modeling compressible multiphase flow and …...for simplicity, but consistant, with modelling gas...

163
Multiphase Flow and Transport in saturated-unsaturated porous media Alain Bourgeat, Universit´ e Claude Bernard Lyon 1 Institut Camille Jordan-UMR 5208 Contributors: F.Sma¨ ı, IRSN Fontenay aux Roses and ICJ-UCBLyon1; M.Jurak, Univ. Zagreb Physical assumptions Unsaturated flow equations Saturated flow equations Construction of a saturated/unsaturated model Three Numerical Tests Conclusions 1/26 Modeling compressible Multiphase Flow and Transport in saturated-unsaturated porous media: Phase appearance-disappearance Application to gas migration in underground nuclear waste repository Alain Bourgeat, Universit´ e Claude Bernard Lyon 1 Institut Camille Jordan-UMR 5208 Contributors: F.Sma¨ ı, IRSN Fontenay aux Roses and ICJ-UCBLyon1; M.Jurak, Univ. Zagreb RICAM; Linz- Austria; Oct3-7, 2011

Upload: others

Post on 19-Jun-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

1/26

Modeling compressible Multiphase

Flow and Transport in

saturated-unsaturated porous media:

Phase appearance-disappearanceApplication to gas migration in underground nuclear waste

repository

Alain Bourgeat, Universite Claude Bernard Lyon 1 InstitutCamille Jordan-UMR 5208

Contributors:F.Smaı, IRSN Fontenay aux Roses and ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

RICAM; Linz- Austria; Oct3-7, 2011

Page 2: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

2/26

IntroductionThe Context

I in a deep geological Nuclear Waste Repository there could behydrogen gas generation due to corrosion of the steelengineered barriers

I the flow could be saturated (' only the liquid phase) insome regionsand unsaturated (a ”liquid + gas” mixture) in other ones

I Problem in simulations, using standard models, when there isa phase appearance/disappearance

– - variable switching or variable substitution– - small artificial non-zero saturation

Page 3: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

2/26

IntroductionThe Context

I in a deep geological Nuclear Waste Repository there could behydrogen gas generation due to corrosion of the steelengineered barriers

I the flow could be saturated (' only the liquid phase) insome regionsand unsaturated (a ”liquid + gas” mixture) in other ones

I Problem in simulations, using standard models, when there isa phase appearance/disappearance

– - variable switching or variable substitution– - small artificial non-zero saturation

Page 4: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

2/26

IntroductionThe Context

I in a deep geological Nuclear Waste Repository there could behydrogen gas generation due to corrosion of the steelengineered barriers

I the flow could be saturated (' only the liquid phase) insome regionsand unsaturated (a ”liquid + gas” mixture) in other ones

I Problem in simulations, using standard models, when there isa phase appearance/disappearance

– - variable switching or variable substitution– - small artificial non-zero saturation

Page 5: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

3/26

IntroductionA repository

Figure: A Repository Zone; Waste Packages(containers sets); StorageUnits

Page 6: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

4/26

IntroductionEngineered Barriers

Figure: LONG TERM RISKS, from pressure buid-up: hydraulic headpressure gradient ⇒RN transport enhancement; mechanical damagingof the host rock and the barrier; perturbation of the seals resaturation;...!

Page 7: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

5/26

Saturated-Unsaturated two phases flowPhysical assumptions -(i)

For simplicity, but consistant, with modelling gas migration indeep geological Nuclear Waste Repositories :

I 2 phases : liquid (incompressible), denoted l and gas(compressible)denoted g

I 2 components : water,w and and hydrogen,h

I Mass conservation for each component w, h

I Generalized Darcy law for each phase , α ∈ {g, l}

qα = −Kkr,α(Sα)

µα(∇pα − ραg) (1)

I local mechanical equilibrium of phases ≈ Capillary pressurelaw : pg − pl = pc(Sg).

I Ideal gaseous Mixture of Ideal gas,with Dalton’s law of partialpressures, and diluted liquid solution

I Isothermal flow, with the two phases locally at the sametemperature

I No chemical reactions

Page 8: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

5/26

Saturated-Unsaturated two phases flowPhysical assumptions -(i)

For simplicity, but consistant, with modelling gas migration indeep geological Nuclear Waste Repositories :

I 2 phases : liquid (incompressible), denoted l and gas(compressible)denoted g

I 2 components : water,w and and hydrogen,h

I Mass conservation for each component w, h

I Generalized Darcy law for each phase , α ∈ {g, l}

qα = −Kkr,α(Sα)

µα(∇pα − ραg) (1)

I local mechanical equilibrium of phases ≈ Capillary pressurelaw : pg − pl = pc(Sg).

