mkt0001-2020-02 detection of ultra-rare mutations in vivo ... · the bigblue® transgenic rodent...

1
PUBLICATIONS Endogenous and environmental processes alter the genetic record through damage and mutation. Next-generation sequencing (NGS) technologies have been revolutionary in describing the genetic differences between clonal populations but are too error-prone to detect ultra-rare mutations. We introduce the TwinStrand Duplex Sequencing™ assay that is sensitive enough to directly measure the faint signal of a mutagen within days of animal or cellular exposure using only bulk-extracted genomic DNA. DNA Sequencing of Ultra-Rare Mutations Detection of Ultra-rare Mutations in vivo Establish Biomarkers of Endogenous and Environmental Exposure Experimental Design BigBlue ® Mouse Genomic Targets Duplex BP Tissues Treatment Liver (15) Marrow (17) Lung (10) Spleen (10) Blood (10) B[α]P (10) ENU (11) VC (11) Urethane (15) VC (15) Polr1c, Rho, Ctnnb1, Hp Polr1c, Rho, Ctnnb1 Hp, Hras, Nras, Kras 4,716,990,836 4,923,565,684 Tg-RasH2 Mouse Mutation Frequencies Mutation induction varies considerably between mutagens and tissue types. The fold-increase mutation frequency in this assay mirrors that found by using the BigBlue ® Transgenic Rodent (TGR) assay. Mutation Frequency 3.0e-6 2.5e-6 2.0e-6 1.5e-6 1.0e-6 5.0e-7 0.0e-0 Spleen Urethane Lung VC Spleen VC Lung Urethane Liver B[a]P Blood VC Liver VC Blood Urethane Marrow VC Liver ENU Marrow ENU Marrow B[a]P Mutation Frequencies byTreatment Group Tg-RasH2 Big Blue ® Measuring Genotoxicity Various methods for assessing genotoxicity exist although none, until now, could be performed in weeks time while providing a rich, mechanistically-insightful set of output data. TwinStrand Duplex Sequencing not only reports mutation frequency but also yields valuable information about mutation type and nucleotide context from anywhere in the genome of any organism. ACA ACC ACG ACT CCA CCC CCG CCT GCA GCC GCG GCT TCA TCC TCG TCT ACA ACC ACG ACT CCA CCC CCG CCT GCA GCC GCG GCT TCA TCC TCG TCT ACA ACC ACG ACT CCA CCC CCG CCT GCA GCC GCG GCT TCA TCC TCG TCT ATA ATC ATG ATT CTA CTC CTG CTT GTA GTC GTG GTT TTA TTC TTG TTT ATA ATC ATG ATT CTA CTC CTG CTT GTA GTC GTG GTT TTA TTC TTG TTT ATA ATC ATG ATT CTA CTC CTG CTT GTA GTC GTG GTT TTA TTC TTG TTT 0.00 0.03 0.05 0.08 Vehicle Control (Big Blue ® ) ACA ACC ACG ACT CCA CCC CCG CCT GCA GCC GCG GCT TCA TCC TCG TCT ACA ACC ACG ACT CCA CCC CCG CCT GCA GCC GCG GCT TCA TCC TCG TCT ACA ACC ACG ACT CCA CCC CCG CCT GCA GCC GCG GCT TCA TCC TCG TCT ATA ATC ATG ATT CTA CTC CTG CTT GTA GTC GTG GTT TTA TTC TTG TTT ATA ATC ATG ATT CTA CTC CTG CTT GTA GTC GTG GTT TTA TTC TTG TTT ATA ATC ATG ATT CTA CTC CTG CTT GTA GTC GTG GTT TTA TTC TTG TTT 0.00 0.05 0.10 Urethane ACA ACC ACG ACT CCA CCC CCG CCT GCA GCC GCG GCT TCA TCC TCG TCT ACA ACC ACG ACT CCA CCC CCG CCT GCA GCC GCG GCT TCA TCC TCG TCT ACA ACC ACG ACT CCA CCC CCG CCT GCA GCC GCG GCT TCA TCC TCG TCT ATA ATC ATG ATT CTA CTC CTG CTT GTA GTC GTG GTT TTA TTC TTG TTT ATA ATC ATG ATT CTA CTC CTG CTT GTA GTC