midterm review: mimetic isogemetric fem - tu...

29
1 Mimetic Isogemetric FEM M.Sc. Thesis project by Stevie-Ray Janssen Midterm review:

Upload: ngodang

Post on 08-Mar-2018

224 views

Category:

Documents


3 download

TRANSCRIPT

1

Mimetic

Isogemetric FEM

M.Sc. Thesis project

by Stevie-Ray Janssen

Midterm review:

2

Objective:

Combine ideas from isogeometric analysis and

mimetic methods to develop a structure-preserving

discretization for the Euler equations for

incompressible fluids.

3

Project outline

β€’ Planning:

4

Project outline (cnt’d)

β€’ Phase I questions:

– How can we use IGA to solve PDE’s?

– What structures are facilitated in elliptic PDE’s?

– How can we preserve these structures?

– Can we construct a MIMIGA method to discretize an

elliptic PDE problem?

5

This presentation - literature review

β€’ Introduction

– Isogeometric Analysis & Mimetic Methods

β€’ Approach for elliptic PDE’s

– Exterior calculus

– DeRham complex

– Application: Scalar Poisson equation in 2D

β€’ Conclusion

β€’ Future work

6

Introduction – Isogeometric Analysis

β€’ Introduced by the Hughes group in 2005 to

bridge the gap between CAD and FEM

β€’ Isogeometric paradigm

β€’ B-splines make an excellent basis for FEM

7

Introduction – Mimetic Methods

β€’ PDE’s facilitate physical structures and

symmetries.

β€’ Tools from exterior calculus and algebraic

topology are used to capture these structures.

β€’ Growing awareness: Disrete exterior calculus,

discrete hodge theory, exterior finite element

method, compatible methods, mimetic finite

diference, etc

8

Why exterior calculus?

β€’ Structures become apparent.

β€’ Distinction between topological and metric

dependencies.

β€’ Generalized for 𝑛 dimensions.

9

Differential Forms; 𝛼(π‘˜)

β€’ Differential forms are elements from the dual

vector space,

β€’ Associated with geometric structure,

– 0-form: 𝑓(0) = 𝑓 π‘₯, 𝑦

– 1-form: 𝛼(1) = 𝛼1 π‘₯, 𝑦 𝑑π‘₯ + 𝛼2 π‘₯, 𝑦 𝑑𝑦

β€’ β€œMeasurement of physical variables,”

– 𝑀 = 𝜌(2) = 𝜌 π‘₯, 𝑦 𝑑π‘₯˄𝑑𝑦

β€’ Space of k-forms: Ξ›(π‘˜)

10

Exterior derivative; d

β€’ Exterior derivative d generalizes 𝛻𝑓, 𝛻 Γ— πœ”, 𝛻 βˆ™ 𝑣

𝑑𝛼(1) =πœ•π›Ό2πœ•π‘₯

βˆ’πœ•π›Ό1πœ•π‘¦

𝑑π‘₯˄𝑑𝑦

β€’ 𝑑: Ξ›(π‘˜) β†’ Ξ›(π‘˜+1)

β€’ Exact sequence, the DeRham complex

β€’ Nilpotent, 𝑑𝑑𝛼(π‘˜) = 0

β€’ Independent of metric

11

Hodge-⋆ operator;

β€’ Maps forms to dual geometry,

β€’ Metric dependent,

β€’ Double DeRham complex,

12

Codifferential; π‘‘βˆ—

β€’ π‘‘βˆ— ≔⋆ 𝑑 ⋆

β€’ Adjoint of 𝑑: βˆ™, π‘‘βˆ— βˆ™ = 𝑑 βˆ™,βˆ™ - ∫ bc’s

β€’ Laplace operator: βˆ†= π‘‘π‘‘βˆ— + π‘‘βˆ—π‘‘

π‘‘βˆ—π‘‘βˆ—

13

Scalar Poisson equation

β€’ E.g. Potential flow, electrostatics,

β€’ Given 𝑓 π‘₯, 𝑦 = 2πœ‹2 sin πœ‹π‘₯ sin πœ‹π‘¦find πœ‘ π‘₯, 𝑦 such that βˆ†πœ‘ = 𝑓 on Ξ© = [0,1]2

with πœ‘ = 0 on πœ•Ξ©

0-form,

Find πœ‘(0) s.t. π‘‘βˆ—π‘‘πœ‘(0) = 𝑓(0)

2-form,

Find 𝜎(2) s.t. π‘‘π‘‘βˆ—πœŽ(2) = 𝑓(2)

Same solution, different discretization

14

0-form Poisson; π‘‘βˆ—π‘‘πœ‘(0) = 𝑓(0)

β€’ Weak formulation,𝑀(0), π‘‘βˆ—π‘‘πœ‘(0)

Ξ©= 𝑀(0), 𝑓(0)

Ξ©

𝑑𝑀(0), π‘‘πœ‘(0)Ξ©= 𝑀(0), 𝑓(0)

Ξ©βˆ’

πœ•Ξ©

𝑀 0 βˆ§β‹†π‘‘πœ‘ 0

β€’ Well-posedness through Lax-Milgram,

15

0-form Poisson; FEM

β€’ Conforming FEM, take Ξ› β„Žπ‘˜βŠ‚ Ξ›(π‘˜)

