mitres ll 003iap11 lec02

28
 Alan J. Fenn , PhD 1/14/2011 1  A n t enna Design f or t he Laptop Radar Proj ect * 2011 MIT Independent Ac tivities Period (IAP)  A lan J. Fenn, PhD MIT Lincoln L aboratory 14 Janu ary 201 1 *This work is s ponso red by the Department of t he Air Force under Air For ce Contract #FA87 21-0 5-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.  App ro ved fo r p ub li c r elease; di st ri bu ti on is unlimited.

Upload: scribdsgay

Post on 10-Feb-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 1/28

 Alan J. Fenn , PhD

1/14/2011

1

 Antenna Design for theLaptop Radar Project*

2011 MIT Independent Activities Period (IAP)

 Alan J. Fenn, PhD

MIT Lincoln Laboratory

14 January 2011

*This work is sponso red by the Department of the Air Force under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations ,

conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

 Approved for public release; dist ribution is un limi ted.

Page 2: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 2/28

 Alan J. Fenn , PhD

1/14/2011

2

• Purpose of presentation

 –  Describe some of the fundamental characteristics of antennasto successfully complete this project

Gain radiation patterns, power density, beamwidth, reflectioncoefficient, transmission coefficient, antenna arrays, measurements

 –  Descr ibe the design, fabrication, and testing of an antenna thatcan be used as the transducer for the laptop radar system

Simple circular waveguide antenna (fabricated from a coffee can)with coaxial connector and wire probe feed

Two identical antennas, one for t ransmit, one for receive

Introduction

Page 3: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 3/28

 Alan J. Fenn , PhD

1/14/2011

3

•  An antenna can be either s ingle or multiple transducer s that can convert a

signal voltage on a transmission l ine to a transmitted electromagnetic (EM)wave (also receives EM waves)

 –  Radar transmitter induces a time-varying microwave signal that travels alongcoaxial cable to the transmit antenna

 –  Time-varying signal applied to the transmit antenna induces an electrical currenton the antenna which produces electromagnetic radiation (microwave photons)

 –  Electromagnetic energy f lows away (at the speed of light) from the transmitantenna and reflects off an object

 –  The reflected energy illuminates the receive antenna and induces an electricalcurrent on the antenna which induces a signal in coaxial cable that guides thesignal to the radar receiver 

 Antennas for Transmitting and ReceivingElectromagnetic Signals

Object Object

Page 4: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 4/28

 Alan J. Fenn , PhD

1/14/2011

4

 Antenna Power Density and GainIsotropic and Directional Antennas

PowerDensity

G = Gain

RadiationPattern

Isotropic Antenna Directional Antenna

IsotropicRadiationPattern

• Power density (W/m2) decreases as range r increases, Gain is relative to isotropic antenna

• Directional antenna produces a gain radiation pattern that depends on the aspect angle

• Peak gain and peak power density increase for a directional antenna compared to an isotropicantenna

Source: R.M. O’Donnell, http://ocw.mit.edu/resources/res-ll-001-introduction-to-radar-systems-spring-2007/

Page 5: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 5/28

 Alan J. Fenn , PhD

1/14/2011

5

 Antenna Gain Radiation PatternCharacteristics

•  A directional antenna has a main beam pointed in a part icular direct ion andhas sidelobes away from the main beam

•  As the antenna diameter increases, the main beam gain increases and thebeamwidth becomes narrower 

Gain Pattern for Circular Aperture,5 Wavelengths Diameter 

G = Gain

RadiationPattern

IsotropicRadiationPattern

Source: R.M. O’Donnell,

http://ocw.mit.edu/resources/res-ll-001-

introduction-to-radar-systems-spring-2007/

Page 6: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 6/28

 Alan J. Fenn , PhD

1/14/2011

6

Phased Array Antenna Aperture

 A phased array consists of two or more transmitting or receiving antenna

elements that can be used together to form a directional radiation pattern

Phased Array Antenna

Ref: Online Course, MIT OpenCourseWare: A.J. Fenn, Adapt ive Antennas and Phased Arrays,

http://ocw.mit.edu/resources/res-6-007-adaptive-antennas-and-phased-arrays-spring-2010/

Ref: Bo ok: A.J. Fenn, Adapt ive Antennas and Phased Array for Radar and Communications,

 Artech, Norwood, MA, 2008, Chapter 8 (this s lide and next 5 sl ides).

