mit and advanced manufacturing...

36
© 2016 B.W. Anthony, MIT MIT and Advanced Manufacturing Institutes Education, Practice, and Research Brian W. Anthony, PhD Co-Director, Medical Electronics Device Realization Center Director, Master of Engineering in Manufacturing Program [email protected]

Upload: others

Post on 16-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

© 2016 B.W. Anthony, MIT

MIT and Advanced Manufacturing InstitutesEducation, Practice, and Research

Brian W. Anthony, PhDCo-Director,

Medical Electronics Device Realization CenterDirector,

Master of Engineering in Manufacturing Program

[email protected]

Page 2: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

© 2016 B.W. Anthony, MIT

• From flexible hybrid electronics, to integrated photonic devices, to functional fibers to smart manufacturing, the new U.S. Federal government institutes are advancing new manufacturing technologies and accelerating the pace of manufacturing innovation. This session will discuss collaborative opportunities for industry partners to participate in education, practice, and research - developing new products and capabilities and people.

Page 3: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

© 2016 B.W. Anthony, MIT

4 Topics1. What is Manufacturing?2. Collaborate with MIT in

Manufacturing Innovation Education.

3. Collaborate with MIT in the Practice of Advanced Manufacturing

4. Collaborate with MIT in Medical Device Innovation and Manufacturing Research.

Brian W. Anthony, PhDMIT

Co-Director, Medical Electronics Device Realization CenterDirector, Master of Engineering in Manufacturing Program

[email protected]

Page 4: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

© 2016 B.W. Anthony, MIT

What is Manufacturing?

Page 5: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

© 2016 B.W. Anthony, MIT

Is it?• “Making”• Machining• Etching• Photolithography• CVD• Injection Molding• Materials Processing• Mechatronics and Robots

• Automation• Integrated Photonics• Nanomaterials• Roll to Roll Processes• Electron Beam Epitaxy• Welding• Supply Chain• Logistics• …

Page 6: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

© 2016 B.W. Anthony, MIT

Is it?• “Making”• Machining• Etching• Photolithography• CVD• Injection Molding• Materials Processing• Mechatronics and Robots

• Automation• Integrated Photonics• Nanomaterials• Roll to Roll Processes• Electron Beam Epitaxy• Welding• Supply Chain• Logistics• … No…

Page 7: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

© 2016 B.W. Anthony, MIT

It is• Making Products using Combinations of

these Technologies to meet commercial drivers of: – Demand– Cost– Quality– Flexibility

… in a complex system where material and information and people are in constant motion and variability must be understood or controlled.

Page 8: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

© 2016 B.W. Anthony, MIT

MIT

Flow of people in the Manufacturing Ecosystem

Company

MIT Students

Master of Engineering in Manufacturing (MEngM)Program

MIT Company

Your Employees

Education, Research, and Practice Factory

Challenges, PerspectivesChallenges, Perspectives

Challenges, PerspectivesChallenges, Perspectives

Page 9: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

© 2016 B.W. Anthony, MIT

MASTER OF ENGINEERING IN ADVANCED MANUFACTURING AND DESIGN (MENGM) PROGRAM

How to Collaborate with MIT in

Page 10: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

© 2016 B.W. Anthony, MIT

M. Eng. in Manufacturing • “The Master of Engineering in Advanced

Manufacturing and Design is a twelve-month professional degree that is intended to prepare the student to assume a role of technical leadership in the manufacturing industries. The degree is aimed at practitioners who will use this knowledge to become leaders in existing as well as emerging manufacturing companies”

Page 11: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

© 2016 B.W. Anthony, MIT

Goals• Create Technical Leaders for Global Emerging

Industries• Create Engineers with a “Systems” view• Give a Strong Base for working in any Industry• Emphasize Math and Science Based Methods for

Analysis, Design and Operation of Manufacturing Enterprises

• Create an Understanding of the Global Manufacturing Strategies

Page 12: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

© 2016 B.W. Anthony, MIT

What is the MEng in Manufacturing?• One Year, Non-Research Graduate Degree• Comprehensive Design and Manufacturing

Curriculum• Taken as a Cohort• Emphasis on Using Engineering Background • Introduction of the Systems Perspective• Project-Based, and Team-Based Curriculum• Strong Industry Connection

– 8 of 12 Months on Group Project in Industry. Master of Engineering in Manufacturing (MEngM) Program

Page 13: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

© 2016 B.W. Anthony, MIT

MengM Curriculum Elements• Design and Manufacturing

– Design for Manufacturing– Product Development Process

• Manufacturing Physics– Processes, Machines, Assembly, Process

Control• Manufacturing Systems

– Factory Design and Control– Supply Chain Design and Control

• Management and Global Manufacturing– Management for Engineers– Seminar in Global Manufacturing

• Group Projects in Industry

Group Project

Individual Work

Team Work

Mfg. Physics

Mfg. System

s

Prod. Design

Business

Master of Engineering in Manufacturing (MEngM) Program

Page 14: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

© 2016 B.W. Anthony, MIT

Group Projects• Based in a Company• Teams of 3-4 Students• Solve Problem of Immediate

Value to Company and Pedagogically Aligned with the Degree

• During 8 of the 12 months of program

• Project Definition is Critical

– Product and Process Design for a Diagnostic Microfluidic Device

– Implementation of RFID (internet of things) for Product and Equipment Tracking in a Factory

– Process Development for a High Volume Factory

– Supply Chain Planning for New Products

– New Product Introduction (NPI) manufacturing line development

– …

Examples

Master of Engineering in Manufacturing (MEngM) Program

Page 15: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

© 2016 B.W. Anthony, MIT

MIT Connected Manufacturing Institutes…

• Photonics• Flexible Electronics• Fibers and Fabrics• …

all at very different level of starting maturity.

