +TIP? +TIP localization +TIP distribution in mammalian interphase cells Monkey kidney cell stained for endogenous EB1 Dynein SxIP proteins EBH-SxIP CAP-Gly-EEY/F CAP-Gly proteins Proteins with unknown EB-binding mechanisms Microtubule +TIPs localize to and track dynamic MT plus ends Growing MT Catastrophe GDP GTP Rescue Shrinking MT Plus end Minus end α β α β β α β α In vitro, some +TIPs can bind to growing but not shrinking MT minus ends 1D lattice diffusion (MCAK, XMAP215) Kinesin-based transport (Tea2–Tip1, Kip2–Bik1) Recognition of specific plus-end structure (EB1) Recognition of composite +TIP/tubulin-binding sites (CLIP-170, MCAK) 3D diffusion in cytoplasm (RhoGEF2, Lis1) Co-polymerization Lattice- maturation- induced release 2D diffusion in membrane (STIM1) Hitchhiking Processive end tracking (XMAP215, Dam1) Fast exchange (EB1, CLIP-170) Proteins in parentheses indicate selected examples of +TIPs using a particular mechanism Microtubule dynamics Interactions with cellular structures Polymerization (XMAP215, EB1) Depolymerization (MCAK) Stabilization (CLASP, APC, MACF) Cortex (CLASP, APC, MACF, CLIP-170, EB1, dynein, dynactin, LIS1) Rescue (CLIP-170, CLASP) Catastrophe (MCAK) Kinetochores (Dam1, CLASP, CLIP-170, APC, EB1, dynein, dynactin, LIS1, MCAK) F-actin (MACF, CLASP, APC, CLIP-170, Kar9, RhoGEF2, p140Cap) Vesicles (dynein, dynactin, CLIP-170, Melanophilin) Endoplasmic reticulum (EB1, STIM1) Centrosome (XMAP215, EB1, CLASP, APC, dynein, dynactin, Lis1, FOP, CDK5RAP2) Microtubules (Ncd, Klp2) EEY/F EB proteins EB EBH Coiled coil Coiled coil EEY/F CAP–Gly proteins CLIP170 p150glued CAP–Gly Coiled coil ZnF Basic-S/P Motor proteins Dynein HC Helical Coiled coil AAA Tea2 Ncd Kinesin TOG proteins XMAP215 CLASP Helical Basic-S/P TOG-like SxIP Other proteins Lis1 Kar9 WD40 LisH Helical Basic-S/P 15/20 aa repeats SxIP proteins APC MACF MCAK STIM1 Further examples: CLASP, p140Cap, melanophilin RhoGEF2, CDK5RAP2, TIP150, navigator Arm Helical Basic-S/P SAMP Plakin Spectrin EF GAS2 TM SAM EF SxIP SxIP SxIP SxIP +TIPs that belong to several classes: CLASP (SxIP, TOG), MCAK (SxIP, motor) Dam1 Multimeric complex of 10 proteins CH CH Basic-S/P TOG Kar9 Tea2 Ncd XMAP215 Lis1 CLIP-170 CH EBH EEY/F CH EB Pro x Ile Ser CLASP Melanophilin APC MCAK MACF RhoGEF2 CDK5RAP2 STIM1 p140Cap TIP150 Live image of a human lung fibroblast expressing an MT marker (mCherry-α-tubulin, red) and a +TIP marker (EB3-GFP, green) Autonomous +TIP Non-autonomous +TIPs GTP-tubulin Kinesin Lipid bilayer GDP-tubulin +TIP that tracks only growing MT plus ends (e.g. EB1, CLIP-170) +TIP that tracks growing and shrinking MT plus ends (e.g. Dam1, Kar9) GTP-tubulin GDP-tubulin +TIP functions p150glued Tyr Glu Glu +TIP interactions Microtubule plus-end tracking mechanisms Journal of Cell Science

Upload: others

Post on 24-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Microtubule +TIPs at a 123 glance · kinesins Tea2 and Kip2, the microtubule-depolymerising kinesin 13 MCAK and cytoplasmic dynein (reviewed in Wu et al., 2006). Sequences outside

Microtubule +TIPs at aglanceAnna Akhmanova1 and Michel O.Steinmetz2

1Department of Cell Biology, Erasmus MedicalCenter, PO Box 2040, 3000 CA Rotterdam, TheNetherlands2Biomolecular Research, Structural Biology, PaulScherrer Insititut, CH-5232 Villigen PSI, Switzerland([email protected];[email protected])

Journal of Cell Science 123, 3415-3419 © 2010. Published by The Company of Biologists Ltddoi:10.1242/jcs.062414

This article is part of a Minifocus on microtubuledynamics. For further reading, please see relatedarticles: ‘Kinesins at a glance’ by Sharyn A. Endowet al., (J. Cell Sci. 123, pp. 3420-3424), ‘Tubulindepolymerization may be an ancient biological motorprocess’ by J. Richard McIntosh et al. (J. Cell Sci.123, pp. 3425-3434), ‘Towards a quantitativeunderstanding of mitotic spindle assembly andmechanics’ by Alex Mogilner and Erin Craig (J. CellSci. 123, pp. 3435-3445) and ‘Post-translational

modifications of microtubules’ by Dorota Wloga andJacek Gaertig (J. Cell Sci. 123, pp. 3447-3455).

Microtubules are highly dynamic hollow tubesthat are involved in many vital cellularactivities, including maintenance of cell shape,division, migration and intracellular transport.They are assembled from heterodimers of -and -tubulin that align in a head-to-tail fashion.Microtubules are, thus, intrinsically polarbecause they contain two structurally distinctends: a slow-growing minus end, exposing -tubulin subunits; and a fast-growing plus end,exposing -tubulin subunits (for a review, seeNogales and Wang, 2006). In mammalian cells,microtubule minus ends are often stablyanchored, whereas the plus ends are highlydynamic and stochastically switch betweenphases of growth and shrinkage, a process that ispowered by GTP hydrolysis.

