model tools for solar tower receiver systems summer … · model tools for solar tower receiver...

15
Model Tools for Solar Tower Receiver Systems Prof. Dr. Bernhard Hoffschmidt June 25-27, 2014 Font Romeu, France

Upload: others

Post on 27-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Model Tools for Solar Tower Receiver Systems SUMMER … · Model Tools for Solar Tower Receiver Systems Prof. Dr. Bernhard Hoffschmidt June 25-27, 2014 Font Romeu, France

Model Tools for Solar Tower Receiver Systems

Prof. Dr. Bernhard Hoffschmidt

June 25-27, 2014

Font Romeu, France

Page 2: Model Tools for Solar Tower Receiver Systems SUMMER … · Model Tools for Solar Tower Receiver Systems Prof. Dr. Bernhard Hoffschmidt June 25-27, 2014 Font Romeu, France

CRS Receiver Simulation: Overview

Levels of Simulation

• System level

• layout

• simplified receiver models (also costs)

(receiver characteristic => as map or correlation)

• => Annual Performance

• Pre-design

• definition of basic receiver design

• Detailed design

• detailed analysis of

- solar flux distribution

- temperature distribution

- Stresses / lifetime assessment

• => Design Values

Page 3: Model Tools for Solar Tower Receiver Systems SUMMER … · Model Tools for Solar Tower Receiver Systems Prof. Dr. Bernhard Hoffschmidt June 25-27, 2014 Font Romeu, France

System Simulation: Workflow for Solar Towers Annual Yield Calculation

Load Curve for Ambient Temperature - Taweelah

0

5

10

15

20

25

30

35

40

45

50

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

hours [h]

tem

pera

ture

[°C

]

Climate data

Power plant process

Solar resource data

Solar field performance Operational strategy

1 2 3 4 5

Solar-Hybrid

1 2 3 4 5

Teillast

Solar

HFLCAL

Field Layout

Jahres -

Power plant -

simulation

h gross h net

P el

Q Rec usw .

p amb T amb

h Field

h Rec

Q Rec

A Field

etc.

p amb

T amb

j amb

DNI

Interface for

annual yields solar tower

receiver

hot

tank

G

steam generator

condenser

solar field

steam turbine

cold

tank

m PB

m R

m B r

R Br

T 1

T 2

PB

m PB

m R

Br PB R

T 1

m S

T 2

m PB

m R

R Br

T 1

PB

T 2

m PB

R Br

T 2

PB

T 1

R : Receiver Br :: Aux. . burner PB : Power block T 1 : hot tank T 2 : cold tank

1 2 3 4 5

m PB

Electricity demand

Page 4: Model Tools for Solar Tower Receiver Systems SUMMER … · Model Tools for Solar Tower Receiver Systems Prof. Dr. Bernhard Hoffschmidt June 25-27, 2014 Font Romeu, France

System Simulation: CSP System Modelling

- Heliostatfield

- Tower with receiver

- HTF loop

- Thermal storage

- Power block

- Total power of CSP power plant

- Most often systems are economically optimized (LCOE minimum)

PBTESHTFSFSFelsys ADNIP hhhhh Rec,

]/[costannualtotal

0,

kWhEURdtP

LCOEendt

telsys

Every single sub-

component is important!

solar tower

receiver

hot

tank

G

steam generator

condenser

solar field

steam turbine

cold

tank

Page 5: Model Tools for Solar Tower Receiver Systems SUMMER … · Model Tools for Solar Tower Receiver Systems Prof. Dr. Bernhard Hoffschmidt June 25-27, 2014 Font Romeu, France

System Simulation: Thermodynamic analysis of receiver

solar tower

receiver

solar field

),( SSFieldreflreflinc h ADNIQ

incQ recQ

lossincrec

inoutrec

QQQ

hhmQ

radloss,convloss,optloss,loss QQQQ

radloss,Qconvloss,Q

incident power on receiver aperture area:

power from receiver to HTF:

losses of receiver :

sunQ

][elevation sun :

][azimuth sun :

[-] efficiency optical fieldsolar :

[m2] area aperture fieldheliostat :A

[-]ty reflectivi average :