I Ideal gaseous Mixture of Ideal gas,with Dalton’s law of partialpressures, and diluted liquid solution

I Isothermal flow, with the two phases locally at the sametemperature

I No chemical reactions

Page 9: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

5/26

Saturated-Unsaturated two phases flowPhysical assumptions -(i)

For simplicity, but consistant, with modelling gas migration indeep geological Nuclear Waste Repositories :

I 2 phases : liquid (incompressible), denoted l and gas(compressible)denoted g

I 2 components : water,w and and hydrogen,h

I Mass conservation for each component w, h

I Generalized Darcy law for each phase , α ∈ {g, l}

qα = −Kkr,α(Sα)

µα(∇pα − ραg) (1)

I local mechanical equilibrium of phases ≈ Capillary pressurelaw : pg − pl = pc(Sg).

I Ideal gaseous Mixture of Ideal gas,with Dalton’s law of partialpressures, and diluted liquid solution

I Isothermal flow, with the two phases locally at the sametemperature

I No chemical reactions

Page 10: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

5/26

Saturated-Unsaturated two phases flowPhysical assumptions -(i)

For simplicity, but consistant, with modelling gas migration indeep geological Nuclear Waste Repositories :

I 2 phases : liquid (incompressible), denoted l and gas(compressible)denoted g

I 2 components : water,w and and hydrogen,h

I Mass conservation for each component w, h

I Generalized Darcy law for each phase , α ∈ {g, l}

qα = −Kkr,α(Sα)

µα(∇pα − ραg) (1)

I local mechanical equilibrium of phases ≈ Capillary pressurelaw : pg − pl = pc(Sg).

I Ideal gaseous Mixture of Ideal gas,with Dalton’s law of partialpressures, and diluted liquid solution

I Isothermal flow, with the two phases locally at the sametemperature

I No chemical reactions

Page 11: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

5/26

Saturated-Unsaturated two phases flowPhysical assumptions -(i)

For simplicity, but consistant, with modelling gas migration indeep geological Nuclear Waste Repositories :

I 2 phases : liquid (incompressible), denoted l and gas(compressible)denoted g

I 2 components : water,w and and hydrogen,h

I Mass conservation for each component w, h

I Generalized Darcy law for each phase , α ∈ {g, l}

qα = −Kkr,α(Sα)

µα(∇pα − ραg) (1)

I local mechanical equilibrium of phases ≈ Capillary pressurelaw : pg − pl = pc(Sg).

I Ideal gaseous Mixture of Ideal gas,with Dalton’s law of partialpressures, and diluted liquid solution

I Isothermal flow, with the two phases locally at the sametemperature

I No chemical reactions

Page 12: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

5/26

Saturated-Unsaturated two phases flowPhysical assumptions -(i)

For simplicity, but consistant, with modelling gas migration indeep geological Nuclear Waste Repositories :

I 2 phases : liquid (incompressible), denoted l and gas(compressible)denoted g

I 2 components : water,w and and hydrogen,h

I Mass conservation for each component w, h

I Generalized Darcy law for each phase , α ∈ {g, l}

qα = −Kkr,α(Sα)

µα(∇pα − ραg) (1)

I local mechanical equilibrium of phases ≈ Capillary pressurelaw : pg − pl = pc(Sg).

I Ideal gaseous Mixture of Ideal gas,with Dalton’s law of partialpressures, and diluted liquid solution

I Isothermal flow, with the two phases locally at the sametemperature

I No chemical reactions

Page 13: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

5/26

Saturated-Unsaturated two phases flowPhysical assumptions -(i)

For simplicity, but consistant, with modelling gas migration indeep geological Nuclear Waste Repositories :

I 2 phases : liquid (incompressible), denoted l and gas(compressible)denoted g

I 2 components : water,w and and hydrogen,h

I Mass conservation for each component w, h

I Generalized Darcy law for each phase , α ∈ {g, l}

qα = −Kkr,α(Sα)

µα(∇pα − ραg) (1)

I local mechanical equilibrium of phases ≈ Capillary pressurelaw : pg − pl = pc(Sg).