Microtubule plus-end tracking proteins(+TIPs) are a structurally and functionally

diverse group of proteins that are distinguishedby their specific accumulation at microtubuleplus ends (Mimori-Kiyosue et al., 2000; Perez etal., 1999; Schuyler and Pellman, 2001). +TIPstypically target growing but not shrinkingmicrotubule ends; however +TIP associationwith depolymerizing ends can occur and, insome organisms such as budding yeast, is evenquite common. In this Cell Science at a Glancearticle we review and illustrate the currentknowledge of these peculiar proteins,summarize their structural and functionalproperties, and discuss the proposed molecularmechanisms that they use to track microtubuleends.

Classification of +TIPsThe first reported +TIP was cytoplasmic linkerprotein of 170 kDa (CLIP-170, officially knownas CLIP1) (Perez et al., 1999). Since itsdiscovery, more than 20 different +TIP familieshave been identified. +TIPs are usually

3415Cell Science at a Glance

(See poster insert)

© Journal of Cell Science 2010 (123, pp. 3414–3418)

Microtubule +TIPs at a GlanceAnna Akhmanova and Michel O. Steinmetz

Abbreviations: AAA, ATPase family associated with various cellular activities; APC, adenomateous polyposis coli protein; Arm, armadillo repeat; basic-S/P, sequence regions enriched in basic, serine and proline residues; CAP-Gly, cytoskeleton-associated protein glycine-rich; CDK5RAP2, CDK5 regulatory subunit- associated protein 2; CH, calponin homology; CLASP, CLIP-associated protein; CLIP-170, cytoplasmic linker protein of 170 kDa; Dam1, DUO1- and MPS1-interacting protein 1; EB, end-binding protein; EBH, EB homology; EEY/F, C-terminal Glu-Glu-Tyr/Phe tripeptide motif; EF-hand, Ca2+-binding motif; FOP, FGFR1 oncogene partner; Gas2, growth-arrest-specific protein 2; HC, heavy chain; Lis1, lissencephaly-1 protein; LisH, Lis1 homology; MACF, microtubule-actin

crosslinking factor; MCAK, mitotic centromere-associated kinesin; MT, microtubule; Ncd, non-claret disjunctional; p140Cap, p130Cas-associated protein of 140 kDa (also known as SRCIN1, SRC kinase signaling inhibitor 1, SNIP, SNAP-25-interacting protein); RhoGEF2, Rho-type guanine nucleotide-exchange factor 2; SAM, sterile α-motif domain; SAMP, Ser-Ala-Met-Pro repeat; STIM1, stromal interaction molecule 1; SxIP, Ser-x-Ile-Pro tetrapeptide motif, where x denotes any amino acid residue; +TIP, microtubule plus-end tracking protein; TIP150, +TIP of 150 kDa; TM, transmembrane domain; TOG, named after the discovery in human chTOG; WD40, ~40 amino acid motifs, often terminating in a Trp-Asp dipeptide; XMAP215, microtubule-associated protein of 215 kDa.

+TIP classification What is a +TIP?

+TIP localization

+TIP distribution in mammalian interphase cells

Monkeykidney cellstained forendogenousEB1

Dynein

SxIP proteins

EBH-SxIP

CAP-Gly-EEY/F

CAP-Gly proteins

Proteins withunknownEB-bindingmechanisms

Microtubule

+TIPs localize to and track dynamic MT plus ends

Growing MT

Catastrophe

GDP

GTP

Rescue

Shrinking MT

Plus end

Minus end

αβ

αβ

βα

βα

In vitro, some +TIPs canbind to growing but notshrinking MT minus ends

1D lattice diffusion(MCAK, XMAP215)

Kinesin-based transport(Tea2–Tip1, Kip2–Bik1)

Recognition of specificplus-end structure (EB1)

Recognitionof composite+TIP/tubulin-bindingsites (CLIP-170, MCAK)

3D diffusionin cytoplasm(RhoGEF2, Lis1)

Co-polymerization

Lattice-maturation-induced release

2D diffusionin membrane

(STIM1)

Hitchhiking

Processiveend tracking(XMAP215, Dam1)

Fastexchange(EB1,CLIP-170) Proteins in parentheses

indicate selected examplesof +TIPs using a particularmechanism

Microtubule dynamics

Interactions with cellular structures

Polymerization(XMAP215, EB1)

Depolymerization(MCAK)

Stabilization(CLASP, APC, MACF)

Cortex(CLASP, APC, MACF, CLIP-170, EB1,dynein, dynactin, LIS1)

Rescue(CLIP-170, CLASP)

Catastrophe(MCAK)

Kinetochores(Dam1, CLASP, CLIP-170, APC, EB1,dynein, dynactin, LIS1, MCAK)

F-actin(MACF, CLASP, APC, CLIP-170, Kar9,RhoGEF2, p140Cap)

Vesicles(dynein, dynactin,CLIP-170, Melanophilin)

Endoplasmic reticulum(EB1, STIM1)

Centrosome(XMAP215, EB1, CLASP, APC,dynein, dynactin, Lis1, FOP,CDK5RAP2)

Microtubules(Ncd, Klp2)

EEY/F

EB proteins

EBEBH

Coiledcoil

Coiledcoil

EEY/F

CAP–Gly proteins

CLIP170

p150glued

CAP–GlyCoiled coil ZnF

Basic-S/P

Motor proteins

Dynein HCHelical

Coiled coil

AAA

Tea2 NcdKinesin

TOG proteins

XMAP215

CLASP

HelicalBasic-S/P

TOG-like

SxIP

Other proteins

Lis1

Kar9

WD40LisH

Helical

Basic-S/P

15/20 aarepeats

SxIP proteins

APC

MACF

MCAK

STIM1 Further examples: CLASP, p140Cap, melanophilinRhoGEF2, CDK5RAP2, TIP150, navigator

Arm

Helical Basic-S/P

SAMPPlakin Spectrin EF

GAS2

TM

SAM

EF

SxIP

SxIP

SxIP

SxIP

+TIPs that belong to several classes: CLASP (SxIP, TOG), MCAK (SxIP, motor)

Dam1Multimericcomplex of10 proteins

CH

CH

Basic-S/P

TOG

Kar9

Tea2

Ncd

XMAP215

Lis1 CLIP-170

CH

EBH

EEY/F

CH

EB

Pro

x

Ile

Ser

CLASP

Melanophilin

APC

MCAK

MACF

RhoGEF2

CDK5RAP2

STIM1

p140Cap

TIP150

Live image of a human lungfibroblast expressing an MT marker(mCherry-α-tubulin, red) and a +TIP marker (EB3-GFP, green)

