miskolczi-2015 greenhouse effect and energetics

Upload: realzoeldek-realis-zoeldek-klub

Post on 07-Aug-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    1/42

    A légköri CO2

    1971 − ELTE TTK ATOMFIZIKA TANSZÉK 1974 − SZÁMOK1976 − ELTE TTK CSILLAGÁSZATI TANSZÉK 1981 − MTA FÖLDTUDOMÁNYI OSZTÁLY

    Fizikus diploma Programozói diploma 

    Doktori diploma Kandidátusi oklevel

    BudapestBerlin

    LeningrádMoszkva

    SzófiaModena

    Trieste

    Ilorin

    Lagos

    Ma

    Ha

    Calgary

    Portland

    Melbourne

    Amsterdam

    Sanghai

    Sidney

    OMSZ KLFI Sugárzási Osztál

    INTERKOZMOSZ: Leningrád,

    Dundee, Oxford − F. Taylor, D

    NIGÉRIA, UNIVERSITY OF CA

    ICTP G. Furlan, IMGA CNR R

    Colledge Park, UMD,(GOES,G

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    2/42

    Far-Infrared Properties of the Earth Radiation B

     A Proposal Submitted to NRA 03-OES-02

    Submitted Apri l 15 2003

    Martin G. Mlynczak, Bill Collins, Dave Kratz, Ping

    Christopher J. Mertens, Ferenc Mislkolczi, Robert G. E

    Bil l Smith, Sr .,

    Bryan Baum, 

    Paul Stackhouse,

    Larry G

    • Mlynczak, Miskolczi, Mertens,and Smith : CERES and AIRS window r

    • Kratz, Mertens, Miskolczi, Gordley : Far-IR flux derivations• Ellingson, Mertens : Radiative cooling rates

    •   Miskolczi, Kratz, and Mlynczak : Spectral Greenhouse Effect

    • Yang, Baum, and Stackhouse : Far-IR Cirrus Properties

    • Collins, Mertens, Kratz, Miskolczi : Climate Model Comparisons

    •  All : Error Analysis

    8.1 Science Team Member Responsibili ties

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    3/42

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    4/42

    ÜVEGHÁZHATÁS ÉS ENERGETIKA

    A  CO2  ÜVEGHÁZHATÁSON ALAPULÓ GLOBÁLIS FELME

    A KLÍMAVÁLTOZÁS MEGFIGYELT EMPIRIKUS TÉNYEI ÉS A KA

    ELMÉLETI MEGFONTOLÁSOK ENERGIAPOLITIKAI VON

    Dr. Ferenc M. Miskolczi

    3 Holston Lane, Hampton, VA 23664, USA

    e-mail: [email protected]

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    5/42

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    6/42

    THE GREENHOUSE EFFECT : G = SU - FA = SU - OLRA =

    Some solar

    radiation is

    reflected by 

    Earth and the 

    atmosphere

    Some of the i

    passes through

    Some is a

    greenhouseemitted in all d

    atmosphere. Th

     to warm Earth’

    lower at

    Infrared

    di ti i

    Some radiation isabsorbed by Earth’s surface and warms it

    Ear th‘s Surface

    Atmosphere

      n overview from the Royal Society and the US Nat

    cademy of Sciences

    RS & NAS Feb. 27th 2014 

    SU

    ST

    AA

    ED

    FA

    FR

    FE

    FA= OLRA

    http://-/?-http://www.realclimate.org/....2007/04/learning-from-a-simple-model/http://www.bbc.co.uk/schools/....gcsebitesize/science/ocr_gateway/energy_resources/global_warmingrev1.shtml

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    7/42

    http://www.bbc.co.uk/schools/....