GTG GTT TTA TTC TTG TTT ATA ATC ATG ATT CTA CTC CTG CTT GTA GTC GTG GTT TTA TTC TTG TTT 0.00 0.01 0.02 0.03 0.04 0.05 ENU ACA ACC ACG ACT CCA CCC CCG CCT GCA GCC GCG GCT TCA TCC TCG TCT ACA ACC ACG ACT CCA CCC CCG CCT GCA GCC GCG GCT TCA TCC TCG TCT ACA ACC ACG ACT CCA CCC CCG CCT GCA GCC GCG GCT TCA TCC TCG TCT ATA ATC ATG ATT CTA CTC CTG CTT GTA GTC GTG GTT TTA TTC TTG TTT ATA ATC ATG ATT CTA CTC CTG CTT GTA GTC GTG GTT TTA TTC TTG TTT ATA ATC ATG ATT CTA CTC CTG CTT GTA GTC GTG GTT TTA TTC TTG TTT 0.00 0.05 0.10 B[α]P ACA ACC ACG ACT CCA CCC CCG CCT GCA GCC GCG GCT TCA TCC TCG TCT ACA ACC ACG ACT CCA CCC CCG CCT GCA GCC GCG GCT TCA TCC TCG TCT ACA ACC ACG ACT CCA CCC CCG CCT GCA GCC GCG GCT TCA TCC TCG TCT ATA ATC ATG ATT CTA CTC CTG CTT GTA GTC GTG GTT TTA TTC TTG TTT ATA ATC ATG ATT CTA CTC CTG CTT GTA GTC GTG GTT TTA TTC TTG TTT ATA ATC ATG ATT CTA CTC CTG CTT GTA GTC GTG GTT TTA TTC TTG TTT 0.00 0.03 0.05 0.08 COSMIC Signature 29 (Tobacco Chewing Mutagens) CA CG CT TA TC TG The trinucleotide spectra of base substitutions reveals a unique fingerprint for each treatment group. These fingerprints are consistent with known signatures of clonal mutation observed in tumors caused by similar exposures. In untreated animals the spectra is abundant for CGAT and CGGC which is likely caused by oxidation, and CGTA caused by deamination of cytosine and 5-methylcytosine. Urethane shows the characteristic exposure pattern of ATTA in NTG contexts and B[α]P has a high similarity to the pattern of tobacco exposure in human cancer where B[α]P is a major carcinogen. Common Sources of Error 8-oxoguanine Deaminated cytosine Abasic sites Many others... Sequencer Artifact PCR Misincorporation DNA Damage The error rate of NGS is ~0.1% which creates a background that obscures rare variants. Duplex Sequencing overcomes these errors by forming consensus among PCR duplicates from the same source molecule. Trinucleotide Spectra Duplex Sequencing enables anyone to detect genotoxin induced variants below a frequency of one-in-a-million bases. We show a robust ability to detect, and precisely quantify, the effect of mutagen exposure on the genomic DNA of five tissue types from two mouse models against three mutagen treatments. Duplex Sequencing is a sensitive and data-rich assay for detecting mutagenesis of any genetic locus, in any tissue, in any organism. Duplex Sequencing-produced trinucleotide base substitution spectra enables the discovery of links between mutagenic exposure and human genetic disease. These spectra can also be used to infer the etiology of a mutagenic compound. Conclusions Panel Position (bp) Variant Allele Frequency Standard Illumina NextSeq 500 Panel Position (bp) Duplex Sequencing Accuracy is Required Raw bases: Raw SNVs: Mutation frequency: 183,976,776 232,523 1.26/1,000 Duplex bases: Duplex SNVs: Mutation frequency: 10,220,932 3 2.94/10,000,000 The simple base substitution spectrum of nucleotide variation can identify mutagenic tendency such as in distinguishing a urethane exposure from vehicle control. In