S

S

field

refl

refl

h

[kJ/kg] enthalpieoutlet inlet/ :h / h

[kg/s] HTF flow mass :

inout

m

optloss,Q

[W] lossesradiation :

[W] losses convective :

[W] losses optical :

radloss,

convloss,

optloss,

Q

Q

Q

Note: optical losses do not depend on the receiver

temperature whereas convective and radiation heat losses do

receiver efficiency:

increc / QQrech [W]receiver on power incident :

[W]receiver frompower thermal:

inc

rec

Q

Q

Page 6: Model Tools for Solar Tower Receiver Systems SUMMER … · Model Tools for Solar Tower Receiver Systems Prof. Dr. Bernhard Hoffschmidt June 25-27, 2014 Font Romeu, France

solar tower

receiver

solar field

incQ recQ

radloss,Qconvloss,Q

optical losses:

convective losses:

radiation losses:

sunQ

[-]receiver efficiency optical : opth

][m area aperturereceiver :

][W/m lossheat specific areaconstant :

2

rec

2

loss

A

q

optloss,Q

]K[W/mconstant Boltzmann Stefan :[-] emissivity : 42

optincopt loss, 1 hQQ

a) option “constant heat losses” :

reclossconv loss, AqQ

b) option “heat transfer coefficient ” :

recconv loss, ambrec ATTQ

desinc,

incdeswall,in-outin rec

Q

QTTTkTT

C][ mperatureambient te :

C][ emperaturereceiver tmean :

K][W/mt coefficienfer heat transconstant :

rec

rec

2

T

T

rec

4

amb

4

recrad loss, 15.27315.273 AKTKTQ

[W]power incident design :

[K] surfaceouter allreceiver w of etemperatur-Over :

)outlet inlet/ between re temperatutiverepresentaany define to(used

[-] 0.5 e.g. factor, g weightin:k

K][W/mt coefficienfer heat transconstant :

deswall,

2

desinc,Q

T

System Simulation: Thermodynamic analysis of receiver

Page 7: Model Tools for Solar Tower Receiver Systems SUMMER … · Model Tools for Solar Tower Receiver Systems Prof. Dr. Bernhard Hoffschmidt June 25-27, 2014 Font Romeu, France

On system level different approaches

for receiver modeling can be used:

• simplified receiver models

(as shown before)

• receiver characteristic,

as map or correlation

(if available => detail

simulation)

typical receiver characteristic

System Simulation: Thermodynamic analysis of receiver

Design

point

Page 8: Model Tools for Solar Tower Receiver Systems SUMMER … · Model Tools for Solar Tower Receiver Systems Prof. Dr. Bernhard Hoffschmidt June 25-27, 2014 Font Romeu, France

140mm

140mm

2mm

0.02 m²

Absorber

0.57 m²

Submodul

5.7 m²

Subreceiver

22.7m²

Receiver (Jülich)

Detail Design: Open Volumetric Receiver

Page 9: Model Tools for Solar Tower Receiver Systems SUMMER … · Model Tools for Solar Tower Receiver Systems Prof. Dr. Bernhard Hoffschmidt June 25-27, 2014 Font Romeu, France

Detail Design: Open Volumetric Receiver

Simulation of Volumetric Absorber Structures

homogenous approach channel model FEM

directions discretefor

tscoefficien scattering and absorption :radiation

ReNu;Nu

:ferheat trans

;0)(

;)()1(2

2

m

vv

v

fwv

f

p

fwvw

Ad

AA

TTAdz

dTvc

dz

dITTA

dz

TdPo

approach valid for different

kinds of porous structures

suitable for comparison

of different materials

gray tracin d terminate:radiation

nscorrelatio -Nu standard :ferheat trans

200 400 600 800 10000,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0A

bso

rber

wir

kungsg

rad [

-]

Flussdichte [kW/m²]

ARR = 0,50

exchanceradiation - FE :radiation

Equ. Stokes-Navier : transfermom. &heat

calculate performance of

defined honeycomb

structures

study temperature and flow

details inside regular porous

structures

Page 10: Model Tools for Solar Tower Receiver Systems SUMMER … · Model Tools for Solar Tower Receiver Systems Prof. Dr. Bernhard Hoffschmidt June 25-27, 2014 Font Romeu, France

