modeling a flexible detector response function in small animal spect using geant4

30
1 Modeling a flexible Detector Response Function in small animal SPECT using Geant4 Z. El Bitar 1 , R. H. Huesman 2 , R. Buchko 2 , D. Brasse 1 , G. T. Gullberg 1. Université de Strasbourg, IPHC, 23 rue du loess, 67037 Strasbourg, France 2. Lawrence Berkeley National Laboratory, Berkeley California 94720, USA Droite Workshop, Lyon, October 25, 2012

Upload: urania

Post on 16-Jan-2016

36 views

Category:

Documents


0 download

DESCRIPTION

Modeling a flexible Detector Response Function in small animal SPECT using Geant4. Z. El Bitar 1 , R. H. Huesman 2 , R. Buchko 2 , D. Brasse 1 , G. T. Gullberg 2 Université de Strasbourg, IPHC, 23 rue du loess, 67037 Strasbourg, France - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

1

Modeling a flexible Detector Response Function in small animal SPECT

using Geant4Z. El Bitar1, R. H. Huesman2, R. Buchko2, D. Brasse1, G. T. Gullberg2

1. Université de Strasbourg, IPHC, 23 rue du loess, 67037 Strasbourg, France2. Lawrence Berkeley National Laboratory, Berkeley California 94720, USA

Droite Workshop, Lyon, October 25, 2012

Page 2: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

2

Outline

1. Context

2. Fully 3D image reconstruction

3. Monte Carlo modelling of the system matrix

4. Including geometrical misalignment

5. Correcting for penetration

6. Phantom and preclinical results

Page 3: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

3

1- Injection of a radiotracer2- Isotropic emission of gamma rays3- Collimation: Filtering the directions of the photons Parallel

Single Photon Emission Computed Tomography

Pinhole

Parallel Pinhole

Page 4: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

4

j

Projection p

1.1. Simultaneous reconstruction of the whole volumeSimultaneous reconstruction of the whole volume2.2. Taken into account of 3D physcial phenomena such as : Taken into account of 3D physcial phenomena such as : scatterscatter

and and detector response detector response

i

Activity distribution

f

Fully 3D image reconstruction

• Solving Solving p p = R = R f f using an iterative method like MLEM, OSEM, ART, GC.using an iterative method like MLEM, OSEM, ART, GC.

R(i,j) : Probability that a photon emitted in a voxel i to ba detected in a pixel j

Discrete formulation of the image reconstruction problemp = R x f

detector

Page 5: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

5

4 Estimation de R

1 • densité• composition atomique

Coupe voxellisée (obtenue par TDM)

Modélisation Monte Carlo de RModèle du TEMP

2

mesuresTEMP

P

5Résolution du problème inverse P = Rx f dans un algorithme itératif (ML-EM, OSEM, ART, CG …)

Données fonctionnelles TEMP (fusion avec TDM)

j

Modélisation Monte-Carlo des probabilités qu’un photon émis en voxel i soit détecté en pixel j

idétecteur

3

Page 6: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

6

What’s the problem in small animal SPECT ?

1. Monte Carlo simulations are time consuming.

2. Detection efficiency is very low in small animal SPECT due to pinhole collimation.

3. Pinhole SPECT modality is very sensitive to geometrical misalignments => a system matrix should be computed for each set up.

4. We must find a solution to avoid resimulation by Monte Carlo methods for each exam => need to have a detector model independent of the acquisition set up.

Page 7: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

7

Decomposition of the system matrix

R = Rsubject + Rdetector

Computed once-for-allTo be computed for each subject/exam

Page 8: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

8

pixel j

collimator

crystal

bin ibin i

Definition of a family of lines (or directions)

The family of lines Lij is defined by all photons’ directions entering the collimator at bin i and aiming the crystal’s pixel j => Calculation of the Detector Responsefunction table (DRFT).

Page 9: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

9

SPECT Components

Rectangular knife edge collimatorAperture : 2 x 1.5 mm2

Rectangular knife edge collimatorAperture : 0.6 x 0.4 mm2 Both collimators

Shielding

SPECT : General Electric – Hawkeye 3

Page 10: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

10

SPECT model in Geant4

Collimator + shieldingCollimator

Collimator + Shielding + Crystal

Page 11: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

11

Validation of the DRFT

Profiles drawn on the projections of three point sources located at :(-20 mm, 0, 0), (0, 0, 0) and (20 mm, 0, 0).

Speed up by a factor of 74

Page 12: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

12

Pinhole acquisition geometry

7 parameters to estimate: • m : mechanical shift • electronic shift : eu , ev

• distance collimator to centre of rotation : r• distance collimator to crystal : f• Tilt and Twist angle: Ф, Ψ

Calibration parameters are estimated by minimizing the following functions :

Page 13: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

13

Calibration phantom

1

2 3

Page 14: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

14

Geometrical Parameters Estimation

u (head1) v (head1)

u (head2) v (head2)u

v1

2 3

Page 15: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

15

Head1 Head2

Trajectories' fit

Page 16: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

16

collimator

crystal

x

y

z

Mechanical shift

shift m

s

shift m

Reconstructed Images of a sphere (Ø = 2 mm).