DirectionalBeam

Page 7: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 7/28

 Alan J. Fenn , PhD

1/14/2011

7

Linear Array with Main Beam Steeredfrom Broadside

θs

Sidelobes

Broadside Scan Direction

DirectionalBeam

Phased Array

 Antenna Elements

Page 8: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 8/28

 Alan J. Fenn , PhD

1/14/2011

8

Transmit Phased Array AntennaBlock Diagram

Controls

RF Source

Power Divider 

Φ1Phase Shif ters

 Ampl if iers

Phase shifters are used to electronically scan the array directional beam

θs

Scan Angle

Φ2   ΦN

Phased Array

 Antenna Elements

Page 9: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 9/28

 Alan J. Fenn , PhD

1/14/2011

9

Example 8-Element Linear Array ofIsotropic Elements

Isotropic Elements

θ 

λ/2

Linear Array

λ = wavelength

Isotropic array elements have an element radiation pattern that is

independent of observation angles in spherical coordinates as pe(θ,ϕ) = 1

φ 

1 2

Currents

 Amplitude Phase

Page 10: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 10/28

 Alan J. Fenn , PhD

1/14/2011

10

Calculated Radiation Patterns for an 8-Element Linear Array of Isotropic Elements (uniform i llumination)

 ArrayFactor 

 Angle θ (deg)

   R  e   l  a   t   i  v  e

   A  m  p   l   i   t  u   d  e   (   d   B   )

λ/2

  = π λ (is the phase constant)

θ 

xθ s=0º, φ = φ s=0º   θ s=45º, φ = φ s=0º

Radiation Pattern

-90 -60 -30 0 30 60 90-40

-30

-20

-10

0

   R  e   l  a   t   i  v  e

   A  m  p   l   i   t  u   d  e   (   d   B   )

-90 -60 -30 0 30 60 90-40

-30

-20

-10

0

N=8, Scan= 0º

 Angle θ (deg)

N=8, Scan= 45º

Page 11: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 11/28

 Alan J. Fenn , PhD

1/14/2011

11

Scan Sector 

Example Element Radiation Pattern Array Pattern, Radiation Intensity, Directivity

Most array elements have an element radiation pattern that favorsbroadside scan and depends on observation angle, that is, pe(θ, )

has a peak at broadside (θ =0) and a taper over the scan sector 

pe(θ, )

is ElementRadiation Patternθ

φ

60º60º

 Aperture

 Array PatternRadiation Intensity

(normalized)Directivity

Page 12: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 12/28

 Alan J. Fenn , PhD

1/14/2011

12

Geometry of Plane-Wave and Spherical-Wave Incidencefor a Linear Array (Physical Array or Synthetic Array)

Far-field (Plane Wave)

● Linear array can be implemented by using a physical array aperture or a synthetic

array aperture (single element moved over an aperture)

●  Array can be focused either in the far-field or near-field region [Fenn, 2008, Chapter 3]

Near-field (Spherical Wave)

Page 13: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 13/28

 Alan J. Fenn , PhD

1/14/2011

13

Polarization of Electromagnetic Waves

Z

Electromagnetic wave at a fixed instant

in time (wave traveling in –z direction)

The laptop radar antenna uses linearly polarized electromagnetic waves

Source: R.M. O’Donnell, http://ocw.mit.edu/resources/res-ll-001-introduction-to-radar-systems-spring-2007/

Page 14: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 14/28

 Alan J. Fenn , PhD

1/14/2011

14

Example

 Antenna Aperture Gain and Beamwidth

• The gain G (relative to an isotropic radiator) of an antenna aperture ofarbitrary shape is given by the following expression:

G = 4π Ae /λ2 (1)

where Ae is the antenna effective aperture area and λ is the wavelength

Example: An antenna with circular aperture (diameter D) has amaximum gain value in dBi (relative to isotropic) equal to

Gm, dBi = 10 log10 (π D / λ)2 (2)

 Antenna half-power beamwidth is approximately: HPBW = 58° λ / D (3)

Ref: J.D. Kraus, Antennas , 2nd Ed, McGraw Hill, 1988.