other cases, the simple spectrum alone is not powerful enough to resolve distinct differences between treatments, such as in the lack of a clear separation for Benzo[α]pyrene and vehicle control in slow-dividing liver tissue. Base Substitution Spectra A T A A A A T T T T T C T C C C C A C G T G A A C T A T Source DNA molecule (Truth) Top and bottom strands are amplified and sequenced. PCR copies are grouped by unique tag and strand. Compare top and bottom strands Duplex consensus eliminates errors C X X TwinStrand Duplex Sequencing Technology Sequencing Errors Obscure Truth Next-Generation Sequencing (NGS) Single Strand Error-Corrected NGS Duplex Sequencing A DuplexSeq Adapter has: 1. 2. Identical (or relatable) degenerate tags in each strand. An asymmetry allowing independent strand identification. Mutagen Hours Days Months Years 2 year observations Transgenic rodent with ex vivo selection Direct DNA sequencing Weeks Basic mutation frequency data Detailed mutation frequency, spectrum & genomic context data Isolate and purify plasmid fragment Extract DNA Sacrifice and harvest target tissues Package phage, infect, and expand in E. coli Transgenic plaque assay Library prep with Duplex Adapters and sequencing Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB, Loeb LA. Detection of ultra-rare mutations by next-generation sequencing. Proc. Nat. Acad. Sci USA, 2012, 109(36):14508-13. PMID: 24086148. Chawanthayatham S, Valentine CC, Fedeles BI, Fox EJ, Loeb LA, Levine SS, Slocum SL, Wogan GN, Croy RG, Essigmann JM. Proc. Nat. Acad. Sci. USA, 2017, 114(15):E3101-9. PMID: 28351974. Schmitt MW, Fox EJ, Prindle MJ, Reid-Bayliss KS, True LD, Radich JP, Loeb LA. Sequencing small genomic targets with high efficiency and extreme accuracy. Nature Methods, 2015, 12(5):423-5. PMID: 25849638. Salk JJ, Schmitt MW, Loeb LA. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations Nature Reviews Genetics, 2018, 19(5):269-285. PMID: 29576615. Kennedy SR, Schmitt MW, Fox EJ, Kohrn BF, Salk JJ, Ahn EH, Prindle MJ, Kawai JK, Risques RA, Loeb LA. Detecting ultra-low frequency mutations using Duplex Sequencing. Nature Protocols, 2014, 9(11) 2586-606. PMID: 25411958. A. B. 0.0 0.5 0.0 0.2 0.4 0.6 0.8 1.0 Normalized Mutation Frequency TG TC TA CT CG CA VC Urethane Lung Spleen Blood Tissue Treatment 0.00 0.25 0.50 0.0 0.2 0.4 0.6 0.8 1.0 Normalized Mutation Frequency TG TC TA CT CG CA VC BαP ENU Liver Marrow Tissue Treatment Contact: https://twinstrandbio.com/contact/ Charles Valentine 1 – Mark Fielden 2 – Robert Young 3 – Jake Higgins 1 – Lindsey Williams 1 – Tan Li 1 – Rohan Kulkarni 3 TwinStrand Biosciences, Seattle, WA 1 – Amgen, Thousand Oaks, CA 2 – MilliporeSigma/BioReliance, Rockville, MD 3 Sheroy Minocherhomji 2 – Jesse Salk 1 DuplexSeq Tag N´ N´ N´ N´ N´ N´ N´ N´ N N N N N N N N T 1 2 1 2 α B MKT0001 v1.0 For Research Use Only. Not for use in diagnostic procedures. ©2020 TwinStrand Biosciences, Inc. All rights reserved. All trademarks are the property of TwinStrand Biosciences, Inc. or their respective owners.

