minnesota state high school mathematics league ·...

11
2013-14 Meet 4, Individual Event A Question #1 is intended to be a quickie and is worth 1 point. Each of the next three questions is worth 2 points. Place your answer to each question on the line provided. You have 12 minutes for this event. 1. Determine exactly the value of n for which 4 n = 8 . Name: ___________________________________ Team: ___________________________________ Minnesota State High School Mathematics League 2. Simplify the expression x + y ( ) 1 x 1 + y 1 ( ) so that it no longer involves any addition or negative exponents. 4. For all real numbers a and b, the function g satisDies the equation g ab ( ) = ga () gb () . If g 0 () 0 , determine exactly the value of g 2013 ( ) + g 2014 ( ) . n = NO CALCULATORS are allowed on this event. x = g 2013 ( ) + g 2014 ( ) = 3. Given that f x ( ) = x x 1 , x > 0 , determine exactly all values of x for which f x 2 ( ) = 5 24 .

Upload: others

Post on 28-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Minnesota State High School Mathematics League · AB=7and#BC#=#3.##Determine#exactly#the#length#of#the#altitude#dropped#fromBto!AC. P S R Q x y Figure4. Minnesota State High School

2013-14 Meet 4, Individual Event AQuestion  #1  is  intended  to  be  a  quickie  and  is  worth  1  point.  Each  of  the  next  three  questions  is  worth  2  points.

Place  your  answer  to  each  question  on  the  line  provided.  You  have  12  minutes  for  this  event.

1.   Determine  exactly  the  value  of  n  for  which       4−n =8 .

Name:    ___________________________________       Team:    ___________________________________

Minnesota State High School Mathematics League

2. Simplify  the  expression      x + y( )−1 x −1 + y−1( )  so  that  it  no  longer  involves  any  addition  or  

negative  exponents.

4. For  all  real  numbers  a  and  b,  the  function  g  satisDies  the  equation    g ab( ) = g a( )⋅ g b( ) .

If      g 0( )≠0 ,  determine  exactly  the  value  of      g 2013( )+ g 2014( ) .

n  =  

NO  CALCULATORS  are  allowed  on  this  event.

x  =  

   g 2013( )+ g 2014( ) =

3.   Given  that      f x( ) = x

x −1, x >0 ,  determine  exactly  all  values  of  x  for  which  

   f x2( ) = 5

24.

Page 2: Minnesota State High School Mathematics League · AB=7and#BC#=#3.##Determine#exactly#the#length#of#the#altitude#dropped#fromBto!AC. P S R Q x y Figure4. Minnesota State High School

SOLUTIONS

Minnesota State High School Mathematics League2013-14 Meet 4, Individual Event A

   

1xy

   f x2( ) = x2

x2 −1= xx2 −1

= 524

.    Noting  that      x ≠1 ,  cross-­‐multiply  to  get        5x2 −5=24x .    Moving  all  

terms  to  the  left  side  yields        5x2 −24x −5=0 ,  which  can  be  factored  into      5x +1( ) x −5( ) =0 .    This  

suggests  solutions  of      x = −1

5or x =5 ,  but  since  x  must  be  positive,  

   x = −1

5  is  an  extraneous  

solution.    The  only  valid  solution  is  x  =  5.

 5

Let  a  =  0.    Then      g 0⋅b( ) = g 0( )⋅ g b( ) ⇒ g 0( ) = g 0( )⋅ g b( ) .    We’re  told  that    g 0( )≠0 ,  so  we  can  

legally  use  the  Division  Property  of  Equality  to  say  that      1= g b( ) .    In  other  words,  g  is  a  constant  

function,  with  a  value  of  1  everywhere!    Thus      g 2013( )+ g 2014( ) =1+1=2 .

NO  CALCULATORS  are  allowed  on  this  event.

    4−n =8 ⇒ 4−n=64 ⇒ n= 4−64 = −60 .

   x + y( )−1 x −1 + y−1( ) = 1

x + y1x+ 1y

⎛⎝⎜

⎞⎠⎟= 1x + y

x + yxy

⎝⎜⎜

⎠⎟⎟= 1xy.

 −60 1.   Determine  exactly  the  value  of  n  for  which       4−n =8 .