Autonomous+TIP

Non-autonomous+TIPs

GTP-tubulin

Kinesin

Lipid bilayer

GDP-tubulin

+TIP that tracks onlygrowing MT plus ends(e.g. EB1, CLIP-170)

+TIP that tracks growingand shrinking MT plusends (e.g. Dam1, Kar9)

GTP-tubulin

GDP-tubulin

+TIP functions

p150glued

Tyr

Glu

Glu

+TIP interactions Microtubule plus-end tracking mechanisms

Jour

nal o

f Cel

l Sci

ence

Page 2: Microtubule +TIPs at a 123 glance · kinesins Tea2 and Kip2, the microtubule-depolymerising kinesin 13 MCAK and cytoplasmic dynein (reviewed in Wu et al., 2006). Sequences outside

3416

multidomain and/or multisubunit proteins thatrange in size from a few hundred up tothousands of residues. They can be cytoplasmicor membrane bound, and comprise motor andnon-motor proteins (for a review, seeAkhmanova and Steinmetz, 2008). +TIPs can beclassified on the basis of prominent structuralelements that enable them to interact with eachother and with microtubules; however, in somecases, +TIPs combine features characteristic ofseveral +TIP classes.

End-binding (EB) family proteins contain ahighly conserved N-terminal domain that adoptsa calponin homology (CH) fold (Korenbaumand Rivero, 2002) and is responsible formicrotubule binding (Hayashi and Ikura, 2003).In mammalian EB1 and EB3, a CH domain withthe adjacent linker sequence is sufficient forplus-end tracking (Komarova et al., 2009; Skubeet al., 2010); however dimerization is importantfor microtubule plus-end recognition by theiryeast homologue Bim1 (Zimniak et al., 2009).The C terminus of EB proteins harbors an-helical coiled-coil domain that mediatesparallel dimerization of EB monomers(Honnappa et al., 2005; Slep et al., 2005). Itfurther comprises the unique EB homology(EBH) domain and an acidic tail encompassinga C-terminal EEY/F motif, reminiscent of thoseof -tubulin and CLIP-170 (Komarova et al.,2005; Miller et al., 2006; Weisbrich et al., 2007).Notably, plant EB proteins lack the EEY/Fmotif, and some EB family members, such asEB1c in Arabidopsis thaliana, exhibit apositively charged C-terminus that isresponsible for nuclear localization (Komakiet al., 2010). Both the EBH domain and theEEY/F motif enable the EB proteins tophysically interact with an array of +TIPs torecruit them to microtubule ends.

The cytoskeleton-associated protein glycine-rich (CAP-Gly) domain is a small globularmodule that contains a unique conservedhydrophobic cavity and several characteristicglycine residues (Li et al., 2002; Saito et al.,2004). CAP-Gly domains use their hydrophobiccavity to confer interactions with microtubulesand EB proteins by specifically recognizingC-terminal EEY/F sequence motifs (Honnappaet al., 2006; Mishima et al., 2007; Weisbrich etal., 2007). Prominent examples are the CLIPproteins and the large subunit of the dynactincomplex p150glued. A single CAP-Gly domain ofCLIP-170, together with the adjacent serine-richregion, can track growing microtubule ends(Gupta et al., 2009).

The largest group of +TIPs comprises largeand complex, often multidomain, proteinscontaining low-complexity sequence regionsthat are rich in basic, serine and proline (basic-S/P) residues. They share the small four-residue

motif Ser-x-Ile-Pro (SxIP, where x denotes anyamino acid), which is specifically recognized bythe EBH domain of EB proteins (Honnappaet al., 2009). Prominent examples of this diverseclass of +TIPs are the adenomatous polyposiscoli (APC) tumour suppressor, the spectraplakinmicrotubule–actin crosslinking factor (MACF)and the mitotic centromere-associated kinesin(MCAK). Because SxIP motifs are very short,they can be easily acquired or lost duringevolution; for example, CDK5RAP2, a proteinimplicated in microcephaly, contains an EB1-binding SxIP motif in humans and dogs but notin rodents (Fong et al., 2009).

Proteins with TOG or TOG-like domains(named after their discovery in the protein ch-TOG) include members of the XMAP215/Dis1family and the CLASPs. Tandemly arrangedTOG domains mediate binding to tubulin andare probably responsible for microtubulegrowth-promoting activity of these proteins(Al-Bassam et al., 2006; Brouhard et al., 2008;Slep and Vale, 2007) (for a review, see Slep,2009a). Additional domains, such as SxIPmotifs in CLASPs, are required for targeting ofthese proteins to microtubule plus ends andother subcellular sites (Mimori-Kiyosue et al.,2005).

Both microtubule plus- and minus-end-directed motor proteins can track growingmicrotubule ends. Examples are the yeastkinesins Tea2 and Kip2, the microtubule-depolymerising kinesin 13 MCAK andcytoplasmic dynein (reviewed in Wu et al.,2006). Sequences outside the microtubule-binding motor domains, such as the SxIP motifof MCAK (Honnappa et al., 2009), might beneeded for the microtubule tip-trackingbehavior of these proteins.

Finally, there are other +TIPs that cannot begrouped in one of the five classes discussedabove. A prominent example is the Dam1complex – an assembly of ten subunits that formrings of 16-fold symmetry (Lampert et al., 2010;Wang et al., 2007) – and which is found in yeastbut not in higher organisms. Other examples arethe Saccharomyces cerevisiae protein Kar9(Liakopoulos et al., 2003; Moore and Miller,2007), and the highly conserved cytoplasmicdynein accessory factor lissencephaly-1protein (Lis1) (for a review, see Vallee and Tsai,2006).

Dynamic +TIP interaction networksOne hallmark of +TIPs is that they formdynamic interaction networks that rely on alimited number of protein modules and linearsequence motifs, such as the CH, EBH andCAP-Gly domains, and EEY/F and SxIP motifs.These elements mediate the interaction witheach other and microtubules, and typically

display affinities in the low micromolar range(Gupta et al., 2009; Mishima et al., 2007;Weisbrich et al., 2007).