Upload: others

Post on 02-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MKT0001-2020-02 Detection of Ultra-Rare Mutations In Vivo ... · the BigBlue® Transgenic Rodent (TGR) assay. Mutation Frequency 3.0e-6 2.5e-6 2.0e-6 1.5e-6 1.0e-6 5.0e-7 0.0e-0 Spleen

PUBL

ICAT

ION

S

Endogenous and environmental processes alter the genetic record through damage and mutation. Next-generation sequencing (NGS) technologies have been revolutionary in describing the genetic differences between clonal populations but are too error-prone to detect ultra-rare mutations.

We introduce the TwinStrand Duplex Sequencing™ assay that is sensitive enough to directly measure the faint signal of a mutagen within days of animal or cellular exposure using only bulk-extracted genomic DNA.

DNA Sequencing of Ultra-Rare Mutations

Detection of Ultra-rare Mutations in vivo Establish Biomarkers of Endogenous and Environmental Exposure

Experimental DesignBigBlue® Mouse

GenomicTargets

Duplex BP

Tissues

Treatment

Liver (15)Marrow (17)

Lung (10)Spleen (10)Blood (10)

B[α]P (10)ENU (11)VC (11)

Urethane (15)VC (15)

Polr1c, Rho,Ctnnb1, Hp

Polr1c, Rho, Ctnnb1 Hp, Hras, Nras, Kras

4,716,990,8364,923,565,684

Tg-RasH2 Mouse

Mutation Frequencies

Mutation induction varies considerably between mutagens and tissue types. The fold-increase mutation frequency in this assay mirrors that found by using the BigBlue® Transgenic Rodent (TGR) assay.

Mut

atio

n Fr

eque

ncy

3.0e-6

2.5e-6

2.0e-6

1.5e-6

1.0e-6

5.0e-7

0.0e-0Spleen

UrethaneLungVC

SpleenVC

LungUrethane

LiverB[a]P

BloodVC

LiverVC

BloodUrethane

MarrowVC

LiverENU

MarrowENU

MarrowB[a]P

Mutation Frequencies byTreatment Group

Tg-RasH2 Big Blue®

Measuring Genotoxicity

Various methods for assessing genotoxicity exist although none, until now, could be performed in weeks time while providing a rich, mechanistically-insightful set of output data. TwinStrand Duplex Sequencing not only reports mutation frequency but also yields valuable information about mutation type and nucleotide context from anywhere in the genome of any organism.

ACA

ACC

ACG

ACT

CC

AC

CC

CC

GC

CT

GC

AG

CC

GC

GG

CT

TCA

TCC

TCG

TCT

ACA

ACC

ACG

ACT

CC

AC

CC

CC

GC

CT

GC

AG

CC

GC

GG

CT

TCA

TCC

TCG

TCT

ACA

ACC

ACG

ACT

CC

AC

CC

CC

GC

CT

GC

AG

CC

GC

GG

CT

TCA

TCC

TCG

TCT

ATA

ATC

ATG

ATT

CTA

CTC

CTG

CTT

GTA

GTC

GTG

GTT

TTA

TTC

TTG

TTT

ATA

ATC

ATG

ATT

CTA

CTC

CTG

CTT

GTA

GTC

GTG

GTT

TTA

TTC

TTG

TTT

ATA

ATC

ATG

ATT

CTA

CTC

CTG

CTT

GTA

GTC

GTG

GTT

TTA

TTC

TTG

TTT

0.00

0.03

0.05

0.08

Vehicle Control (Big Blue®)