Page 16: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

© 2016 B.W. Anthony, MIT

Flexible Hybrid Electronics MII

Page 17: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

NextFlex Mission

17

• Create a partnership of the best teams in FHE based on our extensive existing network; incorporate and leverage the remarkable capabilities already established in industry, universities, and not‐for‐profits from around the country.

• Provide DOD and commercial end‐users access to low‐volume production facilities, enabling development of a domestic FHE manufacturing base, including manufacturing technologies, equipment, materials, and a highly educated and trained workforce.

• Catalyze the development of an ecosystem for manufacturing new forms of electronics that integrate bulk ICs and printed devices with functions such as power, communications, fluidics, and bio‐sensing in flexible systems that can bend, fold, stretch, and conform.

• Form and lead a network of nodes focused on manufacturing technologies related to FHEand carry out associated education and workforce development, with a hub to coordinate all activities provide electronic prototype assembly, performance and reliability testing, and the creation of commercialization paths.

• Craft a capability for design, testing and manufacturing of new products for human performance monitoring, healthcare, distributed sensors, and consumer electronics. 

• Empower U.S. universities and research organizations to move basic and applied research activities in fields such as semiconductor and device packaging, printed electronics, synthesized nanomaterials, and micro‐mechanical and fluidic systems from MRL/TRL level 4 to 7, while participating in the commercialization process.

Catalyze the development of an ecosystem for manufacturing new forms of electronics that integrate bulk ICs and printed devices with functions such as power, communications, fluidics, and bio-sensing in flexible systems that can bend, fold, stretch, and conform.

Page 18: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

Technology Platform DemonstratorsA. Human Monitoring SystemsB. Asset Monitoring SystemsC. Integrated Array Antenna SystemsD. Soft Robotics

Intended to facilitate the identification of critical and pervasive manufacturing gaps.  These manufacturing gaps will be addressed by targeted projects addressing one or more of the manufacturing technical thrusts.

Page 19: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

MIT Confidential

In-situ metrology systems, Precision print-head control

1

m

m

FluorescentImage Carrier

GlassImpression Cylinder

Camera

UV-Illumination

Continuous R2R Contact Tracking, Control, Alignment

In-Process Control – Pattern Fidelity

Nanoimprint Spatial Modeling & Design Optimization

MIT Expertise and Capabilities

50 100 150 200 250

50

100

150

200

250

Pattern Deformation, or Quality Map

Imprint of 200 nm‐thick polymethylmethacrylate 495 kg/mol, c. 165 °C, 40 MPa, 1 min

Residual layer 

thickness

Page 20: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

MIT Confidential

Roll-to-Roll Microcontact Print (µCP): Large Area, High Rate – Equipment, and Seamless Stamps

MIT Expertise and CapabilitiesHigh-speed R2R CVD Vapor Printing of

Electrodes & Sensors

Conformally coated fibers: Breathable electrodes

Page 21: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,
Page 22: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

AIM Photonics Vision and Mission

American Institute for Manufacturing integrated Photonics

VISION:  Establish a technology, business and education framework for industry, government and academia to accelerate the transition of integrated photonic solutions from innovation to manufacturing‐ready deployment in systems spanning commercial and defense applications. 

MISSION:  Create a national institute supporting the end‐to‐end integrated photonics manufacturing ecosystem in the U.S. by expanding upon a highly successful public‐private partnership model with open‐access to world‐class shared‐use resources and capabilities. 

Page 23: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

AIM Photonics Academy Vision and Mission

Support community, careers and investment for US world leadership in Integrated Photonics manufacturing.

Roadmap: supply chain; technology and workforce timelines

Workforce Development: needs, pathways, practice

Education: design, content, distribution, practice, certification

Assessment: workforce, AIM Academy impact, best practices

Digital Presence: simulation, website, on‐line distribution

AIM Photonics Academy will provide the unified knowledge, technology, and workforce interface for AIM Photonics.

Page 24: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

AIM Photonics Academy Vision and Mission

AIM Photonics Proprietary 25

AIM Photonics Academy will provide the unified knowledge, technology, and workforce interface for 

AIM Photonics.

Radically advance manufacturing education : 1) Developing blended (digital and in‐person) learning 

curriculum and programs and2) Designing, building and operate collaborative practice 

facilities.