Laptop radar uses a simple

circular waveguide antenna

Circular Waveguide

D

 Aperture

Page 15: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 15/28

 Alan J. Fenn , PhD

1/14/2011

15

• Effective isotropic radiated power (EIRP) is a function of the

transmitted power Pt times the gain of the transmit antenna Gt (θ, )EIRP(θ, ) = Pt Gt (θ, ) (4)

Transmit Power Density and Receive Power 

• Power received Pr by an aperture is the product of the incidentpower density Pdi and the effective aperture area Ae (refer to Eq. 1)

Pr  = Pdi  Ae (6)

• Relative power coupled between two antennas (transmit and receive)

Pr (θ, )/ Pt = Gt (θ, ) Gr (θ, ) λ2 / (4π r )2 (7)

Ref: J.D. Kraus, Antennas , 2nd Ed, McGraw Hill, 1988.

If the relative power coupled between two identical antennas (Gr = Gt = G)is measured, the antenna gain can be calculated

• Radiated power density Pd at a distance r from the transmit apertureis given by

Pd (θ, ) = EIRP / 4π r 2 = Pt Gt (θ, ) / 4π r 2 (5)

Page 16: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 16/28

 Alan J. Fenn , PhD

1/14/2011

16

Example Gain Calculation from Measured PowerCoupling* Between Two “ Identical” Antennas

• Pr (θ, )/ Pt = G2 λ2 / (4π r )2 (8)

• Network analyzer measures the power coupling (Pr /Pt in dB)

•  Assume that the measured power coupling is -24 dB at r = 1 meter 

• Let the frequency be 2.4 GHz, λ=0.125 m (-18.1 dB)

• Using Eq. (10): GdBi = ½[ -24 + 22 + 18.1] = 8.1 dBi

• With r = 1 meter, then 20 log10 4π = 22 dB

• G2 = Pr (θ, )/ Pt (4π r / λ)2 (9)

• GdBi = ½[10 log10 (Pr (θ, )/ Pt )+20 log10 (4π r / λ) ] (10)

* Power coupling in dB is the same as “ antenna mutual coupling” in dB or S-parameter S21 in dB

Pt Pr 

Transmit Receive

1 2

 Antenna Gain

• Pr (θ, )/ Pt = Gt (θ, ) Gr (θ, ) λ2 / (4π r )2 (7)

 Antenna Gain

G C

Page 17: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 17/28

 Alan J. Fenn , PhD

1/14/2011

17

 Antenna Gain Measurement by Comparisonwith Standard Gain Antenna

 AntennaUnder Test

Calibrated Reference AntennaGain vs Frequency

StandardGain Antenna

Source Antenna

Standard GainReference

 Antenna Pat tern

Test Antenna Pattern

 Antenna gain = Gref  + ∆

Ref: A.J. Fenn, Adapt ive Antennas and Phased Array for Radar and Communicat ions , Artech, Norwood, MA, 2008, p. 201.

A t V lt R fl ti C ffi i t d

Page 18: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 18/28

 Alan J. Fenn , PhD1/14/2011

18

• The voltage reflection coefficient (denoted R) of an antenna provides aquantitative measure of how much signal is reflected by the antenna relativeto the incident signal –  For a well-designed antenna, |R| should be a small value

 –  Reflection coefficient in dB also referred to as Return Loss in the literature

 –  Reflect ion coefficient is also converted as VSWR = (1 + |R|) / (1 - |R|)

• The power transmission coefficient, T2=1-|R|2, provides a quantitative

measure of how much power is transmitted by the antenna relative to theincident power  –  For a well-designed antenna, T2 should be close to unity

• The antenna reflection coefficient is often measured in decibels (dB) usingthe relation 10 log10 |R|2

 –  If the antenna reflection coefficient is -10 dB, then |R|2 = 0.1 and T2 = 0.9 so that

90% of the available power is transmit ted by the antenna (only about 0.5 dB ofpower is lost due to mismatch between the antenna and the transmiss ion l ine

 Antenna Voltage Reflection Coefficient andPower Transmission Coefficient

Transmitter   Antenna

Incident “ a”

Reflected “ b”

R=b/a (reflection coefficient)

VSWR = voltage standing wave ratio

Mi Ph Shift f A t

Page 19: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 19/28

 Alan J. Fenn , PhD1/14/2011

19

• Electromagnetic wave has 1/r field attenuation and a phase shift as it

traverses a distance r  –  Electric Field: E(r ) = exp (-j r ) / r , where = 2π/λ is the phase constant

