mirnov array signal processing using eigspec: beyond ffts and … · 2015. 2. 18. · extended...

29
Mirnov array signal processing using eigspec: beyond FFTs and SVDs By K. Erik J. Olofsson a In collaboration with J.M. Hanson a , D. Shiraki a , F.A. Volpe a , D.A. Humphreys b , R.J. La Haye b , M.J. Lanctot b , E.J. Strait b , A.S. Welander b , E. Kolemen c , M. Okabayashi c , and F. Turco a , J. Ferron b a Columbia University, APAM, b General Atomics, c PPPL Presented at MHD control workshop, Santa Fe, New Mexico, USA November 18-20, 2013

Upload: others

Post on 30-Jan-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Mirnov array signal processing using eigspec: beyond FFTs and SVDs

    ByK. Erik J. Olofssona

    In collaboration with J.M. Hansona, D. Shirakia, F.A. Volpea,D.A. Humphreysb, R.J. La Hayeb,M.J. Lanctotb, E.J. Straitb, A.S. Welanderb,E. Kolemenc, M. Okabayashic, andF. Turcoa, J. Ferronb

    aColumbia University, APAM, bGeneral Atomics, cPPPL

    Presented atMHD control workshop, Santa Fe, New Mexico, USANovember 18-20, 2013

  • Olofsson et al., MHDWS, November 2013 2

    Outline of presentation

    • Motivation– Why develop new signal processing methods for Mirnov array analysis?

    • Algorithm introduction and outline– Example comparisons: FFT, SVD– Subspace identification and low rank signals– Feature extraction

    • DIII-D analysis examples– NTM detection in the presence of sawtooth precursors– Fishbone burst signal decomposition

    • Summary

  • Olofsson et al., MHDWS, November 2013 3

    Array signal processing methods can significantly aid the interpretation of Mirnov magnetics data

    • MHD activity can be inferred from kHz-range fluctuations

    – Dynamic, transient and time-varying signals

    Mirnov array probes measurepoloidal field fluctuations

    • Fluctuations dominated by a handful of frequencies

    – Specialized methods seem applicable

    TASK: explicit decomposition of the full array signal into source terms

    RESULT:for each block of the time-series, inventory obtained (freq./amp., modal shape)

  • Olofsson et al., MHDWS, November 2013 4

    - 2 . 5 - 2 - 1 . 5 - 1 - 0 . 5 0 0 . 5- 2

    - 1

    0

    1

    2

    3

    4

    l o g1 0 ω

    cros

    s-po

    wer

    log

    10P

    y 1y 2

    ( ω)

    0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0- 0 . 5

    0

    0 . 5

    ω1

    0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0- 0 . 5

    0

    0 . 5

    ω2

    0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0- 0 . 1

    - 0 . 0 5

    0

    0 . 0 5

    0 . 1

    nois

    e

    0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0- 1

    - 0 . 5

    0

    0 . 5

    1

    Mirn

    ov p

    robe

    pai

    r [a

    .u.]

    t [ s a m p l e s ]

    y1

    y2

    “Subspace” method can resolve frequencies that are closely spaced; where DFT (FFT) fails

    • The “subspace” method to be defined later, is “parametric”.

    – These tend to produce better estimates for shorter time-series than “nonparametric” (DFT) methods

    • The “subspace” method has documented applicability for operational modal analysis

    – line-spectrum + damping rates

    +

    +

    =

  • Olofsson et al., MHDWS, November 2013 5

    y [c

    hann

    el in

    dex]

    t [ s a m p l e i n d e x ]

    M i r n o v b l o c k d a t a m a t r i x Y

    0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

    5

    1 0

    1 5

    2 0

    “Subspace” method designed for multivariate linear system estimation; direct SVD is not

    • Direct SVD is not a modal analysis “operation” in itself– It has more to do with data compression

    tru

    e m

    od

    e #

    1

    0 5 0 1 0 0 1 5 0

    5

    1 0

    1 5

    2 0

    tru

    e m

    od

    e #

    2

    0 5 0 1 0 0 1 5 0

    5

    1 0

    1 5

    2 0

    no

    ise

    0 5 0 1 0 0 1 5 0

    5

    1 0

    1 5

    2 0

    +

    TASK: inverse problem of the mode summation

  • Olofsson et al., MHDWS, November 2013 6

    y [c

    hann

    el in

    dex]

    t [ s a m p l e i n d e x ]

    M i r n o v b l o c k d a t a m a t r i x Y

    0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

    5

    1 0

    1 5

    2 0

    “Subspace” method may decompose an array data matrix into sinusoidal modes when SVD cannot

    “subspace” method SVD “modes”

