mike brennan (unesp)mike brennan (unesp) gianluca gatti ...€¦ · mike brennan (unesp)mike...
Embed Size (px)
TRANSCRIPT

The Shock Response of a VibrationpIsolator with Nonlinear Stiffness
Mike Brennan (UNESP)Mike Brennan (UNESP)Gianluca Gatti (University of Calabria, Italy)Bin Tang (Dalian University of Technology, China)g ( y gy, )

Motivation
V l tiffStatic equilibrium position
Very low stiffness (natural frequency)

Geometrically Nonlinear Stiffness
ef
m
eftx
k cvk c
ex
tf
e
tf

Geometrically Nonlinear Stiffness
efhk hk
m
eftx
k c
l
vk c
ex
tf
e
tf
High Static Low Dynamic Stiffness (HSLDS) isolatorMany engineering applicationsLow frequency isolation

Frequency Response
55
45
50
55
0
1ll
0
0.8ll
B)
35
400
0.7llility| (dB
---- Displacement trans…. Force trans
20
25
30 0l
smissibi
Shift natural frequency to a very low frequency
10
15
0
0.667ll|T
ran Shift natural frequency to a very low frequency
0 0.2 0.4 0.6 0.8 1 1.20
5
fNormalised frequency

Objective
Shock isolation of HSLDS BUMP AHEAD
m
kvcv
khkh
Engine
Seat isolators

Objective
To to determine whether the HSLDS systemTo to determine whether the HSLDS system described in (Carrella, et al. 2007, 2008, 2009 2012) is better at isolating shock than2009, 2012) is better at isolating shock than a linear isolator.

HSLDS System
k khk hk
m
x
k c
lz x y
vk c
y
y
2 202 1v hk l l zkmz cz z my

HSLDS System
02 1 lkk
0
2 22 1v hkmz cz
l zk z my
Non-dimensional Equation
1ˆ ˆ2 2 1u u u k u y 2 2 2 2
max
2 2 1ˆ ˆˆ 1
u u u k u yl u y l
ˆ ˆ ˆhkl y zl k2 20 max0
, , , h
v
yl k y ul k yl l

Types of Shock Input Applied
1.2VI
Versed-sine impulse
0 6
0.8
1.0
III I
V
IV II
VI
ˆRy 1 cos 2
ˆ , 02
VV py
0 2
0.4
0.6Ry 2
0 2 4 6 8 10 120.0
0.2
τ 1.0
1.2III I
VIV II
VI
Rounded-step displacement 0.6
0.8ˆVy
0 0
0.2
0.4
ˆ 1 1 , 0RR Ry e
0 1 2 3 4 5 60.0
τ

Shock Isolation Performance Indices
Shock Acceleration Ratio (SAR)
max| |SAR| |xy
Shock Displacement Ratio (SDR)
max| |y
Shock Displacement Ratio (SDR)max| |SDR x
y
Relative Displacement Ratio (RDR)maxy
p ( )max
max| |RDR = | |z u
maxy

max| |SAR| |x
Shock Acceleration Ratio
101101101
l = 0.8 l = 0.7 l = 0.667maxˆ 5.0y
max| |y
SAR 10-1
100
SAR 10-1
100
SAR 10-1
100l 0.8 l 0.7 l 0.667max 5.0y
maxˆ 1.0y Linear
0 1 1 10 10010-3
10-2
0 1 1 10 10010-3
10-2
0 1 1 10 10010-3
10-2maxˆ 0.1y
101101101
l 0 8 l 0 7 l 0 667
R
0.1 1 10 100R
0.1 1 10 100R
0.1 1 10 100
Rounded step Displacement ζ = 0.1RRR
SAR 10-1
100
SAR 10-1
100
SAR 10-1
100l = 0.8 l = 0.7 l = 0.667
S
10-3
10-2
S
10-3
10-2
S
10-3
10-2
V
0.1 1 10 10010
V
0.1 1 10 10010
V
0.1 1 10 10010
Versed sine-shape displacementVV V