2. Simplify  the  expression      x + y( )−1 x −1 + y−1( )  so  that  it  no  longer  involves  any  addition  or  

negative  exponents.

3.   Given  that      f x( ) = x

x −1, x >0 ,  determine  exactly  all  values  of  x  for  which  

   f x2( ) = 5

24.

4. For  all  real  numbers  a  and  b,  the  function  g  satisDies  the  equation    g ab( ) = g a( )⋅ g b( ) .

If      g 0( )≠0 ,  determine  exactly  the  value  of      g 2013( )+ g 2014( ) .

n  =  

x  =  

Graders:When  checking  for  equivalents,  please  note  the  restrictions  

given  in  the  problem.

 2    g 2013( )+ g 2014( ) =

Page 3: Minnesota State High School Mathematics League · AB=7and#BC#=#3.##Determine#exactly#the#length#of#the#altitude#dropped#fromBto!AC. P S R Q x y Figure4. Minnesota State High School

1. Using  a  circle  of  radius  3  as  a  base,  a  right  circular  cone  of  height  6  is  constructed.    Determine  exactly  the  volume  of  this  cone.

Question  #1  is  intended  to  be  a  quickie  and  is  worth  1  point.  Each  of  the  next  three  questions  is  worth  2  points.Place  your  answer  to  each  question  on  the  line  provided.  You  have  12  minutes  for  this  event.

Name:    ___________________________________       Team:    ___________________________________

Minnesota State High School Mathematics League2013-14 Meet 4, Individual Event B

2. Figure  2  shows  a  circle  with  radius  OB  =  3.    This  radius  is  currently  parallel  to  the  base  line  that  is  tangent  to  the  circle  at  A.    If  the  circle  rolls  to  the  right  (without  slipping)  until  point  B  touches  the  base  line,  determine  exactly  the  distance  point  O  will  have  moved.

4.  Square  PQRS,  with  side  length  1,  is  placed  with  P  at  the  origin  and    PQ  on  the  x-­‐axis  (Figure  4).    The  square  then  “rolls”  to  the  right,  Dirst  by  rotating  about  vertex  Q  to  the  position  indicated  by  the  dotted  lines  so  that    QR is  on  the  x-­‐axis.    It  continues  to  roll  in  this  manner,  rotating  about  vertex  R,  and  then  S,  and  Dinally  P,  so  that  each  vertex  has  served  as  the  center  of  rotation  exactly  once.    Determine  exactly  the  total  length  of  the  path  traced  by  point  P.    

 Volume =  

OB

A

Figure  2

3.  VABC is  inscribed  in  a  semicircle  with  diameter    AC .    The  triangle  has  side  lengths      AB = 7  and  BC  =  3.    Determine  exactly  the  length  of  the  altitude  dropped  from  B  to    AC .

P

S R

Q x

y

Figure  4

Page 4: Minnesota State High School Mathematics League · AB=7and#BC#=#3.##Determine#exactly#the#length#of#the#altitude#dropped#fromBto!AC. P S R Q x y Figure4. Minnesota State High School

Minnesota State High School Mathematics League2013-14 Meet 4, Individual Event B

SOLUTIONS

 9π2

O  will  travel  exactly  the  horizontal  distance  that  the  exterior  of  the  circle  covers  on  the  baseline  as  it  rolls.    

This  is  exactly  the  length  of  arc  AB,  or    342π ⋅3( ) = 9π2 .

Any  triangle  inscribed  in  a  semicircle  is  a  right  triangle,  so  we  can  use  the  Pythagorean  Theorem  to  determine  that  AC  =  4.    Then,  treating    AB as  the  base,  

   Area VABC⎡⎣ ⎤⎦ =

12

7( ) 3( ) ,  and  using    AC as  the  base,      Area VABC⎡⎣ ⎤⎦ =

12AC ⋅h

Setting  these  equal,      7( ) 3( ) = AC ⋅h ⇒ h= 3 7

AC= 3 7

4.

 18π

 3 74

 Volume =  

 π 1+ 2

2

⎝⎜

⎠⎟

or  equivalent

1. Using  a  circle  of  radius  3  as  a  base,  a  right  circular  cone  of  height  6  is  constructed.    Determine  exactly  the  volume  of  this  cone.