  • Olofsson et al., MHDWS, November 2013 7

    Flowchart of the feature-extraction stage in the eigspec Mirnov array code

    Input data

    Output data

    Mirnov data block Y

    Dimension-reductionvia randomprojection

    "Compressed"data block Z

    Time-seriesmodellingusing SSI

    Model 1

    Model 2

    Order-MACmodal subsystemselection

    Frequency shortlist

    Shape-vectorestimation usingMirnov data block Y

    Shape vectors

    modalrepresentation

  • Olofsson et al., MHDWS, November 2013 8

    Flowchart of the feature-extraction stage in the eigspec Mirnov array code

    Input data

    Output data

    Mirnov data block Y

    Dimension-reductionvia randomprojection

    "Compressed"data block Z

    Time-seriesmodellingusing SSI

    Model 1

    Model 2

    Order-MACmodal subsystemselection

    Frequency shortlist

    Shape-vectorestimation usingMirnov data block Y

    Shape vectors

    modalrepresentation

    Key algorithm is here

  • Olofsson et al., MHDWS, November 2013 9

    Stochastic subspace identification (SSI) is a technique that estimates a time-series model on state-space form

    • Sequence of m-channel Mirnov data vector samples y(k)

    x (k+1)=A x (k)+K e (k)y (k )=C x(k )+e(k )

    x (k+1)=AK x (k )+K y (k )y (k)=C x (k )+e(k)

    AK=A−KC

    {⋯ y(k−1) y(k ) y (k+1) ⋯} time-indices k=1..N

    • Stochastic time-series model on state-space form

    • Task is to find the system matrices A, C (and K) from data { y(k) }

    It is assumed that { e(k) } is a sequence of random vectors

  • Olofsson et al., MHDWS, November 2013 10

    SSI can be seen as a reduced-rank regression approach that exploits the shift-structure of key matrices

    Y f (k )=[ CCACA2⋮CA f −1

    ]x (k)+[ I 0 0 ⋯ 0CK I 0 ⋯ 0⋮ ⋮ ⋮ ⋮ ⋮CA f −2 K ⋯ ⋯ CK I ]E f (k ) =Γ x(k )+FE f (k )State-to-future mapping

    Past-to-state mapping

    x (k )=[AKp−1 K ⋯ AK2 K AK K K ]Y p(k )+O (AKp )≈LY p(k )

    Y f (k )=[ y (k )y (k +1)y (k+2)⋮y (k + f −1)

    ]Y p(k )=[ y (k−p)⋮y (k−3)y(k−2)y (k−1)

    ] E f (k )=[e (k )

    e(k+1)e (k+2)

    ⋮e (k + f −1)

    ]Using extended array data vectors

    Iteration of themodel equations

    Y f (k )≈Γ LY p(k)+FE f (k )

  • Olofsson et al., MHDWS, November 2013 11

    Model reduction step using SVD on a (possibly) weighted version of the future-past covariance matrix

    Y f (k )≈Γ LY p(k)+FE f (k )

    Y f (k )≈Γ LY p(k)+FE f (k )=[ CCACA2⋮CA f −1

    ][AKp−1K ⋯ AK2 K AK K K ]Y p(k )+FE f (k )R fp=Ε [Y f (k )Y pT (k )]=Γ LΕ [Y p(k )Y pT (k )]=ΓL R pp

    R fp≈U r S rV rT

    Γ̂=U r S r1/2

    Expectation over k

    Truncated SVD of covariance matrix

    Extended observability matrix estimate

    • A and C now inferred from the shift-structure of Γ– Many many variations of the SSI algorithms– eigspec implements the above, but also a more elaborate SVD-weighting (CCA)

  • Olofsson et al., MHDWS, November 2013 12

    Flowchart of the feature-extraction stage in the eigspec Mirnov array code

    Input data

    Output data

    Mirnov data block Y

    Dimension-reductionvia randomprojection

    "Compressed"data block Z

    Time-seriesmodellingusing SSI

    Model 1

    Model 2

    Order-MACmodal subsystemselection

    Frequency shortlist

    Shape-vectorestimation usingMirnov data block Y

    Shape vectors

    modalrepresentation

    This was covered

  • Olofsson et al., MHDWS, November 2013 13

    Flowchart of the feature-extraction stage in the eigspec Mirnov array code

    Input data

    Output data

    Mirnov data block Y

    Dimension-reductionvia randomprojection

    "Compressed"data block Z

    Time-seriesmodellingusing SSI

    Model 1

    Model 2

    Order-MACmodal subsystemselection

    Frequency shortlist

    Shape-vectorestimation usingMirnov data block Y

    Shape vectors

    modalrepresentation

    This was covered Now this.

