mirrors & prisms mit 2.71/2.710 09/12/01 wk2-b-1 last time: optical elements, – pinhole camera...

14
Mirrors & prisms MIT 2.71/2.710 09/12/01 wk2-b-1 Last time: optical elements, – Pinhole camera – Lenses Basic properties of spherical surface s Ray tracing Image formation Magnification Today: more optical elements, – Prisms – Mirrors

Upload: melanie-park

Post on 30-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mirrors & prisms MIT 2.71/2.710 09/12/01 wk2-b-1 Last time: optical elements, – Pinhole camera – Lenses Basic properties of spherical surfaces Ray tracing

Mirrors & prisms

MIT 2.71/2.71009/12/01 wk2-b-1

Last time: optical elements, – Pinhole camera – Lenses

Basic properties of spherical surfaces Ray tracing Image formation Magnification

Today: more optical elements, – Prisms – Mirrors

Page 2: Mirrors & prisms MIT 2.71/2.710 09/12/01 wk2-b-1 Last time: optical elements, – Pinhole camera – Lenses Basic properties of spherical surfaces Ray tracing

The pinhole camera

MIT 2.71/2.71009/12/01 wk2-b-2

The pinhole camera allows only one ray per object pointto reach the image space performs an imaging function.⇒ Unfortunately, most of the light is wasted in this instrument.

Page 3: Mirrors & prisms MIT 2.71/2.710 09/12/01 wk2-b-1 Last time: optical elements, – Pinhole camera – Lenses Basic properties of spherical surfaces Ray tracing

Lens: main instrument for imageformation

MIT 2.71/2.71009/12/01 wk2-b-3

The curved surface makes the rays bend proportionally to their distancefrom the “optical axis”, according to Snell’s law. Therefore, the divergent

wavefront becomes convergent at the right-hand (output) side.

Point source(object)

Point image

Page 4: Mirrors & prisms MIT 2.71/2.710 09/12/01 wk2-b-1 Last time: optical elements, – Pinhole camera – Lenses Basic properties of spherical surfaces Ray tracing

Cardinal Planes and Points

MIT 2.71/2.71009/12/01 wk2-b-4

Rays generated from axial point at infinity (i.e., forming a ray bundle parallel to the optical axis) and entering an optical system intersect the optical axis at the Focal Points. The intersection of the extended entering parallel rays and the extended exiting convergent rays forms the Principal Surface (Plane in the paraxial approximation.) The extension of a ray which enters and exits the optical system with the same angle of propagation intersects the optical axis at the Nodal Points.

Page 5: Mirrors & prisms MIT 2.71/2.710 09/12/01 wk2-b-1 Last time: optical elements, – Pinhole camera – Lenses Basic properties of spherical surfaces Ray tracing

Recap of lens-like instruments

MIT 2.71/2.71009/12/01 wk2-b-5

Cardinal Points and Focal Lengths

Imaging conditions

Matrix formulation

M12 ≠ 0

P = –M12 ≠ 0

M21 = 0

Lateral mx = M22

Angular mx = n/n’ M11

Matrix formulation

Page 6: Mirrors & prisms MIT 2.71/2.710 09/12/01 wk2-b-1 Last time: optical elements, – Pinhole camera – Lenses Basic properties of spherical surfaces Ray tracing

Prisms

MIT 2.71/2.71009/12/01 wk2-b-6

Page 7: Mirrors & prisms MIT 2.71/2.710 09/12/01 wk2-b-1 Last time: optical elements, – Pinhole camera – Lenses Basic properties of spherical surfaces Ray tracing

Frustrated Total Internal Reflection(FTIR)

MIT 2.71/2.71009/12/01 wk2-b-7

Reflected rays are missingwhere index-matched surfaces

touch shadow is formed⇒

Angle of incidenceexceeds critical angle

Page 8: Mirrors & prisms MIT 2.71/2.710 09/12/01 wk2-b-1 Last time: optical elements, – Pinhole camera – Lenses Basic properties of spherical surfaces Ray tracing

Dispersion

MIT 2.71/2.71009/12/01 wk2-b-8

Refractive index n is function of the wavelength

Newton’s prism

white light(all visible

wavelengths)

Page 9: Mirrors & prisms MIT 2.71/2.710 09/12/01 wk2-b-1 Last time: optical elements, – Pinhole camera – Lenses Basic properties of spherical surfaces Ray tracing

Dispersion measures

MIT 2.71/2.71009/12/01 wk2-b-9

Reference color linesC (H- λ=656.3nm, red), D (Na- λ=589.2nm, yellow),F (H- λ=486.1nm, blue)

Crown glass has

nF = 1.52933 nD = 1.52300 nC = 1.52042

Dispersive power V = nF − nC / nD − 1

Dispersive index v = 1/V = nD − 1 / nF − nC

Page 10: Mirrors & prisms MIT 2.71/2.710 09/12/01 wk2-b-1 Last time: optical elements, – Pinhole camera – Lenses Basic properties of spherical surfaces Ray tracing

Mirrors: the law of reflection

MIT 2.71/2.71009/12/01 wk2-b-10

Recall: from Fermat’s principleit follows that light follows thesymmetric path POP’.

Page 11: Mirrors & prisms MIT 2.71/2.710 09/12/01 wk2-b-1 Last time: optical elements, – Pinhole camera – Lenses Basic properties of spherical surfaces Ray tracing

Sign conventions for reflection

MIT 2.71/2.71009/12/01 wk2-b-11

Light travels from left to right before reflection and from right to left after reflection

A radius of curvature is positive if the surface is convex towards the left

Longitudinal distances before reflection are positive if pointing to the right; longitudinal distances after reflection are positive if pointing to the left

Longitudinal distances are positive if pointing up

Ray angles are positive if the ray direction is obtained by rotating the +z axis counterclockwise through an acute angle

Page 12: Mirrors & prisms MIT 2.71/2.710 09/12/01 wk2-b-1 Last time: optical elements, – Pinhole camera – Lenses Basic properties of spherical surfaces Ray tracing

Example: spherical mirror

MIT 2.71/2.71009/12/01 wk2-b-12

In the paraxial approximation,It (approximately) focuses anIncoming parallel ray bundle(from infinity) to a point.

Page 13: Mirrors & prisms MIT 2.71/2.710 09/12/01 wk2-b-1 Last time: optical elements, – Pinhole camera – Lenses Basic properties of spherical surfaces Ray tracing

Reflective optics formulae

MIT 2.71/2.71009/12/01 wk2-b-13

Imaging condition 1/D12 + 1/D01 = -2/R

Focal length f = -R/2

Magnification mx = -D12/D01 mα = -D01/D12

Page 14: Mirrors & prisms MIT 2.71/2.710 09/12/01 wk2-b-1 Last time: optical elements, – Pinhole camera – Lenses Basic properties of spherical surfaces Ray tracing

Parabloid mirror: perfect focusing(e.g. satellite dish)

MIT 2.71/2.71009/12/01 wk2-b-14

What should the shapefunction s(x) be in orderfor the incomingparallel ray bundle tocome to perfect focus?