ACA

ACC

ACG

ACT

CC

AC

CC

CC

GC

CT

GC

AG

CC

GC

GG

CT

TCA

TCC

TCG

TCT

ACA

ACC

ACG

ACT

CC

AC

CC

CC

GC

CT

GC

AG

CC

GC

GG

CT

TCA

TCC

TCG

TCT

ACA

ACC

ACG

ACT

CC

AC

CC

CC

GC

CT

GC

AG

CC

GC

GG

CT

TCA

TCC

TCG

TCT

ATA

ATC

ATG

ATT

CTA

CTC

CTG

CTT

GTA

GTC

GTG

GTT

TTA

TTC

TTG

TTT

ATA

ATC

ATG

ATT

CTA

CTC

CTG

CTT

GTA

GTC

GTG

GTT

TTA

TTC

TTG

TTT

ATA

ATC

ATG

ATT

CTA

CTC

CTG

CTT

GTA

GTC

GTG

GTT

TTA

TTC

TTG

TTT

0.00

0.05

0.10

Urethane

ACA

ACC

ACG

ACT

CC

AC

CC

CC

GC

CT

GC

AG

CC

GC

GG

CT

TCA

TCC

TCG

TCT

ACA

ACC

ACG

ACT

CC

AC

CC

CC

GC

CT

GC

AG

CC

GC

GG

CT

TCA

TCC

TCG

TCT

ACA

ACC

ACG

ACT

CC

AC

CC

CC

GC

CT

GC

AG

CC

GC

GG

CT

TCA

TCC

TCG

TCT

ATA

ATC

ATG

ATT

CTA

CTC

CTG

CTT

GTA

GTC

GTG

GTT

TTA

TTC

TTG

TTT

ATA

ATC

ATG

ATT

CTA

CTC

CTG

CTT

GTA

GTC

GTG

GTT

TTA

TTC

TTG

TTT

ATA

ATC

ATG

ATT

CTA

CTC

CTG

CTT

GTA

GTC

GTG

GTT

TTA

TTC

TTG

TTT

0.00

0.01

0.02

0.03

0.04

0.05

ENU

ACA

ACC

ACG

ACT

CC

AC

CC

CC

GC

CT

GC

AG

CC

GC

GG

CT

TCA

TCC

TCG

TCT

ACA

ACC

ACG

ACT

CC

AC

CC

CC

GC

CT

GC

AG

CC

GC

GG

CT

TCA

TCC

TCG

TCT

ACA

ACC

ACG

ACT

CC

AC

CC

CC

GC

CT

GC

AG

CC

GC

GG

CT

TCA

TCC

TCG

TCT

ATA

ATC

ATG

ATT

CTA

CTC

CTG

CTT

GTA

GTC

GTG

GTT

TTA

TTC

TTG

TTT

ATA

ATC

ATG

ATT

CTA

CTC

CTG

CTT

GTA

GTC

GTG

GTT

TTA

TTC

TTG

TTT

ATA

ATC

ATG

ATT

CTA

CTC

CTG

CTT

GTA

GTC

GTG

GTT

TTA

TTC

TTG

TTT

0.00

0.05

0.10

B[α]P

ACA

ACC

ACG

ACT

CC

AC

CC

CC

GC

CT

GC

AG

CC

GC

GG

CT

TCA

TCC

TCG

TCT

ACA

ACC

ACG

ACT

CC

AC

CC

CC

GC

CT

GC

AG

CC

GC

GG

CT

TCA

TCC

TCG

TCT

ACA

ACC

ACG

ACT

CC

AC

CC

CC

GC

CT

GC

AG

CC

GC

GG

CT

TCA

TCC

TCG

TCT

ATA

ATC

ATG

ATT

CTA

CTC

CTG

CTT

GTA

GTC

GTG

GTT

TTA

TTC

TTG

TTT

ATA

ATC

ATG

ATT

CTA

CTC

CTG

CTT

GTA

GTC

GTG

GTT

TTA

TTC

TTG

TTT

ATA

ATC

ATG

ATT

CTA

CTC

CTG

CTT

GTA

GTC

GTG

GTT

TTA

TTC

TTG

TTT

0.00

0.03

0.05

0.08

COSMIC Signature 29 (Tobacco Chewing Mutagens)

C→A C→G C→T T→A T→C T→G

The trinucleotide spectra of base substitutions reveals a unique fingerprint for each treatment group. These fingerprints are consistent with known signatures of clonal mutation observed in tumors caused by similar exposures. In untreated animals the spectra is abundant for C⋅G→A⋅T and C⋅G→G⋅C which is likely caused by oxidation, and C⋅G→T⋅A caused by deamination of cytosine and 5-methylcytosine. Urethane shows the characteristic exposure pattern of A⋅T→T⋅A in NTG contexts and B[α]P has a high similarity to the pattern of tobacco exposure in human cancer where B[α]P is a major carcinogen.

Common Sources of Error8-oxoguanineDeaminated cytosineAbasic sitesMany others...

• Sequencer Artifact• PCR Misincorporation• DNA Damage

The error rate of NGS is ~0.1% which creates a background that obscures rare variants. Duplex Sequencing overcomes these errors by forming consensus among PCR duplicates from the same source molecule.

Trinucleotide Spectra

Duplex Sequencing™ enables anyone to detect genotoxin induced variants below a frequency of one-in-a-million bases.

We show a robust ability to detect, and precisely quantify, the effect of mutagen exposure on the genomic DNA of five tissue types from two mouse models against three mutagen treatments.

Duplex Sequencing is a sensitive and data-rich assay for detecting mutagenesis of any genetic locus, in any tissue, in any organism.

Duplex Sequencing-produced trinucleotide base substitution spectra enables the discovery of links between mutagenic exposure and human genetic disease. These spectra can also be used to infer the etiology of a mutagenic compound.