Goals

Working with industry to Build and Support the Supply‐Chain and Workforce in Integrated Photonics Manufacturing

Page 25: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

Programs and Practice

AIM Photonics Proprietary 26

•Credentials and Professional Certificates

•Degree Programs in Advanced Manufacturing with Technology Tracks

•Design Automation Software Practice Environment

•Education and Practice Factory – Practice facility

Page 26: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

Programs 27

• Xseries Certificate *• MIT Professional X *

Certificate

• IP MCore Certificate to any engineering student

• “Graduate Minor”• MEng in Manufacturing curriculum

with tracks for specialization

Non-Degree CertificateExternal Focus

Degree OptionsMIT Students Focus

• Advanced Studies Program *

• MechE/Meng Certificate External Program *In

-Per

son

On-

Line

27

Page 27: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

What is an Education and Practice Factory

AIM Photonics Proprietary 28

facilities co‐staffed by students, researchers and professional manufacturing staff, connected to the commercial and academic needs and environments,  which will produce ‐ equipment or components ‐ for the education, research, and early scale‐up needs of company partners, and which will serve as a laboratory‐factory to teach and research advanced manufacturing concepts

Thanks to Commonwealth of MA

Page 28: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

Education Practice Factory – First Equipment – Thanks to Commonwealth of MA

BSET (E)Thermal processing system ATV SRO‐700

Mitutoyo (A) QV Active 202

MRSI (B)Ultra precision assembly workcell mrsi‐m3

Nordson (F)AP600 plasma treatment equipment

PXI (H) Pacific X‐ray Imaging 130West Bond (D) Die Bonder

Page 29: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

Optical Table

4.6m

6.4m

2.5m

1.3m

1m

Hood2.2m

Entrance1.9m

1.5m

1.6mPXI X‐ray

1.2m

1.2m

QV 202

1.9m

AP600

0.8m

WB Wire Bonder

0.7m

1.2m

MSRI M3

1.7m

1.5m

0.8m

BSET thermal

Metrology Surface prep, modification, enhancement

Assembly and 

bonding

Data Center / Control

7m

1m1.1m

2.7m

PressurizedChamber

Supplies

1.1m

0.6m0.5m

0.8m 1.2m

Page 30: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

© 2016 B.W. Anthony, MIT

MEDICAL ELECTRONIC DEVICE REALIZATION CENTER (MEDRC)

How to Collaborate with MIT in

Page 31: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

© 2016 B.W. Anthony, MIT

Medical Devices as Context for Advanced Manufacturing Research

• Manufacturing research without a product focus seldom leads to significant breakthroughs.

• Highly personalized medical devices.

• Advanced technologies, methods of printing flexible electronics and additive manufacturing, integrated photonics make personalization feasible.

Page 32: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

© 2016 B.W. Anthony, MIT

Medical Electronic Device Realization Center

Integrated Sensing System

Physiological Data Data Analytics

Decision Support /

Actionable Information

Solving clinical needs, by innovating user-centric manufacturabledevices, leveraging the power of the microelectronics industry and Boston / Cambridge Ecosystem. MEDRC

Patient Health Care Actions

Page 33: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

© 2016 B.W. Anthony, MIT

Hospitals, Physicians

MITMEDRC Companies

MEDRC - Model

• Each sponsored project jointly created by industry, academics, and clinicians maximizes chance of project success.

• Industrial scientist on-site at MIT company stays engaged, project stays relevant, technology transferred to the company.

• Early prototypes placed in “customers” (clinicians) hands in parallel with research technology development.

Employees

Challenges, PerspectivesChallenges, Perspectives

MEDRC at MIT does Medical Electronic Device Research with strong interaction between companies and physicians/clinicians.

Medical Electronic Device Realization Center (MEDRC)

Page 34: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

© 2016 B.W. Anthony, MIT

Application Areas and Technology Examples• Wearable Devices

– Vital signs monitors including cuffless blood pressure

• Minimally Invasive Monitors– EEG measurements for Epilepsy patients

• “Point of Care” Instruments – “Lab on a Chip” for blood, urine, saliva analysis

• Imaging– Smart Ultrasound

• Data Communication– Body Area Network

• Pharma– Clinical trial of the future

Medical Electronic Device Realization Center (MEDRC)

Page 35: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

How to work with MIT

AIM Photonics Proprietary 36

•Host manufacturing projects•Training programs at your organization•Education and Practice Factory as a resource•Strengthen your workforce – degree programs, training and professional programs

•CollaborativeMedical Device research

Page 36: MIT and Advanced Manufacturing Institutesilp.mit.edu/images/conferences/2016/rd/presentations/Anthony.2016.RD.pdf · MIT and Advanced Manufacturing Institutes Education, Practice,

© 2016 B.W. Anthony, MIT

4 Topics1. What is Manufacturing?2. Collaborate with MIT in

Manufacturing Innovation Education.

3. Collaborate with MIT in the Practice of Advanced Manufacturing

4. Collaborate with MIT in Medical Device Innovation and Manufacturing Research.

Brian W. Anthony, PhDMIT

Co-Director, Medical Electronics Device Realization CenterDirector, Master of Engineering in Manufacturing Program

[email protected]

Thank you.

Questions?