If an electromagnetic wave travels one-quarter of a wavelength the phase shi ftsby π/2 radians or 90 degrees

•  Antenna polarized paral lel to a metal wall: Antenna radiation thatreflects f rom the wall has a 180 degree phase shi ft

• If it is desired to enhance the radiation in a particular direction, anantenna can be placed one-quarter of a wavelength from a metal wall(reflected wave adds with direct wave, 90° + 180° + 90° = 360°)

Microwave Phase Shift for an AntennaNear a Metal Wall

 Antenna λ/4 from metal wall

DirectRadiation

   M  e   t  a   l    W  a   l   l

 Antenna in free space

Radiation

Wire Antenna

Radiation

ReflectedRadiation

Wire Antenna

W l th Diff t T

Page 20: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 20/28

 Alan J. Fenn , PhD1/14/2011

20

• Wavelength λ of electromagnetic wave in free space – 

 λ= c / f , where c is the speed of light, f is the frequency• TE11 mode cutoff wavelength λc in circular waveguide [λc = c / f c ]

 –  λc = 1.705 D, where D is the diameter of the circular waveguide –  Dominant TE11 mode will not propagate below corresponding cutoff

frequency

•Guide wavelength λg –  Wavelength is longer in waveguide compared to wavelength in free space –  λg = λ / sqrt(1 – (λ/(1.705 D))^2)

Wavelengths, Different TypesFree Space, Cutoff, Guide Wavelength

Circular Waveguide Parameter Value

Wavelength (free space), λ 4.9” (12.5 cm)

Cutoff Frequency, f c 1.8 GHz

Guide Wavelength, λg 7.3” (18.5 cm)

Example: Circular Waveguide (cof fee can)

Diameter = 3.9” (9.9 cm), Frequency = 2.4 GHz

Ref: N. Marcuvitz, Waveguide Handboo k, MIT Radiation Laboratory Series, New York, 1951, pp. 70-71.

Wire Probe ED

E l M t l C A t D i f 2 4 GH

Page 21: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 21/28

 Alan J. Fenn , PhD1/14/2011

21

Example Metal Can Antenna Design for 2.4 GHzCircular Waveguide Antenna

Coffee can antenna dimensions:

Metal can length = 5.25” (13.3 cm)Metal can diameter = 3.9” (9.9 cm) (D=0.8 λ, and λ =4.9” provides a 72.5° HPBW [see Slide 14, Eq. 3])

Monopole wire length = 1.2” (3 cm) (at 2.4 GHz ~ λ /4 in free space)

Spacing from monopole wire to backwall = 1.8” (4.6 cm) (at 2.4 GHz ~λg /4 in waveguide – see Slide 20)

Monopole(wire)

Microwave Connector

(Amphenol P/N: 901-9889-RFX,

SMA bulkhead receptacle jack)

   B  a  c   k  w  a   l   l

Transmitted and

Reflected EM Waves

Metal Coffee Can

Microwave Connector 

Mounting Bracket

Plastic Cover

(Radome)

Ref: W.W.S. Lee and E.K.N. Yung, “ The Input Impedance of a Coaxial Line Fed Probe in a Cylindrical Waveguide,”

IEEE Trans. Microwave Theory and Techniques, Vol. 42, No. 8, August 1994, pp. 1468-1473.

   B  a  c   k  w  a   l   l

   A  p  e  r   t  u  r  e

   A  p  e  r   t  u  r  e

Connector schematic © Amphenol. All rights reserved.

This content is excluded from our Creative Commons license.

 For more information, see http://ocw.mit.edu/fairuse.

Page 22: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 22/28

 Alan J. Fenn , PhD1/14/2011

22

• Drill hole in side of metal can for connector, 1.8” (4.57 cm) from backwall

•  Attach microwave connector, with monopole wire approximately 1.5” (3.8 cm)long soldered onto the center pin of the connector 

 –  Connector grounded securely to metal surface of can

• Connect microwave coaxial cable from network analyzer to assembled coffeecan antenna

• Trim the length of the monopole wire in small amounts until the measuredreflection coefficient (return loss) is less than about -10 dB over the ISM band(2.4 to 2.5 GHz)

 –  Final trimmed length of monopole wire should be about 1.2 inches (3 cm) asmeasured from the tip of the monopole to the base of the connector at the insidesurface of the metal can