2. Figure  2  shows  a  circle  with  radius  OB  =  3.    This  radius  is  currently  parallel  to  the  base  line  that  is  tangent  to  the  circle  at  A.    If  the  circle  rolls  to  the  right  (without  slipping)  until  point  B  touches  the  base  line,  determine  exactly  the  distance  point  O  will  have  moved.

4.  Square  PQRS,  with  side  length  1,  is  placed  with  P  at  the  origin  and    PQ  on  the  x-­‐axis  (Figure  4).    The  square  then  “rolls”  to  the  right,  Dirst  by  rotating  about  vertex  Q  to  the  position  indicated  by  the  dotted  lines  so  that    QR is  on  the  x-­‐axis.    It  continues  to  roll  in  this  manner,  rotating  about  vertex  R,  and  then  S,  and  Dinally  P,  so  that  each  vertex  has  served  as  the  center  of  rotation  exactly  once.    Determine  exactly  the  total  length  of  the  path  traced  by  point  P.    

Figure  2

3.  VABC is  inscribed  in  a  semicircle  with  diameter    AC .    The  triangle  has  side  lengths      AB = 7  and  BC  =  3.    Determine  exactly  the  length  of  the  altitude  dropped  from  B  to    AC .

OB

A B'

O'A'

h 37

A C

B

Figure  3

Volume  of  cone  =      13πr

2h= 13π 3( )2 6( ) =18π .

P

P' P''

P'''=P''''x

y

12

1

Figure  4

In  the  initial  rotation,  P  moves  along  a  quarter-­‐circle  of  radius  1.    In  the  next  rotation,  it  moves  along  a  quarter-­‐circle  of  radius     2 .    In  the  third  rotation,  it  again  moves  along  a  quarter-­‐circle  of  radius  1,  and  in  the  last  rotation,  P  is  itself  the  center,  and  thus  doesn’t  move.    The  length  of  

P’s  path  is    14 2π ⋅1( )+ 1

4 2π ⋅ 2( )+ 14 2π ⋅1( ) =π 1+ 2

2( ) .

Page 5: Minnesota State High School Mathematics League · AB=7and#BC#=#3.##Determine#exactly#the#length#of#the#altitude#dropped#fromBto!AC. P S R Q x y Figure4. Minnesota State High School

1.     Determine  exactly  the  sum  of  the  inDinite  series      5+

53+59+…

Question  #1  is  intended  to  be  a  quickie  and  is  worth  1  point.  Each  of  the  next  three  questions  is  worth  2  points.Place  your  answer  to  each  question  on  the  line  provided.  You  have  12  minutes  for  this  event.

Name:    ___________________________________       Team:    ___________________________________

Minnesota State High School Mathematics League2013-14 Meet 4, Individual Event C

2. Four  distinct  integers,  chosen  from  among  1  through  10  inclusive,  form  an  arithmetic  sequence.    Three  of  those  integers  also  form  a  geometric  sequence.    List  both  possible  sets  of  four  integers  that  satisfy  these  conditions.            (1  point  per  correct  set)

3. Find  the  sum  of  all  integers  between  1  and  100  inclusive  that  do  not  use  2  as  a  digit.

4. A  sequence  of  integers    an ,  with  n  ≥  1,  is  deDined  recursively  by      an+2 =5an+1 −6an .    

If      a1 = −11  and      a5 =19 ,  Dind  the  value  of      a3 .    a3 =

Page 6: Minnesota State High School Mathematics League · AB=7and#BC#=#3.##Determine#exactly#the#length#of#the#altitude#dropped#fromBto!AC. P S R Q x y Figure4. Minnesota State High School

Minnesota State High School Mathematics League2013-14 Meet 4, Individual Event C

SOLUTIONS

This  is  an  inXinite  geometric  series  with      a1 =5  and      r =

13.    Its  sum  is  

   

a11− r

=51− 1

3= 5

23( ) =

152.

 −29

 152

There  are  only  three  possible  3-­‐integer  geometric  sequences  contained  within  1  through  10:{1,  2,  4},  {2,  4,  8},  and  {1,  3,  9}.    In  the  Xirst  sequence,  we  can  insert  the  integer  “3”  to  make  it  arithmetic;  in  the  second,  we  can  insert  “6”;  in  the  third,  there  is  no  way  to  create  a  sequence  with  a  common  difference.    The  two  possible  sets  of  integers  are  {1,  2,  3,  4}  and  {2,  4,  6,  8}.