  • Olofsson et al., MHDWS, November 2013 14

    m o d e f r o m s y s t e m r2

    mod

    e fr

    om s

    yste

    m r

    1

    M A C ( i , j)

    1 2 3 4 5 6 7 8 9 1 0

    1

    2

    3

    4

    5

    6

    0

    0 . 2

    0 . 4

    0 . 6

    0 . 8

    1

    m o d e f r o m s y s t e m r2

    mod

    e fr

    om s

    yste

    m r

    1

    D S T ( i , j)

    1 2 3 4 5 6 7 8 9 1 0

    1

    2

    3

    4

    5

    6

    0

    0 . 2

    0 . 4

    0 . 6

    0 . 8

    1

    Modal subsystem selection using an “Order-MAC” criteria yields a frequency shortlist

    x̃ (k+1)= Ã x̃ (k )+ K̃ e (k)y (k )=C̃ x̃(k )+e(k )

    x̃=W−1 x

    Modal form: A-matrix diagonalized

    Shape-vector is a column of C̃

    MAC (v , w)=(vH w)(wH v)

    (vH v)(wHw)

    Shape correlation “metric”

    DST (λi ,λ j)=max(0,1−∣λi−λ j∣∣λi∣ )Eigenvalue “stability”

  • Olofsson et al., MHDWS, November 2013 15

    m o d e f r o m s y s t e m r2

    mod

    e fr

    om s

    yste

    m r

    1

    M A C ( i , j)

    1 2 3 4 5 6 7 8 9 1 0

    1

    2

    3

    4

    5

    6

    0

    0 . 2

    0 . 4

    0 . 6

    0 . 8

    1

    m o d e f r o m s y s t e m r2

    mod

    e fr

    om s

    yste

    m r

    1

    D S T ( i , j )

    1 2 3 4 5 6 7 8 9 1 0

    1

    2

    3

    4

    5

    6

    0

    0 . 2

    0 . 4

    0 . 6

    0 . 8

    1

    Modal subsystem selection using an “Order-MAC” criteria yields a frequency shortlist

    MAC (v , w)=(vH w)(wH v)

    (vH v)(wHw)

    Shape correlation “metric”

    DST (λi ,λ j)=max(0,1−∣λi−λ j∣∣λi∣ )Eigenvalue “stability”

    Example: modes 1,4,5 in system 1have matching mode insystem 2

  • Olofsson et al., MHDWS, November 2013 16

    Flowchart of the feature-extraction stage in the eigspec Mirnov array code

    Input data

    Output data

    Mirnov data block Y

    Dimension-reductionvia randomprojection

    "Compressed"data block Z

    Time-seriesmodellingusing SSI

    Model 1

    Model 2

    Order-MACmodal subsystemselection

    Frequency shortlist

    Shape-vectorestimation usingMirnov data block Y

    Shape vectors

    modalrepresentation

    This was covered Also coveredNow this.

  • Olofsson et al., MHDWS, November 2013 17

    The Mirnov array data Y is decomposed into a sum of products of shape-vectors and sinusoidal vectors

    • S-matrix constructed from frequencies of the selected modal subsystems– Contains sinusoidal columns– Least-squares estimation to obtain shape-vectors (columns of D)– This minimizes the Frobenius norm of residual E

    Y=DST+ED̂=YS (ST S )−1

  • Olofsson et al., MHDWS, November 2013 18

    DIII-D Mirnov array analysis: example eigspec applications

    • Decomposition of a fishbone burst signal– Amplitude envelope, frequency sweep, modal shape

    • The problem of mixing up sawtooth precursor oscillations with m/n=2/1 NTM signatures

    – Shot #154986 (found by Rob) shows an example case where the precursor has almost identical frequency to the 2/1 that emerges just after the ST crash

  • Olofsson et al., MHDWS, November 2013 19

    Detection of m/n=2/1 NTM signal triggered by sawtooth crash; mode-locking event, to be analyzed here

    • Experiment #154986– Current profile effects on TM stability– ITER-like plasma with high torque– q95 ~ 3.25, βN~1.9 @ t=3300ms

    3 3 0 0 3 3 5 0 3 4 0 0 3 4 5 0 3 5 0 0 3 5 5 0 3 6 0 0- 3 0 0

    - 2 0 0

    - 1 0 0

    0

    1 0 0

    2 0 0

    Mirn

    ov p

    robe

    [T/s

    ]

    t [ m s ]

    M P I 6 6 M 3 1 2 D

    Array-averaged FFT spectrogramfor 39 Mirnov channels

    shot #154986

    What are these?