Original m = 2 mm Corrected

Page 17: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

17

What’s the point ?1. After performing Monte Carlo simulations and

calculating a Detector Response Function Table, one is home-free to used the DRFT(~500 Mbytes).

2. The DRFT can incorporate with ease for any geometrical misalignments (translation, rotation): all what is required is the equation of the entry plan (collimator) and the detection plan (crystal).

3. Resimulation of all photons’ trajectories inside the detector is not required for each study.

Page 18: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

18

Target emission window:

{x > -1; x < 1}{z > -1; z < 1}

{x > -3; x < 3}{z > -3; z < 3}

{x > -3; x < -1} U { x > 1; x < 3 } {z > -3; z < -1} U { z > 1; z < 3 }

Target window = 2 mm Target window = 6 mm Penetration window

x

z

y

Page 19: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

19

Penetration validation

2

tgxd

16.3)140( mmkeVtung

Penetration ratio

0

0,1

0,2

0,3

0,4

0,5

0,6

0,1 0,2 0,3 0,4 0,5

Distance from the knife edge border (mm)

Pen

etra

tio

n r

atio

Theory

Geant4

x

)2

(22

2))

2(

2(

tgtggeodgeodeffectived

*Roberto Accorsi and Scott Metzler : Analytic Determination of the Resolution-equivalent effective diameter of a Pinhole Collimator (IEEE, TMI, vol 23, June 2004)

mmmmgeodmmkeVweffectived 29.2deg)90,2:,16.3:)140((

Page 20: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

20

Penetration effect : simulation studyProjection of Cylindre : Diameter = 40 mm, Height = 40mm

Target window = 2 mm Target window = 6 mm Penetration window

Page 21: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

21

Tomography• Spatial resolution:

22

2int

geoRM

RsystemR

Where:• Rint is the intrinsic spatial resolution of the crystal• Rgeo is the spatial resolution due to the geometry of the pinhole• M is the magnification factor (distante detector-pinhole)/(distance pinhole-centerFOV)

)1

1(M

dgeometryR

Where:• d is the diameter of the aperture of the pinhole

Expected radial spatial resolution with:

Wide collimator (2 x1.5 mm2) : 2.55 mm Narrow collimator (0.6 x 0.4 mm2) : 1.14 mm

Page 22: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

22

Effect on reconstruction

Window projection : 2 mmWindow system matrix : 2 mm

Window projection : 2 mmWindow system matrix : 6 mm

Window projection : 6 mmWindow system matrix : 2 mm

Window projection : 6 mmWindow system matrix : 6 mm

Page 23: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

23

Real data: micro Jaszczack phantom (1)

4.8 mm4.0 mm

3.2 mm

2.4 mm1.2 mm

1.6 mm

Page 24: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

24

Real data: micro Jaszczack phantom (2)

Window system matrix : 2 mm Window system matrix : 6 mm

Correction for the penetration effect2 mm

1.5 mm

Page 25: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

25

Real data: micro Jaszczack phantom (3)

Before correction After correction

Misalignment correction

0.6 mm

0.4 mm

Page 26: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

26

Computation time : parallelization of the system matrix calculation

Field of view

Each processor calculate the system matrix corresponding to a slice

Computation time for an object of 152x152x152 voxels ~= 20 minutes

Page 27: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

27

Slaves tasks:Slaves tasks:

1.1. Forward-projectionForward-projection

Master TasksMaster Tasks

2/3 2/3 2/3

2.2. Send projections Send projections

3.3. Receive projectionsReceive projections

4.4. Sum the projectionsSum the projections

5.5. Compute the correction coefficientsCompute the correction coefficients (CC = P(CC = Pmeasuredmeasured/ P/ Pestimatedestimated))

8.8. Back-projectionBack-projection

MasterMaster

PC 1 PC 2 PC 10

SlaveSlave

7.7. Receive CCReceive CC

6.6. Send the CC to the slavesSend the CC to the slaves

6/7 6/7 6/7

Volume’s slicesVolume’s slicesto be reconstructedto be reconstructed

Reconstruction TomographiqueParallelization of the iterative reconstruction

Page 28: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

28

Most recent result150x150x150 voxels (0.4x0.4x0.4 mm3),

90 projections (128x88 pixels)Size of system matrix ~= 40 GBytes

MLEM (50 iterations) < 3 minutes

0.6 x 0.4 mm2

Page 29: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

29

Small animal result

Reconstruction slice of a rat heart using MIBG

(ML-EM, 50 iterations)Profile drawn through the heart

El Bitar et al, submitted to Phys Med Biol

Page 30: Modeling a flexible Detector Response Function in small animal SPECT  using Geant4

30

Acknowledgment Grant T Gullberg (discussion)

Ronald H Huesman (discussion)

Rostystalv Boutchko (calibration)

Archontis Giannakdis (discussion)

Martin Boswell (computing)

Nichlas Vandeheye (experiments)

Steven Hanrahan (experiments)

Bill Moses (experiments)

Special thanks to the Franco-American Fulbright-commission !