 4357

We  can  use  the  Principle  of  Inclusion/Exclusion.    Begin  with  the  sum  1  +  2  +  .  .  .  +  100  =  5050.    Sum  numbers  that  end  in  2:    2  +  12  +  .  .  .  +  92  =  2(10)  +  (10  +  20  +  .  .  .  +  90)  =  20  +  450  =  470.    Sum  those  that  begin  with  2:    20  +  21  +  .  .  .  +  29  =  20(10)  +  (1  +  2  +  .  .  .  +  9)  =  200  +  45  =  245.    Subtract  the  latter  two  sums  from  the  Xirst  sum,  adding  back  in  22,  which  was  subtracted  twice:5050  –  470  –  245  +  22  =  5050  –  715  +  22  =  4335  +  22  =  4357.

 1, 2, 3, 4

Let      x = a3 .    Then      x =5a2 −6a1 =5a2 −6 −11( ) =5a2 +66 ;        a4 =5x −6a2 =5x −6

x −665

⎛⎝⎜

⎞⎠⎟;  

and      a5 =5a4 −6x ⇒ 19=5 5x −6

x −665

⎛⎝⎜

⎞⎠⎟

⎣⎢

⎦⎥ −6x ⇒ 19= 25x −6x +396−6x .

Solving  for  x,        13x +396 =19 ⇒ 13x = −377 ⇒ x = −29 .

1.     Determine  exactly  the  sum  of  the  inDinite  series      5+

53+59+…

3. Find  the  sum  of  all  integers  between  1  and  100  inclusive  that  do  not  use  2  as  a  digit.

4. A  sequence  of  integers    an ,  with  n  ≥  1,  is  deDined  recursively  by      an+2 =5an+1 −6an .    

If      a1 = −11  and      a5 =19 ,  Dind  the  value  of      a3 .    a3 =

or  7.5

2. Four  distinct  integers,  chosen  from  among  1  through  10  inclusive,  form  an  arithmetic  sequence.    Three  of  those  integers  also  form  a  geometric  sequence.    List  both  possible  sets  of  four  integers  that  satisfy  these  conditions.            (1  point  per  correct  set)

and  

 2, 4, 6, 8

Page 7: Minnesota State High School Mathematics League · AB=7and#BC#=#3.##Determine#exactly#the#length#of#the#altitude#dropped#fromBto!AC. P S R Q x y Figure4. Minnesota State High School

Question  #1  is  intended  to  be  a  quickie  and  is  worth  1  point.  Each  of  the  next  three  questions  is  worth  2  points.Place  your  answer  to  each  question  on  the  line  provided.  You  have  12  minutes  for  this  event.

Name:    ___________________________________       Team:    ___________________________________

Minnesota State High School Mathematics League2013-14 Meet 4, Individual Event D

1.   Calculate  the  length  of  the  radius  of  the  circle      x2 +20x + y2 +14 y =20 .

3. A  parabola  has  its  focus  at  (10,  7)  and  its  directrix  is  the  line    y  =  –3.    Determine  exactly  the  parabola’s    y-­‐intercept.

2.   Determine  exactly  the  coordinates  of  both  foci  of  the  ellipse      x2 +4 y2 =16 .

4. An  ellipse  centered  at  the  origin  has  one  focus  at  (3,  1)  and  intersects  the  positive  y-­‐axis  at  (0,  5).    Determine  exactly  the  length  of  the  ellipse’s  major  axis.

   y − int =  

 r =  

    x , y( ) =  

    x , y( ) =  

Page 8: Minnesota State High School Mathematics League · AB=7and#BC#=#3.##Determine#exactly#the#length#of#the#altitude#dropped#fromBto!AC. P S R Q x y Figure4. Minnesota State High School

5 10 15 20 25-5

5

-5

-10

-15

-20

5 10 15 20 25-5

5

-5

-10

-15

-20

(3,1)

(-3,-1)

(0,5)

Minnesota State High School Mathematics League

Completing  the  square  on  both  x  and  y,  we  have        x2 +20x +100+ y2 +14 y +49= 20+100+49

    ⇔ x +10( )2 + y +7( )2 =169=132 ,  so  the  radius  has  length  13.