EB proteins are now generally accepted torepresent core components of +TIP networksbecause they autonomously track growingmicrotubule plus ends independently of anybinding partners (Bieling et al., 2008; Bieling etal., 2007; Dixit et al., 2009; Komarova et al.,2009; Zimniak et al., 2009). Moreover, EBproteins directly associate with almost all otherknown +TIPs and, by doing so, target them togrowing microtubule plus ends (for reviews, seeAkhmanova and Steinmetz, 2008; Slep, 2009b).SxIP motifs act as a general ‘microtubule tiplocalization signal’ (MtLS) by interacting withthe EBH domain of EB proteins (Honnappaet al., 2009). Similarly, EEY/F motifs of EBproteins and -tubulin guide CAP-Gly proteinsto microtubule tips (Bieling et al., 2008; Dixitet al., 2009). Both the EBH-SxIP and theCAP-Gly-EEY/F interactions have beenanalyzed to high resolution (Hayashi et al.,2007; Honnappa et al., 2009; Honnappaet al., 2006; Mishima et al., 2007; Plevin et al.,2008; Weisbrich et al., 2007). The two distinctbinding modes were revealed through thesestructures and offer a molecular basis forunderstanding the majority of known interactionnodes in dynamic +TIP networks.

The EBH-SxIP and CAP-Gly-EEY/Finteractions can be regulated by post-translationalmodifications. Phosphorylation of Ser residues inthe vicinity of the SxIP motifs (Honnappa et al.,2009; Kumar et al., 2009; Watanabe et al., 2009)disrupts their interaction with EB proteins,whereas the removal of the C-terminal Tyr of -tubulin has a negative effect on the accumulationof CAP-Gly proteins at microtubule tips (Bielinget al., 2008; Peris et al., 2006).

+TIP tracking mechanismsBecause +TIPs form complex interactionnetworks, in-vitro reconstitution studies usingpurified components are required to determinewhether plus-end tracking behavior is anautonomous property of a particular protein.Using this approach, it was shown that some+TIPs can associate with growing microtubuleends in the absence of any additional factors.Autonomous processive microtubule tiptracking, whereby the protein stays bound to themicrotubule end during multiple rounds ofsubunit addition, has been described forXMAP215 (Brouhard et al., 2008). Anotherexample is the yeast Dam1 complex, whichcontinuously tracks both growing and shrinkingmicrotubule ends, possibly by using a form of adiffusion-based mechanism (Lampert et al.,2010). Finally, various EB family membersfrom different species bind to growing but not

Journal of Cell Science 123 (20)

Jour

nal o

f Cel

l Sci

ence

Page 3: Microtubule +TIPs at a 123 glance · kinesins Tea2 and Kip2, the microtubule-depolymerising kinesin 13 MCAK and cytoplasmic dynein (reviewed in Wu et al., 2006). Sequences outside

3417

shortening plus- and minus ends in vitro(Bieling et al., 2008; Bieling et al., 2007; Dixit etal., 2009; Komarova et al., 2009; Zimniak et al.,2009). Unlike XMAP215, EB proteinsexchange rapidly at the microtubule end,undergoing several cycles of binding andunbinding events before the growingmicrotubule end converts into the maturelattice (Bieling et al., 2007; Dragestein et al.,2008).

It is currently unknown which structuralfeatures of the growing microtubule end arerecognized by autonomously tracking +TIPs;however, these might include the GTP cap at theend of the freshly polymerized microtubule(Lampert et al., 2010; Zanic et al., 2009) orsome specific protofilament arrangement (desGeorges et al., 2008; Sandblad et al., 2006) (for areview, see Coquelle et al., 2009). Anotherattractive idea is that autonomously tracking+TIPs co-polymerize with tubulin subunits andthen get released gradually from the maturelattice (Folker et al., 2005); this mechanism hasnot found support in the in-vitro reconstitutionstudies using EB and CLIP homologs of fissionyeast and vertebrates (Bieling et al., 2007;Bieling et al., 2008; Dixit et al., 2009), but mightstill apply to some other proteins.

Most +TIPs track the ends of growingmicrotubules in a non-autonomous manner.STIM1 and CDK5RAP2, for example, hitchhikeon microtubule tip-bound EB proteins (Fong etal., 2009; Grigoriev et al., 2008; Honnappa et al.,2009). Others, such as CLIP-170, recognizemore complex binding sites that encompassdomains of both EB proteins and tubulin (Bielinget al., 2008; Gupta et al., 2010). Because EBproteins rapidly exchange at microtubule tips,accumulation of their partners at microtubuleends is also dynamic, and mostly depends onthree-dimensional protein diffusion in thecytosol. However, one-dimensional diffusionalong the microtubule lattice might also occur, asis the case for MCAK (Helenius et al., 2006). Inthe case of STIM1, a transmembrane +TIP, two-dimensional diffusion in the membrane isrequired to enable accumulation at microtubuletips (Grigoriev et al., 2008).

For EB proteins and their partners thatdecorate the freshly polymerized microtubuletip, the specificity for microtubule plus ends – asopposed to minus ends – is explained by the factthat, in vivo, minus ends never grow in cells. Bycontrast, the exclusive accumulation atmicrotubule plus ends both in vitro and in vivo isobserved in systems in which plus-end-directedkinesins are involved. Among the best-studiedexamples are the yeast CLIP-170 orthologsBik1 and Tip1, which are concentrated atmicrotubule tips by the kinesins Kip2 and Tea2,respectively (Bieling et al., 2007; Busch et al.,

2004; Carvalho et al., 2004; Miller et al., 2006).It should be noted that kinesins, either alone ortogether with their binding partners, will trackmicrotubule ends only if they do not dissociateimmediately from microtubule ends but areretained on them, either because of interactionswith other +TIPs or through their intrinsicautonomous tip-tracking properties (Varga et al.,2009).

