mm454_kinetics 80-116

Upload: prakash-chandra

Post on 06-Jul-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 MM454_Kinetics 80-116

    1/37

  • 8/18/2019 MM454_Kinetics 80-116

    2/37

    10-11

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1 10

    -0.30

    -0.25

    -0.20

    -0.15

    -0.10

    -0.05

    0.00

     

       E   H

       +   /   H   2 ,

       V

    Log [H+], M

    ])([2

    059.02/

        H  Log  E   H  H 

  • 8/18/2019 MM454_Kinetics 80-116

    3/37

    If the cathodic reagent at the corrosion site (e.g., dissolved O2 in

    the O2 reduction) is in short supply, mass transfer of the reagent

    can become rate limiting.

      e   l  e  c   t  r  o   d  e 

    Csurf = Cbulk

    distant from electrode, x 

    under

    activation control

    no concentration

    gradient

  • 8/18/2019 MM454_Kinetics 80-116

    4/37

    conc.  – distance profile at electrodes (mass transfer control)

      e   l  e  c   t  r  o   d  e

     

    Csurf

    Cbulk

    @anode

    diffusion layer

    Nernst layer

    ordiffusion layer

    diffusion layer thickness (δ)10 – 300 µm

    can be changed by stirring

    & changing bulk conc.  e   l  e  c   t  r  o   d  e

     

    Csurf =0 

    Cbulk

    @cathodediffusion layer

    Csurf ≠0 

    Csurf  = conc. near

    electrode surfacedistant from electrode, x 

  • 8/18/2019 MM454_Kinetics 80-116

    5/37

    Concentration profile builds up as redox process is

    faster than the diffusion of oxidant and reducing species

    This cause 

    @ anode

    1. local saturation of metal ion at anode, which leads to

    precipitation of corrosion products and salt films,which slow down the metal dissolution rate and hence

    the anodic current density

    @ cathode

    2. depletion of oxidizing species (e.g. O2) at cathodewhich slow down the reduction rate at cathode and

    hence the cathodic current density decreases

    hence a limiting current density is seen at high η 

  • 8/18/2019 MM454_Kinetics 80-116

    6/37

    log i

    E or η 

    log iL

    Ecorr

    ηa

    ηaηc

    ηaηc∞ 

    1

    23

    i L

    @ cathode iL = limiting current densityor limiting diffusion current

  • 8/18/2019 MM454_Kinetics 80-116

    7/37

    iL = limiting current densityor limiting diffusion current

    log i

    E or η 

    log iL

    Ecorr

    ηa

    ηaηc

    ηa ηc∞ 

    1

    23

    i L

    @ anode

    Tafel eqn line

  • 8/18/2019 MM454_Kinetics 80-116

    8/37

    @point  – 1

    for a overpotential there is no limitation of reagent

    (e.g. O2

    ) supply or accumulation of cations

    Csurf  = Cbulkcurrent remains in Tafel region & reaction is activation

    controlled  (only charge transfer controls the rate)

    @point  – 2

    for a large overpotential there is short supply of reagent

    (e.g. O2) or accumulation of cations

    Csurf  < Cbulkcurrent less than that expected on the basis of

    activation control

    Rate is partly activation & partly diffusion controlled

    ηtotal = ηa + ηc

  • 8/18/2019 MM454_Kinetics 80-116

    9/37

  • 8/18/2019 MM454_Kinetics 80-116

    10/37

    under limiting condition, Csurf  = 0

    bulk  L  C nFD

    ii 

    0

    max 

    C bulk = concentration of the solution you are using

    concentration polarization means that the current densitycannot increase beyond i L no matter how large is the overvoltage

     

      

     

     L

    cii

    nF  RT  1ln 

    expression for

    concentration

    overpotential, ηc

    at very large overpotential, i  = i L, ηc  ∞

  • 8/18/2019 MM454_Kinetics 80-116

    11/37

    cathode reaction is under concentration polarization

  • 8/18/2019 MM454_Kinetics 80-116

    12/37

    Effect of increasing mass transport rate

    (e.g., by stirring the solution surrounding a corroding surface)

    increasing mass transport decreases concentration overpotentialEcorr  shifts noble direction (i.e. increases)

    shows a cathodic reacn

    .under mass transport

    mass transport increases

    from pt.1 to pt.3

    ηc,1> ηc,2>ηc,3

    If anodic reaction were mass-transfer controlled (difficulty of metal

    ions diffusing away), improved stirring would decrease E corr . HOW? 