Conclusions

Panel Position (bp)

Varia

nt A

llele

Fre

quen

cy

Standard Illumina NextSeq 500

Panel Position (bp)

Duplex Sequencing

Accuracy is Required

Raw bases: Raw SNVs: Mutation frequency:

183,976,776232,5231.26/1,000

Duplex bases: Duplex SNVs: Mutation frequency:

10,220,93232.94/10,000,000

The simple base substitution spectrum of nucleotide variation can identify mutagenic tendency such as in distinguishing a urethane exposure from vehicle control. In other cases, the simple spectrum alone is not powerful enough to resolve distinct differences between treatments, such as in the lack of a clear separation for Benzo[α]pyrene and vehicle control in slow-dividing liver tissue.

Base Substitution Spectra

AT

AAA

A

TTT

TT

C

T

CC

C

C

A

C

G

T

G

A

A

CT

AT

Source DNA molecule(Truth)

Top and bottom strands are amplifiedand sequenced. PCR copies are grouped

by unique tag and strand.

Compare top and bottom strands

Duplex consensus eliminates errors

C

XX

TwinStrand Duplex Sequencing™ Technology

Sequencing Errors Obscure Truth

Next-GenerationSequencing (NGS)

Single StrandError-Corrected NGS

Duplex Sequencing

A DuplexSeq™ Adapter has:1.

2.

Identical (or relatable) degenerate tags in each strand.

An asymmetry allowing independent strand identification.

MutagenHours

Days

Months

Years2 year

observationsTransgenic rodent

with ex vivo selectionDirect DNAsequencing

Weeks

Basic mutationfrequency data

Detailed mutationfrequency, spectrum &genomic context data

Isolate and purifyplasmid fragment

Extract DNA

Sacrifice andharvest target tissues

Package phage,infect, and

expand in E. coli

Transgenicplaque assay

Library prep withDuplex Adaptersand sequencing

Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB, Loeb LA. Detection of ultra-rare mutations by next-generation sequencing. Proc. Nat. Acad. Sci USA, 2012, 109(36):14508-13. PMID: 24086148.

Chawanthayatham S, Valentine CC, Fedeles BI, Fox EJ, Loeb LA, Levine SS, Slocum SL, Wogan GN, Croy RG, Essigmann JM. Proc. Nat. Acad. Sci. USA, 2017, 114(15):E3101-9. PMID: 28351974.

Schmitt MW, Fox EJ, Prindle MJ, Reid-Bayliss KS, True LD, Radich JP, Loeb LA. Sequencing small genomic targets with high efficiency and extreme accuracy. Nature Methods, 2015, 12(5):423-5. PMID: 25849638.

Salk JJ, Schmitt MW, Loeb LA. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations Nature Reviews Genetics, 2018, 19(5):269-285. PMID: 29576615.

Kennedy SR, Schmitt MW, Fox EJ, Kohrn BF, Salk JJ, Ahn EH, Prindle MJ, Kawai JK, Risques RA, Loeb LA. Detecting ultra-low frequency mutations using Duplex Sequencing. Nature Protocols, 2014, 9(11) 2586-606. PMID: 25411958.

A.

B.

0.0

0.5

0.0

0.2

0.4

0.6

0.8

1.0

Nor

mal

ized

Mut

atio

n Fr

eque

ncy T→G

T→CT→AC→TC→GC→A

VCUrethane

LungSpleenBloodTissue

Treatment

0.00

0.25

0.50

0.0

0.2

0.4

0.6

0.8

1.0

Nor

mal

ized

Mut

atio

n Fr

eque

ncy T→G

T→CT→AC→TC→GC→A

VCBαPENU

LiverMarrowTissue

Treatment

Contact: https://twinstrandbio.com/contact/

Charles Valentine1 – Mark Fielden2 – Robert Young3 – Jake Higgins1 – Lindsey Williams1 – Tan Li1 – Rohan Kulkarni3

TwinStrand Biosciences, Seattle, WA1 – Amgen, Thousand Oaks, CA2 – MilliporeSigma/BioReliance, Rockville, MD3

Sheroy Minocherhomji2 – Jesse Salk1

DuplexSeq™ Tag

N ́N ́N ́N ́N ́N ́N ́N´ N N N N N N N N

T

1

21

2

α B

MKT

0001

v1.

0

For Research Use Only. Not for use in diagnostic procedures. ©2020 TwinStrand Biosciences, Inc. All rights reserved. All trademarks are the property of TwinStrand Biosciences, Inc. or their respective owners.