Layout & Operation of Modular Air Receivers

parallel flow trough absorber modules adapt flow to flux distribution

140mm

140mm

2mm

Detail Design: Open Volumetric Receiver

140mm

140mm

2mm

Page 11: Model Tools for Solar Tower Receiver Systems SUMMER … · Model Tools for Solar Tower Receiver Systems Prof. Dr. Bernhard Hoffschmidt June 25-27, 2014 Font Romeu, France

parallel flow trough absorber modules adapt flow to flux distribution

step 1:

layout of fixed orifice

diameter for design flux

distribution

step 2:

variation of flow through

subreceivers during

operation to adapt to

changing flux profile

Layout & Operation of Modular Air Receivers

Detail Design: Open Volumetric Receiver

Page 12: Model Tools for Solar Tower Receiver Systems SUMMER … · Model Tools for Solar Tower Receiver Systems Prof. Dr. Bernhard Hoffschmidt June 25-27, 2014 Font Romeu, France

example: layout of mass flow distribution for Solar Tower Jülich

ray tracing: calculate flux distribution

for different sun angles

create artificial design flux

distribution for receiver layout

(weighted superposition of real

flux distributions)

calculate fixed orifice

size distribution

15 15 15 18 20 17 19 21 23 23 24 25 25 26 26 26 26 25 25 24 23 23 21 19 17 20 18 15 15 15

15 15 18 21 18 20 23 24 25 26 27 28 28 28 29 29 28 28 28 27 26 25 24 23 20 18 21 18 15 15

15 17 20 17 20 23 24 26 27 28 29 30 30 30 31 31 30 30 30 29 28 27 26 24 23 20 17 20 17 15

17 19 19 19 23 24 26 27 28 29 30 31 32 32 32 32 32 32 31 30 29 28 27 26 24 23 19 19 19 17

17 20 18 20 23 25 27 28 30 31 32 32 33 33 33 33 33 33 32 32 31 30 28 27 25 23 20 18 20 17

17 21 19 23 24 26 28 29 30 31 32 33 34 34 34 34 34 34 33 32 31 30 29 28 26 24 23 19 21 17

18 21 19 23 25 27 28 30 31 32 33 34 34 34 35 35 34 34 34 33 32 31 30 28 27 25 23 19 21 18

19 17 20 23 25 27 29 30 31 32 33 34 35 35 35 35 35 35 34 33 32 31 30 29 27 25 23 20 17 19

19 17 20 23 25 27 29 30 32 33 34 34 35 35 35 35 35 35 34 34 33 32 30 29 27 25 23 20 17 19

19 17 20 23 26 28 29 31 32 33 34 34 35 35 35 35 35 35 34 34 33 32 31 29 28 26 23 20 17 19

19 17 20 23 26 28 29 31 32 33 34 34 35 35 36 36 35 35 34 34 33 32 31 29 28 26 23 20 17 19

19 17 20 23 26 28 29 31 32 33 34 35 35 35 36 36 35 35 35 34 33 32 31 29 28 26 23 20 17 19

19 17 21 23 26 28 29 31 32 33 34 35 35 35 36 36 35 35 35 34 33 32 31 29 28 26 23 21 17 19

19 17 21 23 26 28 30 31 32 33 34 35 35 35 36 36 35 35 35 34 33 32 31 30 28 26 23 21 17 19

19 17 21 23 26 28 30 31 32 33 34 35 35 36 36 36 36 35 35 34 33 32 31 30 28 26 23 21 17 19

19 17 21 24 26 28 30 31 33 34 34 35 35 36 36 36 36 35 35 34 34 33 31 30 28 26 24 21 17 19

19 17 21 24 26 28 30 32 33 34 35 35 36 36 36 36 36 36 35 35 34 33 32 30 28 26 24 21 17 19

19 17 21 24 26 28 30 32 33 34 35 35 36 36 36 36 36 36 35 35 34 33 32 30 28 26 24 21 17 19

19 17 21 24 26 28 30 32 33 34 35 35 36 36 36 36 36 36 35 35 34 33 32 30 28 26 24 21 17 19