+TIP functionsLocalization at microtubule ends makes +TIPsideally suited to control different aspects ofmicrotubule dynamics; for example, bypromoting growth through catalyzing theaddition of tubulin to microtubule ends(XMAP215) (Brouhard et al., 2008), inducingcatastrophes (MCAK) (Kline-Smith andWalczak, 2002) or rescues (CLIP-170)(Komarova et al., 2002), or by stabilizingmicrotubules at the cell cortex (CLASPs, APC,MACF) (Kodama et al., 2003; Mimori-Kiyosueet al., 2005; Wen et al., 2004) (for reviews, seeHeald and Nogales, 2002; van der Vaart et al.,2009). For some +TIPs, the exact effect onmicrotubule dynamics varies depending on theassay conditions. EB proteins usually promotemicrotubule dynamics and growth, and suppresscatastrophes in cells (Busch and Brunner, 2004;Komarova et al., 2009; Tirnauer et al., 2002).However, the results of in-vitro experimentswith different EB family members have beencontroversial, because changes in growth andshrinkage rates, induction and suppression ofcatastrophes, or a complete lack of influence onsome or all microtubule dynamics parametershave been reported (Bieling et al., 2008; Bielinget al., 2007; Dixit et al., 2009; Katsuki et al.,2009; Komarova et al., 2009; Manna et al.,2007; Vitre et al., 2008). Taken together, thesestudies suggest that the regulation ofmicrotubule dynamics is an important +TIPfunction, but the underlying molecularmechanisms are still poorly understood.

In addition to regulating microtubuledynamics, +TIPs form links betweenmicrotubule ends and other cellular structures.For example, they can attach microtubule tips tothe cell cortex by binding to plasma-membrane-associated proteins – such as the CLASP–LL5complex (Lansbergen et al., 2006) – or byinteracting with actin fibers to which some+TIPs, such as spectraplakins, can bind directly(Applewhite et al., 2010; Kodama et al., 2003),whereas others (e.g. CLIP-170) might requireintermediary factors (Fukata et al., 2002). +TIPsalso participate in microtubule-actin crosstalk.The Tea1–Tea4 complex, for example, controlsactin organization through formins in buddingyeast (Martin et al., 2005), whereas CLIP-170 –which also acts in concert with a formin –

controls actin polymerization, a processessential for phagocytosis in mammalian cells(Lewkowicz et al., 2008). The EB1 partnerRhoGEF2 regulates contractility of epithelialcells in flies (Rogers et al., 2004), and p140Capacting together with EB3 affects F-actinorganization in dendritic spines of neurons(Jaworski et al., 2009). Furthermore, +TIPcomplexes are used for myosin-based transportof microtubule ends, e.g. Kar9-Myo2 in buddingyeast (Liakopoulos et al., 2003).

+TIPs also have an important role incoordinating microtubule attachment anddynamics at mitotic kinetochores – e.g. Dam1,CLIP-170, CLASPs, dynein (for a review, seeMaiato et al., 2004) – and participate in theextension of endoplasmic reticulum tubulestogether with growing microtubule ends(STIM1) (Grigoriev et al., 2008). +TIPs alsocontribute to loading cargo for minus-end-directed microtubule transport (dynactin, CLIP-170) (Lomakin et al., 2009; Vaughan et al.,2002) and in transporting microtubule endsalong other microtubules to promoteorganization of specialized microtubule arrays,such as mitotic spindles (Goshima et al., 2005)and bipolar microtubule bundles in fission yeast(Janson et al., 2007).

Finally, many +TIPs accumulate atcentrosomes and other microtubule organizingcenters where they might participate inmicrotubule nucleation and anchoring (for areview, see Bettencourt-Dias and Glover, 2007).The exact role +TIPs have at the centrosomesawaits to be explored.

PerspectivesGrowing microtubule ends have emerged asremarkably complex cellular sites wheremicrotubule dynamics can be coordinated withactin polymerization, cargo movement andremodeling of cell membranes. These processesare tightly regulated by a diverse set of proteinsthat form a dynamic and flexible interactionnetwork. In most cases, the exact role of themicrotubule plus-end tracking behavior for+TIP function has not been established and stillneeds to be examined. Remarkably, some of thekey microtubule tip-targeting motifs are veryshort and simple, and can be acquired easilyduring evolution. We thus expect that the list of+TIPs is incomplete and that many more proteinfamilies showing this peculiar localizationbehavior will be discovered in the near future.

A.A. is supported by the Netherlands Organization forScientific Research grants ALW-VICI and ZonMW-TOP. M.O.S. is supported by grants from the SwissNational Science Foundation.

Supplementary material available online athttp://jcs.biologists.org/cgi/content/full/123/20/3415/DC1

Journal of Cell Science 123 (20)

Jour

nal o

f Cel

l Sci

ence

Page 4: Microtubule +TIPs at a 123 glance · kinesins Tea2 and Kip2, the microtubule-depolymerising kinesin 13 MCAK and cytoplasmic dynein (reviewed in Wu et al., 2006). Sequences outside