    g lobal_warmingrev1.shtml  

    http://www.realclimate.org/....2007/04/  

    learnin g-from-a-simple-model  

    http://science-edu.larc.nasa.gov/energy_budget     http:/ /www.sei  pub.org/des/Download.aspxID=21810 

    http://www.bbc.co.uk/schools/....gcsebitesize/science/ocr_gateway/energy_resources/global_warmingrev1.shtmlhttp://www.bbc.co.uk/schools/....gcsebitesize/science/ocr_gateway/energy_resources/global_warmingrev1.shtmlhttp://www.realclimate.org/....2007/04/learning-from-a-simple-model/http://www.realclimate.org/....2007/04/learning-from-a-simple-model/http://www.realclimate.org/....2007/04/learning-from-a-simple-model/http://science-edu.larc.nasa.gov/energy_budget/http://science-edu.larc.nasa.gov/energy_budget/http://www.seipub.org/des/Download.aspxID=21810http://www.seipub.org/des/Download.aspxID=21810http://www.seipub.org/des/Download.aspxID=21810http://science-edu.larc.nasa.gov/energy_budget/http://www.realclimate.org/....2007/04/learning-from-a-simple-model/http://www.realclimate.org/....2007/04/learning-from-a-simple-model/http://www.bbc.co.uk/schools/....gcsebitesize/science/ocr_gateway/energy_resources/global_warmingrev1.shtmlhttp://www.bbc.co.uk/schools/....gcsebitesize/science/ocr_gateway/energy_resources/global_warmingrev1.shtml

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    8/42

    PLANETARY GREENHOUSE EFFECT LINKE

    ATMOSPHERIC IR ABSORPTION

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    9/42

    KT97

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    10/42

    G. STEPHENS 2012 : Updated energy balance 

    TOA imbalance 0.60.4

    Clear-skyemission

    266.43.3

    Outgoing

    longwaveradiation

    All-sky longwave

    absorption

    Longwave

    cloud effect26.74

    26.65   3199Clear-sky emission

    to surface

    All-sky emission

    to surface

    Surface shortwave

    absorption

    Clear-sky

    refection

    Atmospheric

    absorption

    27.24.6

    47.53

    55

    1656   233 3985345.69

    239.73.3Reflected solar

    Shortwave

    cloud effect

    100.02Incoming

    solar

    Sensible

    heating

    Latent

    heating

    340.20.1

    Surface imbalance 0.617

    Surface

    reflectionSurface

    emission

    247

    7510

    All-sky

    atmospheric

    window

    204

    35-187.912.5

    8810

    PROGRESS ARTICLE NATURE GEOSCIENCE DOI: 10.1038/NGEO1580

    Martin Wild • Doris Folini • Christoph Schar • Norman Loeb • Ellsworth G. Dutton •

    Gert Konig-Langlo

    Clim Dyn (2013) 40:3107–3134 DOI 10.1007/s00382-012-1569-8

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    11/42

    0.6 +/- 17 Wm-2NATURE DOI:0.1038/NGEO1580

    G. L. Stephens, J. Li, M. Wild, C. A. Clayson, N. Loeb4, S. Kato, T. L’Ecuyer , P. W. Stackhouse Jr,

    M.Lebsock and T. Andrews

    340.4

    -99.9

    -239.9

    +0.6 Wm-2

    +0.6 Wm-2

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    12/42

    S z ü n e t e l a k l í m a v á l t o z á s ÖSSZEFÜGGÉS : Kétségtelen az emberi tevéke

     Mika ános  :  KLÍMAVÁLTOZÁS 13, 2014. ÁPRILIS 25., PÉNTEK

    "A m elegedés megtorpanását minden bizonnyal a déli félteke óceánjainak váratlanul feler  södött h elny

    Annual mean normalizd surface effective and greenhouse temperatures and CO concentrations

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    13/42

    1950 1960 1970 1980 1990 2000−2.5

    −2

    −1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    2

    2.5

    Years

       N  o  r  m  a   l   i  z  e   d   t  e  m  p  e  r  a   t  u  r  e  s

      a  n   d   C   O   2  c  o  n  c  e  n   t  r  a   t   i  o  n  s

    Annual mean normalizd surface, effective and greenhouse temperatures, and CO2 concentrations