I Ideal gaseous Mixture of Ideal gas,with Dalton’s law of partialpressures, and diluted liquid solution

I Isothermal flow, with the two phases locally at the sametemperature

I No chemical reactions

Page 14: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

5/26

Saturated-Unsaturated two phases flowPhysical assumptions -(i)

For simplicity, but consistant, with modelling gas migration indeep geological Nuclear Waste Repositories :

I 2 phases : liquid (incompressible), denoted l and gas(compressible)denoted g

I 2 components : water,w and and hydrogen,h

I Mass conservation for each component w, h

I Generalized Darcy law for each phase , α ∈ {g, l}

qα = −Kkr,α(Sα)

µα(∇pα − ραg) (1)

I local mechanical equilibrium of phases ≈ Capillary pressurelaw : pg − pl = pc(Sg).

I Ideal gaseous Mixture of Ideal gas,with Dalton’s law of partialpressures, and diluted liquid solution

I Isothermal flow, with the two phases locally at the sametemperature

I No chemical reactions

Page 15: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

6/26

Saturated-Unsaturated two phases flowPhysical assumptions -(ii)

I Diffusion of component i in phase α ( and infinite dilution )

jhl = −ΦSlD∇ρhl , jwl = −jhl ,

I Local thermodynamical equilibrium liquid solution/ gasmixture

pwg = xwg pg = pwv exp

((pg − pc)− pwvRTρw,∗l /Mw

)xwl (2)

phg = xhgpg = KhH exp

(pl − p0

RT/vh,∞l

)xhl ; (3)

∼Raoult-Kelvin and Henry laws; with:xiα, the i-component molar concentration in theα-phase, pwv the pure water saturated vapor pressure , ρw,∗lthe pure liquid water mass density, Kh

H the Henry’s constant

at p0 (a reference pressure) , vh,∞l the hydrogen molarconcentration at infinite dilution .

Page 16: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

6/26

Saturated-Unsaturated two phases flowPhysical assumptions -(ii)

I Diffusion of component i in phase α ( and infinite dilution )

jhl = −ΦSlD∇ρhl , jwl = −jhl ,

I Local thermodynamical equilibrium liquid solution/ gasmixture

pwg = xwg pg = pwv exp

((pg − pc)− pwvRTρw,∗l /Mw

)xwl (2)

phg = xhgpg = KhH exp

(pl − p0

RT/vh,∞l

)xhl ; (3)

∼Raoult-Kelvin and Henry laws; with:xiα, the i-component molar concentration in theα-phase, pwv the pure water saturated vapor pressure , ρw,∗lthe pure liquid water mass density, Kh

H the Henry’s constant

at p0 (a reference pressure) , vh,∞l the hydrogen molarconcentration at infinite dilution .

Page 17: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Phase diagram

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

7/26

Unsaturated two-phase flowAn example of Unsaturated liquid+gas mixture flow (no vaporized water)

The components mass conservation reads :

Φ∂

∂t(Slρ

wl ) + div (ρwl ql + jwl ) = Fw, (4)

Φ∂

∂t

(Slρ

hl + Sgρg

)+ div

(ρhl ql + ρgqg + jhl

)= Fh; (5)

Usual primary variables: (pl, Sl), (pl, pg), (pl, pc).

Where : ρil, the i-component mass concentration;

ρg ' ρhg = Cvpg( = ideal gas); pg = pc + pl;

ρhl = Chpg( = Henry’s law) .and constants :

Ch =Mh

KhH

, Cv =Mh

RT(Mh = Hydrogen molar mass) .

Page 18: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Phase diagram

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

7/26

Unsaturated two-phase flowAn example of Unsaturated liquid+gas mixture flow (no vaporized water)

The components mass conservation reads :

Φ∂

∂t(Slρ

wl ) + div (ρwl ql + jwl ) = Fw, (4)

Φ∂

∂t

(Slρ

hl + Sgρg

)+ div

(ρhl ql + ρgqg + jhl

)= Fh; (5)

Usual primary variables: (pl, Sl), (pl, pg), (pl, pc).

Where : ρil, the i-component mass concentration;

ρg ' ρhg = Cvpg( = ideal gas); pg = pc + pl;

ρhl = Chpg( = Henry’s law) .

and constants :

Ch =Mh

KhH

, Cv =Mh

RT(Mh = Hydrogen molar mass) .