3418

ReferencesAkhmanova, A. and Steinmetz, M. O. (2008). Trackingthe ends: a dynamic protein network controls the fate ofmicrotubule tips. Nat. Rev. Mol. Cell Biol. 9, 309-322.Al-Bassam, J., van Breugel, M., Harrison, S. C. andHyman, A. (2006). Stu2p binds tubulin and undergoes anopen-to-closed conformational change. J. Cell Biol. 172,1009-1022.Applewhite, D. A., Grode, K. D., Keller, D., Zadeh, A.,Slep, K. C. and Rogers, S. L. (2010). The spectraplakinshort stop is an actin-microtubule crosslinker thatcontributes to organization of the microtubule network. Mol.Biol. Cell 21, 1714-1724.Bettencourt-Dias, M. and Glover, D. M. (2007).Centrosome biogenesis and function: centrosomics bringsnew understanding. Nat. Rev. Mol. Cell Biol. 8, 451-463.Bieling, P., Laan, L., Schek, H., Munteanu, E. L.,Sandblad, L., Dogterom, M., Brunner, D. and Surrey, T.(2007). Reconstitution of a microtubule plus-end trackingsystem in vitro. Nature 450, 1100-1105.Bieling, P., Kandels-Lewis, S., Telley, I. A., van Dijk, J.,Janke, C. and Surrey, T. (2008). CLIP-170 tracks growingmicrotubule ends by dynamically recognizing compositeEB1/tubulin-binding sites. J. Cell Biol. 183, 1223-1233.Brouhard, G. J., Stear, J. H., Noetzel, T. L., Al-Bassam,J., Kinoshita, K., Harrison, S. C., Howard, J. andHyman, A. A. (2008). XMAP215 is a processivemicrotubule polymerase. Cell 132, 79-88.Busch, K. E. and Brunner, D. (2004). The microtubuleplus end-tracking proteins mal3p and tip1p cooperate forcell-end targeting of interphase microtubules. Curr. Biol. 14,548-559.Busch, K. E., Hayles, J., Nurse, P. and Brunner, D.(2004). Tea2p kinesin is involved in spatial microtubuleorganization by transporting tip1p on microtubules. Dev.Cell 6, 831-843.Carvalho, P., Gupta, M. L., Jr, Hoyt, M. A. and Pellman,D. (2004). Cell cycle control of kinesin-mediated transportof Bik1 (CLIP-170) regulates microtubule stability anddynein activation. Dev. Cell 6, 815-829.Coquelle, F. M., Vitre, B. and Arnal, I. (2009). Structuralbasis of EB1 effects on microtubule dynamics. Biochem.Soc. Trans. 37, 997-1001.des Georges, A., Katsuki, M., Drummond, D. R., Osei,M., Cross, R. A. and Amos, L. A. (2008). Mal3, theSchizosaccharomyces pombe homolog of EB1, changes themicrotubule lattice. Nat. Struct. Mol. Biol. 15, 1102-1108.Dixit, R., Barnett, B., Lazarus, J. E., Tokito, M.,Goldman, Y. E. and Holzbaur, E. L. (2009). Microtubuleplus-end tracking by CLIP-170 requires EB1. Proc. Natl.Acad. Sci. USA 106, 492-497.Dragestein, K. A., van Cappellen, W. A., van Haren, J.,Tsibidis, G. D., Akhmanova, A., Knoch, T. A., Grosveld,F. and Galjart, N. (2008). Dynamic behavior of GFP-CLIP-170 reveals fast protein turnover on microtubule plusends. J. Cell Biol. 180, 729-737.Folker, E. S., Baker, B. M. and Goodson, H. V. (2005).Interactions between CLIP-170, tubulin, and microtubules:implications for the mechanism of Clip-170 plus-endtracking behavior. Mol. Biol. Cell 16, 5373-5384.Fong, K. W., Hau, S. Y., Kho, Y. S., Jia, Y., He, L. andQi, R. Z. (2009). Interaction of CDK5RAP2 with EB1 totrack growing microtubule tips and to regulate microtubuledynamics. Mol. Biol. Cell. 20, 3660-3670.Fukata, M., Watanabe, T., Noritake, J., Nakagawa, M.,Yamaga, M., Kuroda, S., Matsuura, Y., Iwamatsu, A.,Perez, F. and Kaibuchi, K. (2002). Rac1 and Cdc42capture microtubules through IQGAP1 and CLIP-170. Cell109, 873-885.Goshima, G., Nedelec, F. and Vale, R. D. (2005).Mechanisms for focusing mitotic spindle poles by minusend-directed motor proteins. J. Cell Biol. 171, 229-240.Grigoriev, I., Gouveia, S. M., van der Vaart, B.,Demmers, J., Smyth, J. T., Honnappa, S., Splinter, D.,Steinmetz, M. O., Putney, J. W., Jr, Hoogenraad, C. C.et al. (2008). STIM1 is a MT-plus-end-tracking proteininvolved in remodeling of the ER. Curr. Biol. 18, 177-182.Gupta, K. K., Paulson, B. A., Folker, E. S., Charlebois,B., Hunt, A. J. and Goodson, H. V. (2009). Minimal plus-end tracking unit of the cytoplasmic linker protein CLIP-170. J. Biol. Chem. 284, 6735-6742.Gupta, K. K., Joyce, M. V., Slabbekoorn, A. R., Zhu, Z.C., Paulson, B. A., Boggess, B. and Goodson, H. V.

(2010). Probing interactions between CLIP-170, EB1, andmicrotubules. J. Mol. Biol. 395, 1049-1062.Hayashi, I. and Ikura, M. (2003). Crystal structure of theamino-terminal microtubule-binding domain of end-bindingprotein 1 (EB1). J. Biol. Chem. 278, 36430-36434.Hayashi, I., Plevin, M. J. and Ikura, M. (2007). CLIP-170autoinhibition mimics intermolecular interactions withp150Glued or EB1. Nat. Struct. Mol. Biol. 10, 980-981.Heald, R. and Nogales, E. (2002). Microtubule dynamics.J. Cell Sci. 115, 3-4.Helenius, J., Brouhard, G., Kalaidzidis, Y., Diez, S. andHoward, J. (2006). The depolymerizing kinesin MCAKuses lattice diffusion to rapidly target microtubule ends.Nature 441, 115-119.Honnappa, S., John, C. M., Kostrewa, D., Winkler, F. K.and Steinmetz, M. O. (2005). Structural insights into theEB1-APC interaction. EMBO J. 24, 261-269.Honnappa, S., Okhrimenko, O., Jaussi, R., Jawhari, H.,Jelesarov, I., Winkler, F. K. and Steinmetz, M. O. (2006).Key interaction modes of dynamic +TIP networks. Mol. Cell23, 663-671.Honnappa, S., Gouveia, S. M., Weisbrich, A.,Damberger, F. F., Bhavesh, N. S., Jawhari, H., Grigoriev,I., van Rijssel, F. J., Buey, R. M., Lawera, A. et al. (2009).An EB1-binding motif acts as a microtubule tip localizationsignal. Cell 138, 366-376.Janson, M. E., Loughlin, R., Loiodice, I., Fu, C.,Brunner, D., Nedelec, F. J. and Tran, P. T. (2007).Crosslinkers and motors organize dynamic microtubules toform stable bipolar arrays in fission yeast. Cell 128, 357-368.Jaworski, J., Kapitein, L. C., Gouveia, S. M., Dortland,B. R., Wulf, P. S., Grigoriev, I., Camera, P., Spangler, S.A., Di Stefano, P., Demmers, J. et al. (2009). Dynamicmicrotubules regulate dendritic spine morphology andsynaptic plasticity. Neuron 61, 85-100.Katsuki, M., Drummond, D. R., Osei, M. and Cross, R.A. (2009). Mal3 masks catastrophe events inSchizosaccharomyces pombe microtubules by inhibitingshrinkage and promoting rescue. J. Biol. Chem. 284, 29246-29250.Kline-Smith, S. L. and Walczak, C. E. (2002). Themicrotubule-destabilizing kinesin XKCM1 regulatesmicrotubule dynamic instability in cells. Mol. Biol. Cell 13,2718-2731.Kodama, A., Karakesisoglou, I., Wong, E., Vaezi, A. andFuchs, E. (2003). ACF7: an essential integrator ofmicrotubule dynamics. Cell 115, 343-354.Komaki, S., Abe, T., Coutuer, S., Inze, D., Russinova, E.and Hashimoto, T. (2010). Nuclear-localized subtype ofend-binding 1 protein regulates spindle organization inArabidopsis. J. Cell Sci. 123, 451-459.Komarova, Y. A., Akhmanova, A. S., Kojima, S.,Galjart, N. and Borisy, G. G. (2002). Cytoplasmic linkerproteins promote microtubule rescue in vivo. J. Cell Biol.159, 589-599.Komarova, Y., Lansbergen, G., Galjart, N., Grosveld, F.,Borisy, G. G. and Akhmanova, A. (2005). EB1 and EB3control CLIP dissociation from the ends of growingmicrotubules. Mol. Biol. Cell 16, 5334-5345.Komarova, Y., De Groot, C. O., Grigoriev, I., Gouveia,S. M., Munteanu, E. L., Schober, J. M., Honnappa, S.,Buey, R. M., Hoogenraad, C. C., Dogterom, M. et al.(2009). Mammalian end binding proteins control persistentmicrotubule growth. J. Cell Biol. 184, 691-706.Korenbaum, E. and Rivero, F. (2002). Calponin homologydomains at a glance. J. Cell Sci. 115, 3543-3545.Kumar, P., Lyle, K. S., Gierke, S., Matov, A., Danuser,G. and Wittmann, T. (2009). GSK3beta phosphorylationmodulates CLASP-microtubule association and lamellamicrotubule attachment. J. Cell Biol. 184, 895-908.Lampert, F., Hornung, P. and Westermann, S. (2010).The Dam1 complex confers microtubule plus end-rackingactivity to the Ndc80 kinetochore complex. J. Cell Biol. 189,641-649.Lansbergen, G., Grigoriev, I., Mimori-Kiyosue, Y.,Ohtsuka, T., Higa, S., Kitajima, I., Demmers, J., Galjart,N., Houtsmuller, A. B., Grosveld, F. et al. (2006). CLASPsattach microtubule plus ends to the cell cortex through acomplex with LL5beta. Dev. Cell 11, 21-32.Lewkowicz, E., Herit, F., Le Clainche, C., Bourdoncle,P., Perez, F. and Niedergang, F. (2008). The microtubule-binding protein CLIP-170 coordinates mDia1 and actin