    1948 − 2007, NOAA Earth System Research Laboratory

     

    TS

    TE = ( OLR / σ )

    0.25

    ∆TG = TS − TE

    CO2

    Th i l i l d h i h l i f h 3 2− τ

    10 / ( 1− τ

    ) i

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    14/42

    1950 1960 1970 1980 1990 20001.8

    1.9

    2

    2.1

    2.2

    2.3

    2.4

    2.5

    2.6

    2.7

    2.8

     Years

       I   R  o  p   t   i  c  a   l   d  e  p   t   h   /   H

       2   O  c  o   l  u  m  n  a  m  o  u  n   t

    Theoretical optical depth, τ , is the solution of the 3 + 2 e  τ 

    = 10 / ( 1 + τ + e  τ 

    ) equation

     

    Theoretical: 1.87

    H2O precipitable centimeters

    IR optical depth ( annual mean )

    1948 − 2008 (61 year mean)

    1959 − 2008 (50 year mean)

    1948 − 1997 (50 year mean)

    1973 − 2008 (36 year mean)

    1948 − 1972 (25 year mean)

    1977 − 2008 (32 year mean)

    1948 − 1976 (29 year mean)

    mean profile values

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    15/42

    MAGYAR TUDOMÁNY : Vélemény Miskolczi Ferenc: Értekezés az üvegházhatásról c. kéziratáról

    " Miskolczi Ferenc kéziratában bemutatott kiindulási feltevése szakmailag téves, elfogadhatatlan.Abból indulugyanis ki, hogy a Föld-légkör rendszerbe beérkező és onnan távozó energia egyenlő....."

    " Miskolczi a természeti folyamatokon tesz erőszakot akkor, amikor energia-egyensúlyt feltételez egy olyanrendszerben, amelyik gyakorlatilag soha nincs egyensúlyban...."" Összefoglalva: megítélésem szerint a kézirat a súlyos szakmai tévedések, és az olvasókat félrevezető hivatkozási

    csúsztatás miatt nem alkalmas az MT-ben történő közlésre....."

    Budapest, 2013. 02.23. 

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    16/42

    CLEAR-SKY GREENHOUSE FACTORS

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    17/42

    −5 0 5 10 15 200

    10

    20

    30

    40

    50

    60

    70

    Layer contribution to G(z) : ∆G(z) = G(z+∆z)−G(z), W/m2

       A   l   t   i   t  u   d  e  z ,   k  m

    Global mean profiles of ∆G(z) : GT, G

    1− G

    4, G

    R  B(z): σt

    4(z) τ = τ(z

    T,z) : IR optical depth

    Tr IR transmission

    EU upward fluxE

    D downward flux

    OLR outgoing flux

    εi anisotropy

    zT top altitude

    ∆z layer thickness

    G(z) = σt4(z) − OLR(z

    T,z) = B(z)*(1−T

    r(z

    T,z)) − E

    U(z

    T,z) = Σ ∆G(z)

    GR in Raval and Ramanathan, 1989: Nature, VOL 342, pp 759, Eqs. 1−2,

    or GR in Kiehl and Ramanathan, 2006: Frontiers of Climate Modeling,

    Cambridge University Press 2006.,pp 133,Eqs. 5.3−5.4, are incorrect

    and inconsistent with the definitions of G1 − G

    4 and the theoretical

    expectation of GT ! Global average G

    R shows 15 % error (overestimate)

    compared to the definition of G1 or the theoretical GT published in

    Miskolczi 2007:Időjárás,VOL 111, pp 14, Eqs. 18−19 and Eq. 28 !