SOLUTIONS2013-14 Meet 4, Individual Event D

Dividing  through  by  16  yields      x2

16+y2

4=1 .    The  Pythagorean  relationship  in  an  ellipse  indicates  

that      c2 = a2 −b2 =16−4 =12 ,  so      c = 12 = 2 3 ,  and  the  foci  are  located  at    ±2 3, 0( ) .

 13

See  Figure  3.    The  directrix  is  a  horizontal  line,  and  the  focus  lies  above  it,  so  this  is  an  upward  facing  parabola  with  

equation  of  the  form      y =

14p

x −h( )2 + k .    The  parabola’s  vertex  is  located  halfway  between  the  focus  and  the  directrix,  

at  (10,  2).    Thus  p  =  5,  and      y =

120

x −10( )2 +2 .    Substituting    x  =  0    reveals  the  

   y − int =

120

−10( )2 +2= 120

100( )+2= 7 .

See  Figure  4.    The  two  foci  are  equidistant  and  in  opposite  directions  from  the  center,  so  the  second  focus  is  located  at  (–3,  –1).    Using  the  fact  that  each  ellipse  is  the  locus  of  points,  the  sum  of  whose  distances  from  two  foci  is  a  constant,  it  must  be  true  that  the  sum  of  distances  from  (0,  5)  to  (3,  1)  and  (–3,  –1)  is  equal  to  the  length  of  the  major  axis.    In  other  words,  

 0−3( )2 + 5−1( )2 + 0− −3( )2 + 5− −1( )2 = 25 + 45 =5+3 5 .

 2 3, 0( )

 5+3 5

  0, 7( )

Graders:  1  point  per  correct  ordered  pair.

1.   Calculate  the  length  of  the  radius  of  the  circle      x2 +20x + y2 +14 y =20 .

3. A  parabola  has  its  focus  at  (10,  7)  and  its  directrix  is  the  line    y  =  –3.    Determine  exactly  the  parabola’s    y-­‐intercept.

2.   Determine  exactly  the  coordinates  of  both  foci  of  the  ellipse      x2 +4 y2 =16 .

4. An  ellipse  centered  at  the  origin  has  one  focus  at  (3,  1)  and  intersects  the  positive  y-­‐axis  at  (0,  5).    Determine  exactly  the  length  of  the  ellipse’s  major  axis.

   y − int =  

 r =  

    x , y( ) =  

    x , y( ) =    −2 3, 0( )

 7

or

Figure  3

Figure  4

5 10 15 20 25 30 35 40 45

5

-5

-10

-15

-20

-25

-30

5 10 15 20 25 30 35 40 45

5

-5

-10

-15

-20

-25

-30

F (10, 7)

V (10, 2)

y = -3

Page 9: Minnesota State High School Mathematics League · AB=7and#BC#=#3.##Determine#exactly#the#length#of#the#altitude#dropped#fromBto!AC. P S R Q x y Figure4. Minnesota State High School

Each  question  is  worth  4  points.    Team  members  may  cooperate  in  any  way,  but  at  the  end  of  20  minutes,submit  only  one  set  of  answers.    Place  your  answer  to  each  question  on  the  line  provided.

   Team:    ___________________________________

Minnesota State High School Mathematics League2013-14 Meet 4, Team Event

6. Figure  6  shows  two  congruent  circles  of  radius  r  <  1  tangent  to  each  other  at  C,  and  internally  tangent  at  A  and  B  to  a  circle  of  

radius  2  centered  at  K.    If    AC)

+ CB)

= AB)

,  (where    AC)

represents  

arc  length  AC),  express  r  as  a  function  of  central  angle    θ =∠AKB .

2. Calculate  the  value  of      299 100

1( )−298 1002( )+297 100

3( )+…−22 10098( )+21 100

99( ) .You  may  express  your  answer  as  a  power  or  binomial  coefDicient  if  necessary.

3. Two  congruent  circles,  each  of  area  K,  Dit  inside  the  region  enclosed  by  the  curve  

   25x2 + y2 =100 .    They  are  internally  tangent  to  the  curve,  and  externally  tangent  to  

each  other.    Determine  K  exactly.