reorganization during CR3-mediated phagocytosis. J. CellBiol. 183, 1287-1298.Li, S., Finley, J., Liu, Z. J., Qiu, S. H., Chen, H., Luan,C. H., Carson, M., Tsao, J., Johnson, D., Lin, G. et al.(2002). Crystal structure of the cytoskeleton-associatedprotein glycine-rich (CAP-Gly) domain. J. Biol. Chem. 277,48596-48601.Liakopoulos, D., Kusch, J., Grava, S., Vogel, J. andBarral, Y. (2003). Asymmetric loading of Kar9 ontospindle poles and microtubules ensures proper spindlealignment. Cell 112, 561-574.Lomakin, A. J., Semenova, I., Zaliapin, I., Kraikivski, P.,Nadezhdina, E., Slepchenko, B. M., Akhmanova, A. andRodionov, V. (2009). CLIP-170-dependent capture ofmembrane organelles by microtubules initiates minus-enddirected transport. Dev. Cell 17, 323-333.Maiato, H., Sampaio, P. and Sunkel, C. E. (2004).Microtubule-associated proteins and their essential rolesduring mitosis. Int. Rev. Cytol. 241, 53-153.Manna, T., Honnappa, S., Steinmetz, M. O. and Wilson,L. (2007). Suppression of microtubule dynamic instabilityby the +TIP protein EB1 and its modulation by the CAP-Gly domain of p150(Glued). Biochemistry 284, 15640-15649.Martin, S. G., McDonald, W. H., Yates, J. R., 3rd andChang, F. (2005). Tea4p links microtubule plus ends withthe formin for3p in the establishment of cell polarity. Dev.Cell 8, 479-491.Miller, R. K., D’Silva, S., Moore, J. K. and Goodson, H.V. (2006). The CLIP-170 orthologue Bik1p and positioningthe mitotic spindle in yeast. Curr. Top. Dev. Biol. 76, 49-87.Mimori-Kiyosue, Y., Shiina, N. and Tsukita, S. (2000).The dynamic behavior of the APC-binding protein EB1 onthe distal ends of microtubules. Curr. Biol. 10, 865-868.Mimori-Kiyosue, Y., Grigoriev, I., Lansbergen, G.,Sasaki, H., Matsui, C., Severin, F., Galjart, N., Grosveld,F., Vorobjev, I., Tsukita, S. et al. (2005). CLASP1 andCLASP2 bind to EB1 and regulate microtubule plus-enddynamics at the cell cortex. J. Cell Biol. 168, 141-153.Mishima, M., Maesaki, R., Kasa, M., Watanabe, T.,Fukata, M., Kaibuchi, K. and Hakoshima, T. (2007).Structural basis for tubulin recognition by cytoplasmiclinker protein 170 and its autoinhibition. Proc. Natl. Acad.Sci. USA 104, 10346-10351.Moore, J. K. and Miller, R. K. (2007). The cyclin-dependent kinase Cdc28p regulates multiple aspects ofKar9p function in yeast. Mol. Biol. Cell 18, 1187-1202.Nogales, E. and Wang, H. W. (2006). Structuralmechanisms underlying nucleotide-dependent self-assembly of tubulin and its relatives. Curr. Opin. Struct.Biol. 16, 221-229.Perez, F., Diamantopoulos, G. S., Stalder, R. and Kreis,T. E. (1999). CLIP-170 highlights growing microtubuleends in vivo. Cell 96, 517-527.Peris, L., Thery, M., Faure, J., Saoudi, Y., Lafanechere,L., Chilton, J. K., Gordon-Weeks, P., Galjart, N.,Bornens, M., Wordeman, L. et al. (2006). Tubulintyrosination is a major factor affecting the recruitment ofCAP-Gly proteins at microtubule plus ends. J. Cell Biol.174, 839-849.Plevin, M. J., Hayashi, I. and Ikura, M. (2008).Characterization of a conserved “threonine clasp” in CAP-Gly domains: role of a functionally critical OH/piinteraction in protein recognition. J. Am. Chem. Soc. 130,14918-14919.Rogers, S. L., Wiedemann, U., Hacker, U., Turck, C. andVale, R. D. (2004). Drosophila RhoGEF2 associates withmicrotubule plus ends in an EB1-dependent manner. Curr.Biol. 14, 1827-1833.Saito, K., Kigawa, T., Koshiba, S., Sato, K., Matsuo, Y.,Sakamoto, A., Takagi, T., Shirouzu, M., Yabuki, T.,Nunokawa, E. et al. (2004). The CAP-Gly domain ofCYLD associates with the proline-rich sequence inNEMO/IKKgamma. Structure 12, 1719-1728.Sandblad, L., Busch, K. E., Tittmann, P., Gross, H.,Brunner, D. and Hoenger, A. (2006). TheSchizosaccharomyces pombe EB1 homolog Mal3p bindsand stabilizes the microtubule lattice seam. Cell 127, 1415-1424.Schuyler, S. C. and Pellman, D. (2001). Microtubule“plus-end-tracking proteins”: the end is just the beginning.Cell 105, 421-424.