    GT = ∆(B(z)*(1−2/(1+τ+exp(−τ))) 128.54 W/m

    2

    G1 = ∆(B(z) − OLR(zT,z)) 128.42 W/m2

    G2 = ∆(B(z)*(1−T

    r(z

    T,z) − E

    U(z

    T,z)) 128.42 W/m

    2

    G3 = ∆(E

    D(z

    T,z)/ε

    i − E

    U(z

    T,z)) 128.42 W/m

    2

    G4 = ∆OLR(z,0) 128.36 W/m

    2

    GR = ∆B(z)*(1−T

    r(z

    T,z)) 148.71 W/m

    2

    dGR = G

    1 − G

    R−20.29 W/m

    2

    Water vapor column density and thermal structure

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    18/42

    Water vapor column density and thermal structure

    Logarithm of the H2O column density follows the shape of the temperature variations, r = 0.994

    689 soundings, saturation pressure computed over water and ice

    −4 −2 0 2 4 6 80

    5

    10

    15

    20

    25

    30

    35

    40

       A   l   t   i   t  u   d  e ,

       k  m

    JAN

    FEB

    MAR

    APR

    MAY

    JUN

    JUL

    AUG

    SEP

    OCT

    NOV

    DEC

    Water vapor layer column density

    200 220 240 260 280 3000

    5

    10

    15

    20

    25

    30

    35

    40

       A   l   t   i   t  u   d  e ,

       k  m

    JAN

    FEB

    MAR

    APR

    MAY

    JUN

    JUL

    AUG

    SEP

    OCT

    NOV

    DEC

    Layer mean temperature

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    19/42

    RADIATIVE TRANSFER MODEL  - G = SG  - OLR =

    GreenhoG = SG  –

    GN = G /

    QU

    What caglobal sc

    of IR flux

    What are

    relations

    global avdensity t

    All-sky m

    SG = 39

    OLR = 23

    GN ~ 0.

    1761 TIGR2 Soundings, 40 pressure levels

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    20/42

    180 200 220 240 260 280 300 3201000

    100

    10

    Temperature, K

       P  r  e  s  s  u  r  e ,

       h   P  a

    1761 TIGR2 Soundings, 40 pressure levels

    Cross−referenced profile # 60 TIGR2 # 1621 TIGR2000 # 2171

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    21/42

    p

     S/N ts h2o o3 Su Ed OLR St Eu tau

    1621 266.6 0.5262 0.2546 286.7 200 213.8 78.48 135.3 1.295

    2171 266.6 0.5274 0.3548 286.7 200.4 210.4 76.95 133.4 1.315

      ∆  0 0.0012 0.1002 0.00043 0.4968 −3.403 −1.535 −1.868 0.01976

      ∆% 0 0.2281 39.36 0.00015 0.2485 −1.592 −1.956 −1.381 1.525

    200 220 240 260 280 3001000

    100

    10

    1

    0.1

    Temperature, K

       P  r  e  s

      s  u  r  e ,

       h   P  a

    226.71 226.71 23.285 23.285 K

    −6 −5 −4 −3 −21000

    100

    10

    1

    0.1

    log10

    ( H2O mmr, g/g )

       P  r  e  s

      s  u  r  e ,

       h   P  a

    0.2496 0.2516 0.5862 0.5854 g/kg

    −7.5 −7 −6.5 −6 −5.5 −51000

    100

    10

    1

    0.1

       P

      r  e  s  s  u  r  e ,

       h   P  a

    2.779 2.607 3.899 3.212 mg/kg

    −30 −20 −10 0 10 20 301000

    100

    10

    1

    0.1

       P

      r  e  s  s  u  r  e ,

       h   P  a

     