4. Calculate  the  number  of  consecutive  zeroes  that  occur  at  the  end  of  the  integer  (2014!).

1. If      4a−1( ) =7, 7 b−1( ) =11, 11 c−1( ) =13, and 13 d−1( ) =16,determine  exactly  the  value  abcd.

5. Let  S  be  the  conic  section  deDined  by  the  set  of  points  (x,  y)  that  are  twice  as  far  from  the  point  (0,  2)  as  they  are  from  the  line  y  =  –1.    List  the  coordinates  of  any  and  all  foci  of  S.

abcd  =  

 K =

 r =  

θ

B

K

A

C

Figure  6

Page 10: Minnesota State High School Mathematics League · AB=7and#BC#=#3.##Determine#exactly#the#length#of#the#altitude#dropped#fromBto!AC. P S R Q x y Figure4. Minnesota State High School

Minnesota State High School Mathematics League2013-14 Meet 4, Team Event

 501

SOLUTIONS (page 1)

 0, −6( )

 9625

π

 2θπ +θ

 1,267,650,600,228,229,401,496,703,205,376

 12

1. If      4a−1( ) =7, 7 b−1( ) =11, 11 c−1( ) =13, and 13 d−1( ) =16,

determine  exactly  the  value  abcd.

abcd  =  

 K = 3. Two  congruent  circles,  each  of  area  K,  Dit  inside  the  region  enclosed  by  the  curve      25x

2 + y2 =100 .    They  are  internally  tangent  to  the  curve,  and  externally  tangent  to  each  other.    Determine  K  exactly.

5 10 15 20 25 30

5

10

-5

-10

-15

5 10 15 20 25 30

5

10

-5

-10

-15

x, y0, r-x, y

Figure  3

4. Calculate  the  number  of  consecutive  zeroes  that  occur  at  the  end  of  the  integer  (2014!).

5. Let  S  be  the  conic  section  deDined  by  the  set  of  points  (x,  y)  that  are  twice  as  far  from  the  point  (0,  2)  as  they  are  from  the  line  y  =  –1.    List  the  coordinates  of  any  and  all  foci  of  S.

and  0, 2( )

Graders:  1  point  per  correct  ordered  pair;

–1  point  for  each  extraneous  focus.

 r =   6. Figure  6  shows  two  congruent  circles  of  radius  r  <  1  tangent  to  each  other  at  C,  and  internally  tangent  at  A  and  B  to  a  circle  of  

radius  2  centered  at  K.    If    AC)

+ CB)

= AB)

,  (where    AC)

represents  

arc  length  AC),  express  r  as  a  function  of  central  angle    θ =∠AKB .

β βrr

length))=)2θ

θ

B

K

AC

Figure  6

2. Calculate  the  value  of      299 100

1( )−298 1002( )+297 100

3( )+…

 −22 100

98( )+21 10099( ) .    You  may  express  your  answer  as  a  

power  or  binomial  coefDicient  if  necessary.

 2100or

Page 11: Minnesota State High School Mathematics League · AB=7and#BC#=#3.##Determine#exactly#the#length#of#the#altitude#dropped#fromBto!AC. P S R Q x y Figure4. Minnesota State High School

6. Let  θ  be  measured  in  radians.    Then  using  the  arc  length  formula  s  =  rθ,      AB)

= 2θ .    An  isosceles  triangle  is  formed  using  

two  radii  of  circle  K  and  the  radii  of  the  smaller  circles  that  meet  at  C.    Labeling  this  triangle’s  base  angles  as  β,  we  have  

 θ +2β = π ⇒ β =

π −θ

2.    This  means  the  central  angles  of  the  smaller  circles  that  correspond  to    AC

)and    CB)each  

measure    π −

π −θ

2=π +θ

2,  and  

   AC)

= CB)

= r ⋅ π +θ

2.        

   AC)

+ CB)

= AB)

⇒ 2r ⋅π +θ

2= 2θ ⇒ r =    

 2θ

π +θ  .