  • 8/18/2019 MM454_Kinetics 80-116

    13/37

    Ohmic drop or resistance polarization

    due to a voltage drop (iR ) in the solution results from the

    passage of current (i ) through the resistive solution (R )

      

    d iiRV   

    For a planar electrode with a current density I, the voltage

    drop ΔV is given by 

    R = electrolyte resistance (ohm)

    κ = the specific conductivity of the electrolyte (ohm-1 cm-1)d = the distance from the electrode surface (cm)

     d  Rwhere   ,

    Example, for i = 1 A /cm2 and κ = 22 Ω−1cm−1 for an electrolyte one

    obtains for a planar electrode at a distance d = 0.5 cm, a value of

     ΔV = 0.023 V = 23 mV (what will happen in i becomes 10A /cm2 ??)

  • 8/18/2019 MM454_Kinetics 80-116

    14/37

    i 1

    i 2i 3

    R 1

    R 2

    R 3E c

    E a

    i  R1 < R2 < R3

    i1 > i2 > i3

    ohmic polarization effect in galvanic couples

    as Rsolution increases the driving force for

    corrosion decreases

  • 8/18/2019 MM454_Kinetics 80-116

    15/37

    Ohmic drop or resistance polarization depends on

    1. Electrolyte conductivity2. Distance :

    between two corrosion sites

    between electrode and reference electrode

    3. Current density

  • 8/18/2019 MM454_Kinetics 80-116

    16/37

    Total polarization iRconact T          

    iRi

    i

    nF 

     RT 

    i

    ib

     Lcorr 

    cccathodeT   

     

      

     

     

      

        1lnlog, 

  • 8/18/2019 MM454_Kinetics 80-116

    17/37

    Passivity

    Our modern industrial society is built upon the reactive metals

    How is it possible ?

    reactive metals (Fe, Ni, Cr, Al, Ti, Zr, etc) exhibit extraordinary

    kinetic stability in oxidizing environments

    How?

  • 8/18/2019 MM454_Kinetics 80-116

    18/37

    Passivity

    Passivity is a state of low corrosion rate due to the presence

    of a thin surface oxide film, formed naturally or under a highanodic (+ve) potential (or high oxidizing condition)

     passive film can form naturally and also by applying highanodic potential

     passive metals are thermodynamically unstable, but their

    low corrosion is due to oxide film formation

    e.g. Fe, Cr, Ni, Mn, Al, Ti, W etc Au, Ag, Pt are passive but not due to formation of passive oxide

    layer  – they are thermodynamically stable

     thickness of passive layer is in range of 1 – 10 nm

  • 8/18/2019 MM454_Kinetics 80-116

    19/37

    Fe reaction in nitric acid

    Passivity [ Faraday's paradox ]

    conc. HNO3

    no corrosion

    dilute HNO3

    freely corrodes

    with H2 evolution

    conc. HNO3

    corrosion if scratched

  • 8/18/2019 MM454_Kinetics 80-116

    20/37

    Fe react in nitric acid

    Passivity

    Faraday's paradox

    D. D. Macdonald, Pure Appl. Chem., Vol. 71, No. 6, pp. 951-978, 1999

  • 8/18/2019 MM454_Kinetics 80-116

    21/37

    C. Wagner: Corrosion Science 5, 751 (1965)

    active vs passive metals

    active metal

    active – passive metal

  • 8/18/2019 MM454_Kinetics 80-116

    22/37

    Polarization of passive metals

    DA

    B

    C

    F H J

    IGE

    Epass

    active

    active-

    passive

    transition transpassivepassive

    i crit

    i p  

       l  o  g    i 

    E

    oxide filmcontinue to grow

    P l i ti f i t l

  • 8/18/2019 MM454_Kinetics 80-116

    23/37

    Polarization of passive metals

    AB : low anodic potential, active region; metal corrodes with current following

    Tafel behavior (rise exponential)

    @ B: corrosion current density reach maximum, icrit  – critical passivation current

    density; passivation starts. Potential at that point is called passivation potential (Epass)

    BC: active – passive transition, passive film continues to form and metal dissolution is

    gradually decreasing

    @ C : passivation complete, current assumes a low value and potential at that point is

    called Flade potential

    CD : passive region – increasing potential doesn’t change the current andcurrent density at this region called passivation current (ip) density. One can use this

    current density to calculate depth of passivation

    @ D /F/H : transpassive region; current starts to increase; current rise can be due to

    pitting of passive layer by oxidising agent, oxidative dissolution of

    passive layer or O2 evolution.DE : oxide film brakedown due to pitting in presence of aggressive ions (Cl-); current

    rises as anodic potential increases since pits grow and more pits form

    FG : oxidative dissolution of oxide film to produce a soluble anion, and passivity fails