    ∆H2O

    ∆O3

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    22/42

    ABSORBED SURFACE RADIATION, AA, DOWNWARD EMITTASURFACE UPWARD FLUX, SU, AND UPWARD EMITTANC

    E A i d d t f th th l t t d h

    ←TIGR PROFILES

    ← MARTIAN ATMOSPHERES

    IR radiative structure of the atmosphere fro

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    23/42

    100 200 300 400 500 600100

    200

    300

    400

    500

    600

    SU

    , Wm−2

       E   D

       /   A ,   W  m  −   2 r = 0.997

    Atmospheric Kirchhoff rule

    IR radiative structure of the atmosphere fro

    382

    100 200 300100

    200

    300

    400

    500

    600

    SU

       O   L   R   (   2  +

           τ   A  −   A   )   /   2 ,   W  m

      −   2

    r = 0.959

    Radiative e

    300

    400

    500

    600

    382

    Energy conservation rule

    r = 0.968

    R   /   2 ,   W

      m  −   2

    300

    400

    500

    600Atmosph

    r = 0.94

    U ,   W  m  −   2

    Observed empirical facts, TIGR archives, 475 global soundings

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    24/42

    Ed = Aa, Su = Olr / f, Su = Olr / fc = Olr / ( 0.6 + 0.4 Ta ), Su = 2 Eu

    100 200 300 400 500100

    200

    300

    400

    500

    Ed, W/m2

       A  a ,

       W   /  m   2

    Aa = 1.042 Ed − 2.6 W/m2, r = 0.998

    200 300 400 500

    200

    400

    500

    Su, W/m2

       O   l  r   /   f ,   W   /  m   2

    Olr / f = 0.993 Su + 6.1 W/m2, r = 0.946

    200 300 400 500

    200

    400

    500

    Su, W/m2

       O   l  r   /   f  c ,

       W   /  m   2

    Olr / fc = 0.765 Su + 90.5 W/m

    2, r = 0.976

    200 300 400 500

    200

    400

    500

    Su, W/m2

       2   E  u ,

       W   /  m   2

    2 Eu = 0.9366 Su + 23.5 W/m2, r = 0.934

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    25/42

     A D A E =   2

    U U S E =

    3

    2U S OLR=   U 

    OLRS 

     f  

    =

    2 /(2 ) f Aτ  = + −U OLR E = +

    (1 exp( )) A U A A S    τ  = − −

    1.867 Aτ     =

    Anisotropy in directional radiances

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    26/42

    Global average TIGR 2 atmosphere

    0 10 20 30 40 50 60 70 80 900

    20

    40

    60

    80

    100

    120

    140

    Viewing angle, degree

       R  a

       d   i  a  n  c  e ,

       W   /   (  m

       2   s

      r   )

    53.13o

    81.7o

    Limb angles SU EDi E

    DS

    TE

    UA

    A OLR

    IPCC type no−feedback radiative forcing to N2, O

    2, CH

    4, CO

    2, and H

    2O perturbations

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    27/42

    Reference global average clear−sky OLR : TIGR2 ( 1976 ) : 251.8 W/m2, NOAA R1 ( 1948 ) : 256.4 W/m

    2

    ln(1/8) ln(1/4) ln(1/2) ln( 1 ) ln(3/2) ln( 2 )−20

    −15

    −10

    −5

    0

    5

    10

    15

    20

    25

    30

     ln(GHG column amount perurbations)

          ∆   O   L   R ,

       W   /  m   2

    Recent GCMs do not observe the true radiative constraints from known physical principles

     

    IPCC : ∆OLR = −3.53 * ln(c/co) = −0.747 W/m

    2

     REALITY

    ∆OLR = 3.02 W/m2

    N2 6.23e+005 atm−cmSTP

    O2

    1.67e+005 atm−cmSTP

    CH4

    1.29 atm−cmSTP

    CO2

    263 atm−cmSTP

    H2O 2.61 prcm

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    28/42

    GLOBAL AVERAGE ATMOSPHERES

    Interpretation of the effective temperature

    The global average spectral clear and cloudy OLR and the effective temperature violate the Wien displacement law

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    29/42

    The global average spectral clear and cloudy OLR and the effective temperature violate the Wien displacement law