Journal of Cell Science 123 (20)

Jour

nal o

f Cel

l Sci

ence

Page 5: Microtubule +TIPs at a 123 glance · kinesins Tea2 and Kip2, the microtubule-depolymerising kinesin 13 MCAK and cytoplasmic dynein (reviewed in Wu et al., 2006). Sequences outside

3419

Skube, S. B., Chaverri, J. M. and Goodson, H. V. (2010).Effect of GFP tags on the localization of EB1 and EB1fragments in vivo. Cytoskeleton 67, 1-12.Slep, K. C. (2009a). The role of TOG domains in microtubuleplus end dynamics. Biochem. Soc. Trans. 37, 1002-1006.Slep, K. C. (2009b). Structural and mechanistic insightsinto microtubule end-binding proteins. Curr. Opin. CellBiol. 22, 88-95.Slep, K. C. and Vale, R. D. (2007). Structural basis ofmicrotubule plus end tracking by XMAP215, CLIP-170,and EB1. Mol. Cell 27, 976-991.Slep, K. C., Rogers, S. L., Elliott, S. L., Ohkura, H.,Kolodziej, P. A. and Vale, R. D. (2005). Structuraldeterminants for EB1-mediated recruitment of APC andspectraplakins to the microtubule plus end. J. Cell Biol. 168,587-598.Tirnauer, J. S., Grego, S., Salmon, E. D. and Mitchison,T. J. (2002). EB1-microtubule interactions in Xenopus eggextracts: role of EB1 in microtubule stabilization andmechanisms of targeting to microtubules. Mol. Biol. Cell 13,3614-3626.Vallee, R. B. and Tsai, J. W. (2006). The cellular roles ofthe lissencephaly gene LIS1, and what they tell us aboutbrain development. Genes Dev. 20, 1384-1393.van der Vaart, B., Akhmanova, A. and Straube, A.(2009). Regulation of microtubule dynamic instability.Biochem. Soc. Trans. 37, 1007-1013.

Varga, V., Leduc, C., Bormuth, V., Diez, S. and Howard,J. (2009). Kinesin-8 motors act cooperatively to mediatelength-dependent microtubule depolymerization. Cell 138,1174-1183.Vaughan, P. S., Miura, P., Henderson, M., Byrne, B. andVaughan, K. T. (2002). A role for regulated binding ofp150(Glued) to microtubule plus ends in organelle transport.J. Cell Biol. 158, 305-319.Vitre, B., Coquelle, F. M., Heichette, C., Garnier, C.,Chretien, D. and Arnal, I. (2008). EB1 regulatesmicrotubule dynamics and tubulin sheet closure in vitro.Nat. Cell Biol. 10, 415-421.Wang, H. W., Ramey, V. H., Westermann, S., Leschziner,A. E., Welburn, J. P., Nakajima, Y., Drubin, D. G.,Barnes, G. and Nogales, E. (2007). Architecture of theDam1 kinetochore ring complex and implications formicrotubule-driven assembly and force-couplingmechanisms. Nat. Struct. Mol. Biol. 14, 721-726.Watanabe, T., Noritake, J., Kakeno, M., Matsui, T.,Harada, T., Wang, S., Itoh, N., Sato, K., Matsuzawa, K.,Iwamatsu, A. et al. (2009). Phosphorylation of CLASP2 byGSK-3beta regulates its interaction with IQGAP1, EB1 andmicrotubules. J. Cell Sci. 122, 2969-2979.Weisbrich, A., Honnappa, S., Jaussi, R., Okhrimenko,O., Frey, D., Jelesarov, I., Akhmanova, A. and Steinmetz,M. O. (2007). Structure-function relationship of CAP-Glydomains. Nat. Struct. Mol. Biol. 14, 959-967.

Wen, Y., Eng, C. H., Schmoranzer, J., Cabrera-Poch, N.,Morris, E. J., Chen, M., Wallar, B. J., Alberts, A. S. andGundersen, G. G. (2004). EB1 and APC bind to mDia tostabilize microtubules downstream of Rho and promote cellmigration. Nat. Cell Biol. 6, 820-830.Wu, X., Xiang, X. and Hammer, J. A., 3rd (2006). Motorproteins at the microtubule plus-end. Trends Cell. Biol. 16,135-143.Zanic, M., Stear, J. H., Hyman, A. A. and Howard, J.(2009). EB1 recognizes the nucleotide state of tubulin in themicrotubule lattice. PLoS ONE 4, e7585.Zimniak, T., Stengl, K., Mechtler, K. and Westermann,S. (2009). Phosphoregulation of the budding yeast EB1homologue Bim1p by Aurora/Ipl1p. J. Cell Biol. 186, 379-391.

Journal of Cell Science 123 (20)

Cell Science at a Glance on the WebElectronic copies of the poster insert areavailable in the online version of this articleat jcs.biologists.org. The JPEG images canbe downloaded for printing or used asslides.

Jour

nal o

f Cel

l Sci

ence