• Measure the relative power coupled between two assembled antennas facingeach other 1 meter apart, and calculate the antenna gain based on Equation(10) at 2.4 GHz (see slide 16)

 –  Polarization of antennas must be aligned wi th each other 

•  Antennas are now ready for integrat ion w ith the laptop radar 

Laptop Radar Antenna Assembly and Test

N t k A l M t f R fl ti

Page 23: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 23/28

 Alan J. Fenn , PhD1/14/2011

23

Network Analyzer Measurement of Reflection

Coefficient (Return Loss) for Laptop Radar Antenna #6

ISM Band (2.4 – 2.5 GHz)

ISM = Industrial, Scientific, Medical

Maximum Return Loss = -15.7 dB

Maximum VSWR = 1.39:1

Measured reflection coefficient demonstrates good performance over the ful l ISM band

G i E ti ti f M d P C li

Page 24: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 24/28

 Alan J. Fenn , PhD1/14/2011

24

Gain Estimation from Measured Power CouplingBetween Two Laptop Radar Antennas (#4 and #6)

• Pr (θ, )/ Pt = G2 λ2 / (4π r )2 (8)

• Network analyzer measures the power coupling (Pr /Pt in dB)

• Measured power coupling is -23.3 dB at r=1 meter 

• Let the frequency be 2.4 GHz, λ=0.125 m (-18.1 dB)

• Eq. (10): GdBi = ½[ -23.3 + 22 + 18.1] = 8.4 dBi (antenna gain, r = 1m)

• Eq. (2): Gm, dBi =10 log10 (π D/λ)2 =10 log10 (π 0.1m / 0.125m)2 = 8.0 dBi

• With r = 1 meter, then 20 log10 4π = 22 dB

• G2 = Pr (θ, )/ Pt (4π r / λ)2 (9)

• GdBi = ½[10 log10 (Pr (θ, )/ Pt )+20 log10 (4π r / λ) ] (10)

Pt Pr 

Transmit Receive

r • Pr (θ, )/ Pt = Gt (θ, ) Gr (θ, ) λ2 / (4π r )2 (7)

Far Field Meas red Gain Patterns*

Page 25: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 25/28

 Alan J. Fenn , PhD1/14/2011 *Gain with respect to standard gain antenna25

Far-Field Measured Gain Patterns*Laptop Radar Antenna #6 (range = 8.5 meters)

E ECut

Cut

Peak gain = 7.2 dBi, Half-power beamwidth = 72° Peak gain = 7.3 dBi, Half-power beamwidth = 70°

Measured far-field gain patterns demonstrate good performance over the full ISM band

Circular Waveguide (coffee can) Antennas

Page 26: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 26/28

 Alan J. Fenn , PhD1/14/2011

26

Circular Waveguide (coffee can) Antennasused by the MIT IAP Laptop Radar Teams

Transmit and Receive Antennas Integratedwith Radar Electronics

18 Antennas Distr ibuted to the Laptop Radar Teams

Page 27: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 27/28

 Alan J. Fenn , PhD1/14/2011

27

• Some of the fundamental characteristics of antennas havebeen described

• Described the design of a simple circular waveguide antenna(made from a coffee can) that can be used as the transducerfor the laptop radar system

• Described the materials and methods for fabricating andtesting the laptop radar antenna

• Measured data for the laptop radar antenna indicate goodperformance over the full ISM band (2.4 to 2.5 GHz)

 –  Reflection coefficient is better than -15.7 dB (VSWR < 1.4:1) –  Peak gain is greater than 7 dBi

 –  Half-power beamwidth is approximately 70 degrees

Summary

Page 28: Mitres Ll 003iap11 Lec02

7/22/2019 Mitres Ll 003iap11 Lec02

http://slidepdf.com/reader/full/mitres-ll-003iap11-lec02 28/28

MIT OpenCourseWarehttp://ocw.mit.edu 

Resource: Build a Small Radar System Capable of Sensing Range, Doppler, and Synthetic Aperture Radar ImagingDr. Gregory L. Charvat, Mr. Jonathan H. Williams, Dr. Alan J. Fenn, Dr. Steve Kogon, Dr. Jeffrey S. Herd 

The following may not correspond to a particular course on MIT OpenCourseWare, but has beenprovided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.