    Spectral flux densities are in W/m2/cm

    −1

    0 500 1000 1500

    0

    0.1

    0.2

    0.3

    0.4

    Wavenumber, cm−1

       S  p  e  c   t  r  a   l   f   l  u  x   d  e  n  s

       i   t  y

    Clear

     

    St

    Eu

    0 500 1000 1500

    0

    0.1

    0.2

    0.3

    0.4

    Wavenumber, cm−1

       S  p  e  c   t  r  a   l   O   L   R

    Clear, ∆ν = 53 cm−1

    , te = 258.1 K

     

    St+E

    u

    B ν(t

    e)

    0 500 1000 15000

    0.1

    0.2

    0.3

    0.4

    Wavenumber, cm−1

       S  p  e  c   t  r  a   l   f   l  u  x

       d  e  n  s   i   t  y

    Cloudy − cloud top at 2 km

     

    St

    c

    Eu

    c

    0 500 1000 15000

    0.1

    0.2

    0.3

    0.4

    Wavenumber, cm−1

       S  p  e  c   t  r  a   l   O

       L   R

    Cloudy, ∆ν = 39 cm−1

    , te

    c = 255.1 K

     

    St

    c+E

    u

    c

    B ν(te

    c

    )

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    30/42

    Planetary radiative equilibrium cloud cover at hC 

    FA = (1-βA ) OLR + βA OLRC 

    FE = (1-βE ) SU  + βESUC

    βA ( FA , hC ) = ( FA − OLR ) / ( OLRC ( hC ) − OL

    E ( FE , h

    C ) = ( FE − S U) / ( SUC ( h

    C ) − S

    U)

    FA  = (1 - αB )FE

    min ( || βA (hC αB ) - βE(hC αB ) ||2 )

    Radiative equilibrium cloud altitude and albedo

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    31/42

    Radiative equilibrium cloud altitude and albedo

    0.295

    0.3

    0.305

    01

    23

    45

    −10

    −5

    0

    5

    10

    AlbedoAltitude, km

       l  o  g   1   0

       (      ∆       β

       )

    −6

    −4

    −2

    0

    2

    4

    6

    4

    ISCCP−D2 198307−200806 global mean : 66.38 +/− 1.48 %

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    32/42

    1985 1990 1995 2000 2005−4

    −2

    0

    2

    4

    Years

       M  o

      n   t   h   l  y  m  e  a  n  c   l  o  u   d

      a  m  o  u  n   t  a  n  o  m  a   l   i  e  s ,

       %Theoretical global mean : 66.18 %

    Planetary effective temperatures

    E Ec

    : atmospheric upward LW spectral emission from clear and cloudy areas

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    33/42

    Eu, ν

     , Eu, ν

     : atmospheric upward LW spectral emission from clear and cloudy areas

    St, ν

     , St, ν

    c : transmitted spectral flux density from the ground surface and cloud top

    0 500 1000 1500 2000 2500

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    Wavenumber cm−1

       S  p  e  c   t  r  a

       l   f   l  u  x   d  e  n  s   i   t  y ,

       W   /  m

       2   /  c  m  −   1

    OLRA = (1 − β)(S

    t + E

    u) + β (S

    t

    c + E

    u

    c) = 238.9 W/m

    2  cloud cover β = 0.66 t

    e

    a = (OLR

    A/σ)

    0.25 = 254.78 K

    238.94 →  OLR νA  ← observed

    72.962 →  (1−β) St, ν

     + β St, ν

    c

    165.98 →  (1−β) Eu, ν

     + β Eu, ν

    c

    238.94 →  B ν(t

    e

    a) ← observed t

    e

    a = 254.8 K

    238.94 →  B ν(ta) ← NASA te = 254.8 K

    341.98 →  B ν(t

    s

    a) ← observed t

    s

    a = 278.7 K

    341.97 →  B ν(t

    e) ← NASA t

    e = 278.7 K

    Observed global mean spectral greenhouse factor, GF ν

    A

    FE

    FA

    and FR

    : total effective absorbed and reflected SW radiation in W m−2

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    34/42

    F0

    E , F

    0

    A, and F

    0

    R : total effective, absorbed, and reflected SW radiation in W m

    2

    SU

    A , OLR

    e

    A, and GF

    e

    A : total effective surface upwad, outgoing, and greenhouse LW flux densities in W m