Minnesota State High School Mathematics League2013-14 Meet 4, Team Event

SOLUTIONS (page 2)

2. This  looks  binomial.       2+ −1( )( )100 = 100

0( ) 2100( ) −1( )0 + 1001( ) 299( ) −1( )1 +…+ 100

99( ) 21( ) −1( )99 + 100100( ) 20( ) −1( )100 ,  

so  let  x  =  the  desired  quantity:        1( )100 = 2100 − 100

1( ) 299( )−…+ 10099( ) 21( )⎡

⎣⎤⎦+1 ⇒ 1= 2100 − x⎡⎣ ⎤⎦+1 ⇒ x =      2100  .  

1.      log

47 =

1

a, log

711 =

1

b, log

1113=

1

c, log

1316 =

1

d,  so  using  change  of  base  yields     log4

7( ) log7 11( ) log1113( ) log1316( ) =

 

 

log7

log4⋅log11

log7⋅log13

log11⋅log16

log13=log16

log4= log

416 = 2, which  equals  

   

1

a

⎛⎝⎜

⎞⎠⎟

1

b

⎛⎝⎜

⎞⎠⎟

1

c

⎛⎝⎜

⎞⎠⎟

1

d

⎛⎝⎜

⎞⎠⎟=

1

abcd.    Therefore,  abcd  =    

 12  .

3.      25x2 + y2 = 100 ⇒ x2

4 + y2100 = 1 ,  so  the  region  is  an  ellipse  with  major  axis  extending  from  (0,  –10)  to  (0,  10)  and  

  minor  axis  from  (–2,  0)  to  (2,  0).    The  region  is  symmetric  about  the  origin  (see  Figure  3),  so  the  two  circles  are  tangent  to  

  each  other  at  the  origin.    Focus  on  the  upper  circle.    Its  center  is  at  (0,  r),  so  its  equation  is      x2 + y − r( )2 = r2 .    Expanding  

  and  substituting  for      x2  in  the  original  equation  of  the  ellipse  gives  us        25 2ry − y 2( )+ y 2 = 100 ⇒ 12y 2 −25ry +50 = 0 .    

The  two  intersection  points  deXined  by  this  equation  have  equal  y-­‐coordinates,  so  we  want  the  discriminant  of  this  equation  

to  equal  zero;  i.e.,       −25r( )2 − 4 12( ) 50( ) = 625r2 −2400 = 0 ⇒ r2 = 2400625 = 96

25 .    Thus  K  =      πr2 =    

9625π  .    

5. The  distance  from  (x,  y)  to  (0,  2)  is       x 2 + y −2( )2 ,  while  the  distance  from  (x,  y)  to  y  =  –1  is       y − −1( ) = y +1 .    The  Xirst  

distance  is  twice  the  second;  i.e.       x 2 + y −2( )2 = 2 y +1 ⇒ x2 + y −2( )2 = 4 y +1( )2 ⇒ x2 + y2 − 4 y + 4 = 4 y2 +8 y + 4    

    ⇒ 3y2 +12y − x2 = 0 ⇒ 3 y +2( )2 − x2 = 12 .    Dividing  through  by  12  reveals  a  vertically  oriented  hyperbola  centered  at  (0,  –2):        

y+2( )24 − x2

12 = 1 ⇒ c2 = a2 + b2 = 4 +12= 16 ⇒ c = 4, so  the  two  foci  are  located  at         0, −6( ) and 0, 2( )  .

4. Every  trailing  zero  indicates  a  factor  of  10,  which  must  be  created  by  the  product  of  a  factor  of  2  and  a  factor  of  5.    Factors  of  2  occur  much  more  frequently,  so  it  is  sufXicient  to  count  the  factors  of  5.    Each  multiple  of  5  of  course  creates  a  factor  of  5;  there  are     2014 ÷5⎢⎣ ⎥⎦ = 402of  these.    Each  multiple  of  25  adds  an  additional  factor  of  5  (we  have  already  counted  the  Xirst);  there  are     2014 ÷25⎢⎣ ⎥⎦ = 80  of  these.    Similarly,  there  are     2014 ÷125⎢⎣ ⎥⎦ = 16multiples  of    5

3  and     2014 ÷625⎢⎣ ⎥⎦ = 3    multiples  of    54 .    The  total  number  of  factors  of  5  (=  factors  of  10  =  trailing  zeroes)  is    402  +  80  +  16  +  3  =      501  .