β€’ Use B-spline spans Ξ› β„Ž0= 𝑆𝑝,𝑝

n=10, p =3

16

0-form Poisson; edge functions

β€’ Applying the exterior derivative (1D-example)

– Nodal basis: πœ‘β„Ž(0)

= 𝑖=0𝑛 πœ‘π‘–β„Žπ‘–

𝑝(π‘₯) = πœ‘

𝑇𝑅0

– Then, π‘‘πœ‘β„Ž(0)

= 𝑖=1𝑛 πœ‘π‘– βˆ’ πœ‘π‘–βˆ’1 𝑒𝑖

π‘βˆ’1(π‘₯) = 𝔼(10)πœ‘

𝑇𝑅1

Differences of coefficientsare captured in matrix using -1,0,1

New edge type basis functionemerges with a polynomialdegree less

17

0-form Poisson; edge functions (cnt’d)

n-1=9, p-1 =2

β€’ Extension to 2D using tensor products of nodal and edge

type basis

β€’ Nodal/edge

– 0-form

– 1-form

– 2-form

18

0-form Poisson, Matrices

β€’ π‘‘π‘€β„Ž(0), π‘‘πœ‘β„Ž

(0)

Ξ©= 𝑀𝑇 𝔼10 𝑇 Ξ© 𝑅(1)

𝑇𝑅(1) 𝔼10 πœ‘

β€’ Result: 𝔼(10)𝑇𝕄(11)𝔼(10)πœ‘ = 𝑓

Mass matrix 𝕄(11)

19

0-form Poisson, Matrices (cnt’d)

β€’ Exact discretization of 𝑣(1) = π‘‘πœ‘(0) through

incidence matrices, 𝑣 = 𝔼(10)πœ‘

β€’ Incidence matrices are nilpotent 𝔼(21)𝔼(10) = βˆ…,

and satisfy the DeRham sequence

β€’ Hodge-⋆ operator (metric) is discretized through

mass matrix 𝕄(11)

20

0-form Poisson, Results

21

0-form Poisson, Results (cnt’d)

P Slope

1 1.9998

2 3.0444

3 4.0945

4 5.1311

5 6.1736

22

2-form Poisson; π‘‘π‘‘βˆ—πœŽ(2) = 𝑓(2)

β€’ Weak formulation;

𝑀(2), π‘‘π‘‘βˆ—πœŽ(2)Ξ©= 𝑀(2), 𝑓(2)

Ξ©

β€’ Integration by parts? No, take mixed formulation:

π‘‘βˆ—πœŽ(2) = ψ(1)

π‘‘Οˆ(1) = 𝑓(2)

β€’ Weak form:

π‘‘π‘ž(1), 𝜎(2)Ξ©= π‘ž(1), ψ(1)

Ξ©βˆ’

πœ•Ξ©

π‘ž 1 βˆ§β‹†πœŽ 2

𝑀(2), π‘‘Οˆ(1)Ξ©= 𝑀(2), 𝑓(2)

Ξ©

β€’ Well posedness through Inf-Sup conditions

23

2-form Poisson; FEM

β€’ Can we take,

– Ξ› β„Ž1= 𝑆𝑝,𝑝?

– Ξ› β„Ž2= 𝑆𝑝,𝑝?

β€’ No, well-posedness depends on the DeRhamsequence. We take

– Ξ› β„Ž1= π‘†π‘βˆ’1,𝑝 Γ— 𝑆𝑝,π‘βˆ’1

– Ξ› β„Ž2= π‘†π‘βˆ’1,π‘βˆ’1

β€’ Which satisfy exact sequence

d

24

2-form Poisson; Matrices

βˆ’ π‘ž 1 , ψ 1

Ξ©+ π‘‘π‘ž(1), 𝜎(2)

Ξ©= 0

𝑀(2), π‘‘Οˆ(1)Ξ©= 𝑀(2), 𝑓(2)

Ξ©

βˆ’π•„(11) 𝕄(22)𝔼(21)𝑇

𝕄(22)𝔼(21) βˆ…

ψ

𝜎=

0

𝑓

β€’ Or 𝕄(22)𝔼(21)𝑇𝕄(11) βˆ’1

𝕄(22)𝔼(21) ψ = 𝑓

25

2-form Poisson; Results

P Slope

1 0.9977

2 2.0150

3 2.9672

4 4.1104

5 4.4811

26

Conclusion

β€’ Elliptic problems can be discretized using mass

matrices and incidence matrices.

β€’ Solution spaces are chosen such that they satisfy

the DeRham complex.

27

Conclusion (cnt’d)

β€’ Comparison 0-form & 2-form Poisson:

0-form 2-form

𝔼(10)𝑇𝕄(11)𝔼(10) βˆ’π•„(11) 𝕄(22)𝔼(21)

𝑇

𝕄(22)𝔼(21) βˆ…

Obtain solution πœ‘(0) Obtain solutions 𝜎(2), ψ(1)

- Dirichlet is essential- Neumann is natural

- Dirichlet is natural- Neumann is essential

Gradient exact 𝔼(10)πœ‘ = 𝑣 Divergence exact 𝔼(21)ψ = 0

i.e. 𝛻 βˆ™ 𝑣 = 0

28

Future Work

β€’ Towards the incompressible Euler equations:

– Extend to hyperbolic problems,

– Linear advection equation.

– Construction of periodic domain.

– Staggering velocity and vorticity in time?

29

Questions