Shock Isolation Performance Indices
Base displacement is a Heaviside function (βR >>1) Impulse Input (βV >>1)
Step ImpulseSAR 0 0SDRSDRRDR

max| |SDR xShock Displacement Ratio
1 8
2.0
1 8
2.0
1 8
2.0
l = 0.8 l = 0.7 l = 0.667maxˆ 5.0y
maxy
SDR
1.4
1.6
1.8
SDR
1.4
1.6
1.8
SDR
1.4
1.6
1.8
maxˆ 1.0y
Linear
0 1 1 10 100
1.0
1.2
0.1 1 10 100
1.0
1.2
0.1 1 10 100
1.0
1.2maxˆ 0.1y
1.61.61.6
l 0 8 l 0 7 l 0 667
R
0.1 1 10 100R
0.1 1 10 100R
0.1 1 10 100
Rounded step Displacement ζ = 0.1R R R
SDR 0.8
1.01.21.4
SDR 0.8
1.01.21.4
SDR
0.81.01.21.4 l = 0.8 l = 0.7 l = 0.667
S
0.00.20.40.6
S
0 00.20.40.6
S
0 00.20.40.6
V
0.1 1 10 1000.0
V
0.1 1 10 1000.0
V
0.1 1 10 1000.0
Versed sine-shape displacementV V V

Shock Isolation Performance Indices
Low Amplitude InputLow Amplitude Input
Base displacement is a Heaviside function (βR >>1) Impulse Input (βV >>1) Impulse Input (βV 1)
Step ImpulseSAR 0 0SAR 0 0SDR ? 0RDR

max| |RDR zRelative Displacement Ratio
0 8
1.0
0 8
1.0
0 8
1.0maxˆ 0.1y
maxy
RD
R
0.4
0.6
0.8
RD
R
0.4
0.6
0.8
RD
R
0.4
0.6
0.8
maxˆ 5.0y
maxˆ 1.0y Linear
0.1 1 10 1000.0
0.2
0.1 1 10 1000.0
0.2
0.1 1 10 1000.0
0.2 l = 0.8 l = 0.7 l = 0.667
1.41.41.4 l = 0 8 l = 0 7 l = 0 667
RRR
Rounded step Displacement ζ = 0.1R R R
RD
R
0 6
0.8
1.0
1.2
RD
R
0 6
0.8
1.0
1.2
RD
R
0 6
0.8
1.0
1.2 l = 0.8 l = 0.7 l = 0.667
R
0.0
0.2
0.4
0.6R
0.0
0.2
0.4
0.6R
0.0
0.2
0.4
0.6
V
0.1 1 10 100V
0.1 1 10 100V
0.1 1 10 1000.0
Versed sine-shape displacementV V V

Shock Isolation Performance Indices
Base displacement is a Heaviside function (βR >>1) Impulse Input (βV >>1)
Step ImpulseSAR 0 0SDR ? 0SDR ? 0RDR 1 1

Low Amplitude Input
0l
0
2 22 1v h
lkmz czl z
k z my
When the relative displacement z < 40 %*l,
l z p ,
where l is the length of the horizontal spring.
3
h
31 3mz cz k z k z my
• where
02lk k k 03 h
lk k1 1v hk k kl
3 3 hk kl

Low Amplitude Input
31 3mz cz k z k z my
Non-dimensional Equation
1 3 y
q3 ˆ ˆ2 ( ) (or y ( ))R Vu u u u y
where ˆ ˆ 2
2max 3 ,
ˆ2 1 ˆˆ1 ˆ
1ˆˆ ˆ
lk
ly k
ll
is the parameter that controls the linear
3ll
l̂ is the parameter that controls the linear stiffness and the cubic nonlinearityl

Low Amplitude Input
= 0 8 0 5 0 703125l̂
= 0.8 0.5 0.703125
= 0.7 0.14286 1.48688l̂l
= 0.667 0.001499 1.87069l̂
• When the linear stiffness term theˆ 2 / 3l 0 • When the linear stiffness term, the system becomes a Quasi-Zero-Stiffness (QZS) system
2 / 3l 0

Low Amplitude Input
3 ˆ ˆ2 ( ) (or ( ))R Vu u u u y y
ˆ 1y 3u u max 1y u u
ˆ ˆ2 ( ) (or y ( ))R Vu u u y