19 18 21 24 26 28 30 32 33 34 35 35 36 36 36 36 36 36 35 35 34 33 32 30 28 26 24 21 18 19

20 18 21 24 26 28 30 32 33 34 35 35 36 36 36 36 36 36 35 35 34 33 32 30 28 26 24 21 18 20

20 18 21 24 26 28 30 31 33 34 35 35 36 36 36 36 36 36 35 35 34 33 31 30 28 26 24 21 18 20

20 18 21 24 26 28 30 31 32 34 34 35 36 36 36 36 36 36 35 34 34 32 31 30 28 26 24 21 18 20

20 18 21 24 26 28 30 31 32 33 34 35 35 36 36 36 36 35 35 34 33 32 31 30 28 26 24 21 18 20

20 18 21 24 26 28 30 31 32 33 34 35 35 36 36 36 36 35 35 34 33 32 31 30 28 26 24 21 18 20

20 17 20 23 26 28 29 31 32 33 34 35 35 35 36 36 35 35 35 34 33 32 31 29 28 26 23 20 17 20

19 17 20 23 25 27 29 31 32 33 34 34 35 35 35 35 35 35 34 34 33 32 31 29 27 25 23 20 17 19

18 19 20 23 25 27 29 30 31 32 33 34 35 35 35 35 35 35 34 33 32 31 30 29 27 25 23 20 19 18

18 21 19 23 24 27 28 30 31 32 33 33 34 34 35 35 34 34 33 33 32 31 30 28 27 24 23 19 21 18

17 20 19 21 24 26 27 29 31 31 32 33 33 34 34 34 34 33 33 32 31 31 29 27 26 24 21 19 20 17

17 19 17 20 23 25 27 28 30 31 31 32 33 33 33 33 33 33 32 31 31 30 28 27 25 23 20 17 19 17

15 18 21 19 23 24 26 27 29 30 30 31 32 32 32 32 32 32 31 30 30 29 27 26 24 23 19 21 18 15

15 17 20 17 20 23 24 26 27 28 29 30 30 31 31 31 31 30 30 29 28 27 26 24 23 20 17 20 17 15

15 15 18 21 18 20 23 24 25 26 27 28 29 29 29 29 29 29 28 27 26 25 24 23 20 18 21 18 15 15

15 15 15 19 20 18 20 23 23 24 25 26 26 27 27 27 27 26 26 25 24 23 23 20 18 20 19 15 15 15

15 15 15 15 18 20 17 19 20 21 23 23 24 24 24 24 24 24 23 23 21 20 19 17 20 18 15 15 15 15

Layout & Operation of Modular Air Receivers

Detail Design: Open Volumetric Receiver

Page 13: Model Tools for Solar Tower Receiver Systems SUMMER … · Model Tools for Solar Tower Receiver Systems Prof. Dr. Bernhard Hoffschmidt June 25-27, 2014 Font Romeu, France

example: layout of mass flow distribution for Solar Tower Jülich

calculation of maximum

material temperatures for

real flux distributions

Setup of a characteristic

map for the system

simulation

Layout & Operation of Modular Air Receivers

Detail Design: Open Volumetric Receiver

Page 14: Model Tools for Solar Tower Receiver Systems SUMMER … · Model Tools for Solar Tower Receiver Systems Prof. Dr. Bernhard Hoffschmidt June 25-27, 2014 Font Romeu, France

Conclusion

- System Simulation

- aims for determination of the design point with the highest annual

yield and the lowest LCOE (operation strategies)

- must be fast to enable an optimization of a set of different plant

configurations on a yearly base (storage sizes, power block designs,

hybrid modes…)

- models the components as simple as possible/acceptable due to the

demanded accuracy (correlations, characteristic maps,…)

- Detail Simulation

- aims the real design values for each component

- and the detection of constrains, critical operation modes and life

time estimation

- checks possible improvements and new design approaches

14 R. Buck > DLR Stuttgart > Stellenbosch University, April 10, 2014

Page 15: Model Tools for Solar Tower Receiver Systems SUMMER … · Model Tools for Solar Tower Receiver Systems Prof. Dr. Bernhard Hoffschmidt June 25-27, 2014 Font Romeu, France

15

Thank you for your attention!