    HI : the increasing rate of oxygen evolution (can only occur if the oxide film is an

    electron conductor); Passivity here is not disturbed

  • 8/18/2019 MM454_Kinetics 80-116

    24/37

    when passivity is attended:

    1. Corrosion potential of metals changes in the +ve direction2. The corrosion rates of metals in the passive state

    decreases drastically, usually a diminution of ∼ 1 million

    times

    3. Passivity is a metastable state, i.e. it is disturb by means

    of scratch, grinding, or changes to the outer conditions:

    temperature, concentration of aggressive variables, and

    agitation.

    a high current density may be required to cause passivation

    (> icrit), a small current density (ip) is required to maintain it

  • 8/18/2019 MM454_Kinetics 80-116

    25/37

    criteria of passivation

    ia > icrit  |  low Epass  |  Epass < Ecorr  < Etrans 

    321

    log icorr,1

    log icorr,2

    log icorr,3

    Ecorr,1Ecorr,2 Ecorr,3Epass

    log ia > log icrit 

    1,2 & 3 are three different cathodic reactions with increasing power of oxidation or

    same oxidizing agent with increasing conc. (hence increasing strength)

    1 < 2 < 3

    icorr,3 = ipass 

  • 8/18/2019 MM454_Kinetics 80-116

    26/37

    which alloy would you select?

    alloy1 alloy2

    cathode recn.1log I

    E

    cathode recn.2

  • 8/18/2019 MM454_Kinetics 80-116

    27/37

    effect of aeration

    log I

    E

    increasing

    aeration

  • 8/18/2019 MM454_Kinetics 80-116

    28/37

    Fe corrosion in aerated water

    - pH dependence

    below pH 4

    H2 evolution

    pH 4 – 10

    limited by O2 diffusion

    oxide film soluble,not protective

    above pH 10 

    protectiveoxide film formation

    NACE

  • 8/18/2019 MM454_Kinetics 80-116

    29/37

    diffusion control effect

    log I

    E

    increasing

    agitation

  • 8/18/2019 MM454_Kinetics 80-116

    30/37

    Elements forming passive oxide film

  • 8/18/2019 MM454_Kinetics 80-116

    31/37

    Passivity of Fe & Ti in acid

    Fe: icrit for Fe of the order of 1 A/cm2

    Ti: very small critical current densities (icrit lower than 1 µA/cm2)

    even in very acidic condition (extremely stable passivation)

    Fe Ti

  • 8/18/2019 MM454_Kinetics 80-116

    32/37

    Iron passivation in an acetic acid/ sodium acetate

    solution – Effect of water

    No formation of oxide films

    an absence of water

    Oxygen reduction is not

    sufficient to form a passive

    film

  • 8/18/2019 MM454_Kinetics 80-116

    33/37

    Why stainless steel with Cr ≥ 12 wt.% passivates easily

    Revie & Uhlig, pg-101

       i  c  r   i   t

    polarization diagram of Fe  – Cr alloys

    in O2 saturated 3% Na2SO4 solution

    Icrit of Fe  – Cr alloys in deaerated

    3% Na2SO4 solution

    P i ti f C Ni St l

  • 8/18/2019 MM454_Kinetics 80-116

    34/37

    Passivation of Cr – Ni Steels

    Type 304 SS 18% Cr & 8% Ni 

  • 8/18/2019 MM454_Kinetics 80-116

    35/37

    effect of different alloying element on passive

    behavior of steel

    E

    log I

    ThyssenKrupp Fortinox S.A. 

    ic

    ff t f t t & Cl i b h i f t l

  • 8/18/2019 MM454_Kinetics 80-116

    36/37

    effect of temperature & Cl- conc. on passive behavior of steel

  • 8/18/2019 MM454_Kinetics 80-116

    37/37

    How to passivate metals and alloys:

    1. Anodization: e.g. Al

    2. Immersion of metals in specific media:

    e.g Fe in aqueous solutions of HNO3 (>70%), H2SO4(>96%), Na2SO4 (1 M)

    3. presence of oxidizers : O2 in soln, P2O84-, NO2-, WO42-

    , CrO4- 

    4. addition of noble metals: Pd, Pt, Rh, Ir to Cr or Ti