Low Amplitude Input
ˆ ˆ2 ( ) (or y ( ))R Vu u u y R V
2 under damped under damped
22 over damped
2 v. over damped

max| |SDR xShock Displacement Ratio
maxy
1.8
2.0
1.8
2.0
1.8
2.0
l = 0.8 l = 0.7 l = 0.667maxˆ 5.0y ˆ 1 0
SDR
1 2
1.4
1.6
SDR
1 2
1.4
1.6
SDR
1 2
1.4
1.6
ˆ
maxˆ 1.0y
Linear
0.1 1 10 100
1.0
1.2
0.1 1 10 100
1.0
1.2
0.1 1 10 100
1.0
1.2maxˆ 0.1y
r r RRR
Rounded step Displacement ζ = 0.1r r r

Low Amplitude Input
Base displacement is a Heaviside function (βR >>1) Impulse Input (βV >>1)
Step ImpulseSAR 0 0SDR 0 1
SDR 0RDR 1 1
1 e

Concluding Remarks
For both types of excitation the effects of increasing thenonlinearity is beneficial from the point of view of shocknonlinearity is beneficial from the point of view of shockisolation, provided that the amplitude of shock input isrelatively small.y
Nonlinearity has two main effects. The first is it reduces the Nonlinearity has two main effects. The first is it reduces the natural frequency, and the second is that the stiffness of the system is increased for large relative displacements across the isolator.
The first of these is beneficial and is the reason why the nonlinear isolator outperforms the linear isolator. The second of these is not beneficial and has a detrimental effect whenof these is not beneficial, and has a detrimental effect when the amplitude of the shock input is large.

References[1] C.M. Harris, A.G. Piersol, Shock and Vibration Handbook, fifth ed. McGraw Hill, New York, 2002., ,[2] C.W. De Silva, Vibration and Shock Handbook, CRC Press, Boca Raton, 2005.[3] J.C. Snowdon, Vibration and Shock in Damped Mechanical Systems, Wiley, New York, 1968.[4] P. Alabuzhev, A. Gritchin, L. Kim, G. Migirenko, V. Chon, P. Stepanov, Vibration Protecting and Measuring Systems with Q i Z Stiff H i h P bli hi N Y k 1989Quasi‐Zero Stiffness, Hemisphere Publishing, New York, 1989.

References[5] N. Chandra Shekhar, H. Hatwal, A.K. Mallik, Response of non‐linear dissipative shock isolators, Journal of Sound and Vibrationp , f214(4) (1998) 589‐603.[6] N. Chandra Shekhar, H. Hatwal, A.K. Mallik, Performance of non‐linear isolators and absorbers to shock excitations, Journal of Sound and Vibration 227(2) (1999) 293‐307.[7] A. Carrella, M.J. Brennan, T.P. Waters, V. Lopes Jr., Force and displacement transmissibility of a nonlinear isolator with high‐static low dynamic stiffness International Journal of Mechanicalstatic‐low‐dynamic‐stiffness, International Journal of Mechanical Sciences 55(1) (2012) 22‐29.[8] Bin Tang M J Brennan On the shock performance of a[8] Bin Tang, M.J. Brennan. On the shock performance of a nonlinear vibration isolator with high‐static‐low‐dynamic‐stiffness, International Journal of Mechanical Sciences 81(1) (2014) 207‐214.

Low Amplitude Input
Base displacement is a Heaviside function (βR >>1) SAR
The acceleration of the base is infinite
Relative disp cosu e
SAR 0
Relative disp
α > ζ 2, under-damped
1cos dd
u e
α < ζ 2, over-damped
1cos du e d 2( )
2di
du e
i
SDR
SDR 1 1u e
SDR
d
SDR 1
RDR umax ≈ -1 RDR 1 RDR RDR 1

Thank You for Your Attention!!!Thank You for Your Attention!!!Any Questions are welcome!y
谢谢 (Xièxiè)!( )
Bin TangInstitute of Internal Combustion Engine, Dalian University of Technology, China.