    39x

  • Olofsson et al., MHDWS, November 2013 20

    FFT-based frequency analysis (with n-number assignment) is less clear than eigspec's SSI-based method

    #154986eigspec

    #154986modespec

    • Probe-pair coherence method

    – Diffuseness of short-time DFT

    – Possible clean-up: average many pairs

    • Subspace method in eigspec

    – Frequencies not restricted to any “FFT-bin”

    – SSI natively incorporates the entire array

  • Olofsson et al., MHDWS, November 2013 21

    Post-processing extracted modes using shape-coherence to reference point reveals n=1 trace “event”

    #154986eigspec

    Reference vectorEvent changescharacter of n=1 trace

    Co

    lorin

    g is th

    e coh

    erence valu

    e [0,1]to

    the referen

    ce shap

    e vector

  • Olofsson et al., MHDWS, November 2013 22

    Post-processing with shape-coherence as a similarity metric allows automatic clustering of extracted modes

    #154986eigspec

    cluster index label

    n=1 trace split in two groups!

  • Olofsson et al., MHDWS, November 2013 23

    “Gaussian Process Regression” technique used to estimate smooth modal patterns from shape-vectors

    #154986eigspec

    θ

    φ

    0 1 2 3 4 5 6

    - 3

    - 2

    - 1

    0

    1

    2

    3

    θ

    φ

    0 1 2 3 4 5 6

    - 3

    - 2

    - 1

    0

    1

    2

    3

    θφ

    0 1 2 3 4 5 6

    - 3

    - 2

    - 1

    0

    1

    2

    3

    3/2 “3/1” 2/1

    Typical pattern for sawtooth precursor!“gaps” are at up-down locations

    Ou

    tbo

    ard m

    idp

    lane at th

    eta=0

  • Olofsson et al., MHDWS, November 2013 24

    Fishbone signal array decomposition; example of transient activity analysis using eigspec

    3 7 6 0 3 7 7 0 3 7 8 0 3 7 9 0 3 8 0 0 3 8 1 0 3 8 2 0- 3 0 0

    - 2 0 0

    - 1 0 0

    0

    1 0 0

    2 0 0

    3 0 0

    Mirn

    ov p

    robe

    [T/s

    ]

    t [ m s ]

    M P I 6 6 M 0 6 7 D

    shot #155279

    Fishbonetime-trace forsingle probe

    Array-averagedspectrogram

  • Olofsson et al., MHDWS, November 2013 25

    Fishbone signal array decomposition; example of transient activity analysis using eigspec

    3 7 6 0 3 7 7 0 3 7 8 0 3 7 9 0 3 8 0 0 3 8 1 0 3 8 2 0- 3 0 0

    - 2 0 0

    - 1 0 0

    0

    1 0 0

    2 0 0

    3 0 0

    Mirn

    ov p

    robe

    [T/s

    ]

    t [ m s ]

    M P I 6 6 M 0 6 7 D

    shot #155279

    Fishbonetime-trace forsingle probe

    Array-averagedspectrogramwith overlayedeigspec features

  • Olofsson et al., MHDWS, November 2013 26

    Fishbone signal array decomposition shows a bundle of n-numbers (1,2,3,4) per burst; analysis window is 0.5 ms

    Amplitudeenvelopes

    Frequencysweeps

    eigspec analysis time-frameshort compared to burst-length

    shot #155279

  • Olofsson et al., MHDWS, November 2013 27

    θ

    φ

    0 1 2 3 4 5 6

    - 3

    - 2

    - 1

    0

    1

    2

    3

    θ

    φ

    0 1 2 3 4 5 6- 3

    - 2

    - 1

    0

    1

    2

    3

    Fishbone signal array decomposition reveals a “phase-folded” dominant modal pattern; similar to sawteeth

    Amplitudeenvelopes

    dominantmodal patterns

    shot #155279

    n=2n=1

  • Olofsson et al., MHDWS, November 2013 28

    θ

    φ

    0 1 2 3 4 5 6- 3

    - 2

    - 1

    0

    1

    2

    3

    Fishbone signal array decomposition reveals a “phase-folded” dominant modal pattern; similar to sawteeth

    Amplitudeenvelopes

    shot #155279

    n=1

    “opposite”Inboard helicity

  • Olofsson et al., MHDWS, November 2013 29

    Conclusions

    • Improved signal processing may be required to implement NTM detectors for real-time control

    – Sawtooth precursors and fishbones exhibit n=1 modal patterns on the Mirnov array– Sawtooth precursors can have the same frequency as 2/1 NTMs

    • Improved signal processing enables more detailed offline data analysis – The eigspec code generates “clean” spectra that may be easier to relate to MHD

    modelling.

    • Magnetics fluctuation frequencies could be paired with other diagnostics– The eigspec code (or similar methods) appears to be applicable also to the integrations

    of several diagnostic systems, such as SXR, BES and ECE

    PowerPoint Presentation##TitleSlide 3Slide 4Slide 5Slide 6Slide 7Slide 8Slide 9Slide 10Slide 11Slide 12Slide 13Slide 14Slide 15Slide 16Slide 17Slide 18Slide 19Slide 20Slide 21Slide 22Slide 23Slide 24Slide 25Slide 26Slide 27Slide 28Slide 29