    −2

    200 400 600 800 1000 1200 1400 1600 1800 20000

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    Wavenumber, cm−1

       S  p  e  c   t  r  a   l   f   l  u  x   d  e  n  s   i   t  y ,

       W   m

      −   2

       c  m  −   1

    GF ν

    A  GF

    A  = 103.04

    F0, ν

    EF

    0

    E  = 341.97

    F0, ν

    AF

    0

    A  = 238.94

    F0, νR F

    0R  = 103.03

    SU, ν

    AS

    U

    A  = 341.98

    OLRe, ν

    AOLR

    e

    A  = 238.94

    GFe, νA

    GFeA

      = 103.04

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    35/42

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    36/42

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    37/42

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    38/42

    4

    Albedo : 0.30 Cloud cover : 0.66 Cloud top altitude : 1.92 km w ν : Wien constant

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    39/42

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5−3

    −2

    −1

    0

    1

    2

    3OBSERVED

    log10

     ( Wavenumber, cm−1

     )

       l  o  g   1   0

       (   S  p  e  c   t  r  a   l   f   l  u  x

       d  e  n  s   i   t  y ,

       W   m

      −   2

       c  m

      −   1   )

    H2O triple point at :

    535.66 cm−1

    273.16 K =  νmax

    w ν

    W m−2 K

    E0 63.18E+6

    tSUN 5778

    S0 1368 t0 394.1S

    E 342tE 278.7

    SA 239

    tA 254.8

    SR 103

    tR 206.5

    SA

    342OLR

    A 239

    GFA 103

    The dynamics of t

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    40/42

    H2O

    The dynamics of tdepend on the dynamradiation and the spacatmospheric humidity

    of the IR optical thicstochastic. The instanare governed by the tuthe air and the globbution of the thermal

    general (atmospheric.According to the simple-minded or ‘classic’ view of

    the greenhouse effect the global average greenhousetemperature change may be estimated by the directapplication of the Beer-Lambert law moderated bylocal or regional scale weather phenomena (R.Pierrehumbert, A. Lacis, R. Spencer, R. Lindzen, A. P.Smith, H. deBruin, J. Abraham et al., J. Hansen et

    al.,and many others)*. This is not true. .

    .The greenhouse effect is a global scaleradiative phenomenon and can not be

    d iscu ssed w i t h o u t t h e exp l i c i tquantitative understanding of the globalcharacteristics of the IR atmospheric

    A CO2 ÜVEGHÁZHATÁSÁN ALAPULÓ GLOBÁLIS FELMEL

    HIPOTÉZISE TUDOMÁNYTALAN SZEMFÉNYVESZTÉ

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    41/42

    HIPOTÉZISE TUDOMÁNYTALAN SZEMFÉNYVESZTÉ

    JÓZAN ENERGIAPOLITIKÁNAK A VÁRHATÓ ENERGIAIGÉNY

    RENDELKEZÉSRE ÁLLÓ ENERGIAFORRÁSOK KORRE

    FELMÉRÉSÉN KELL ALAPULNIA 

    bu

    h2o

  • 8/20/2019 Miskolczi-2015 Greenhouse Effect and Energetics

    42/42

    2 4 6 8 10 12 14 160

    50

    100

    150

    200

    250

    300

    350

          P    o    w

        e    r

    Period(Years/Cycle)

     

    h2o

    ed

    olr

    st

    eu

    tau