Page 19: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Phase diagram

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

7/26

Unsaturated two-phase flowAn example of Unsaturated liquid+gas mixture flow (no vaporized water)

The components mass conservation reads :

Φ∂

∂t(Slρ

wl ) + div (ρwl ql + jwl ) = Fw, (4)

Φ∂

∂t

(Slρ

hl + Sgρg

)+ div

(ρhl ql + ρgqg + jhl

)= Fh; (5)

Usual primary variables: (pl, Sl), (pl, pg), (pl, pc).

Where : ρil, the i-component mass concentration;

ρg ' ρhg = Cvpg( = ideal gas); pg = pc + pl;

ρhl = Chpg( = Henry’s law) .and constants :

Ch =Mh

KhH

, Cv =Mh

RT(Mh = Hydrogen molar mass) .

Page 20: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Phase diagram

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

8/26

Unsaturated/Saturated flowPhase Diagram

ρhl

pl

ρhl=

C h(p l

+pc(0))

Sg = 0

ρhl ≤ Ch(pl + pc(0))

Sg > 0

ρhl = Chpg

≥ pl + pc(0)

pg = pl + pc(Sg)

Figure: Henry’s law:ρhl = Chpg. Localization of the saturated state,Sg = 0, and the unsaturated state, Sg > 0 .

Page 21: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

9/26

Saturated flow ( One phaseLiquid saturated flow

I Sl ≡ 1, pg is then indeterminate

I Classical Darcy law for liquid flow (water + dissolvedhydrogen)

I Dissolved hydrogen transported by diffusion and convectionI The

liquid solution flow (water + dissolved hydrogen) is described by :

div(ρwl ql − jhl

)= Fw, Φ

∂ρhl∂t

+ div(ρhl ql + jhl

)= Fh; (6)

ql = −Kλl(1)(∇pl − (ρwl + ρhl )g

), jhl = −ΦD∇ρhl . (7)

I Primary variables are then (pl, ρhl ); the amount of dissolved

hydrogen, ρhl ,is now an independent unknown( no morerelated to the pg); and a gas phase cannot be taken inaccount.

I the couple (Saturation,Phase Pressure) cannot describe theflow in such a liquid saturated region ( one-phase flow).

How to have a unique model for both saturated and unsaturatedflows ?

Page 22: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

9/26

Saturated flow ( One phaseLiquid saturated flow

I Sl ≡ 1, pg is then indeterminateI Classical Darcy law for liquid flow (water + dissolved

hydrogen)

I Dissolved hydrogen transported by diffusion and convectionI The

liquid solution flow (water + dissolved hydrogen) is described by :

div(ρwl ql − jhl

)= Fw, Φ

∂ρhl∂t

+ div(ρhl ql + jhl

)= Fh; (6)

ql = −Kλl(1)(∇pl − (ρwl + ρhl )g

), jhl = −ΦD∇ρhl . (7)

I Primary variables are then (pl, ρhl ); the amount of dissolved

hydrogen, ρhl ,is now an independent unknown( no morerelated to the pg); and a gas phase cannot be taken inaccount.

I the couple (Saturation,Phase Pressure) cannot describe theflow in such a liquid saturated region ( one-phase flow).

How to have a unique model for both saturated and unsaturatedflows ?

Page 23: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

9/26

Saturated flow ( One phaseLiquid saturated flow

I Sl ≡ 1, pg is then indeterminateI Classical Darcy law for liquid flow (water + dissolved

hydrogen)I Dissolved hydrogen transported by diffusion and convection

I Theliquid solution flow (water + dissolved hydrogen) is described by :

div(ρwl ql − jhl

)= Fw, Φ

∂ρhl∂t

+ div(ρhl ql + jhl

)= Fh; (6)

ql = −Kλl(1)(∇pl − (ρwl + ρhl )g

), jhl = −ΦD∇ρhl . (7)

I Primary variables are then (pl, ρhl ); the amount of dissolved

hydrogen, ρhl ,is now an independent unknown( no morerelated to the pg); and a gas phase cannot be taken inaccount.

I the couple (Saturation,Phase Pressure) cannot describe theflow in such a liquid saturated region ( one-phase flow).

How to have a unique model for both saturated and unsaturatedflows ?

Page 24: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

9/26

Saturated flow ( One phaseLiquid saturated flow

I Sl ≡ 1, pg is then indeterminateI Classical Darcy law for liquid flow (water + dissolved

hydrogen)I Dissolved hydrogen transported by diffusion and convection

I Theliquid solution flow (water + dissolved hydrogen) is described by :

div(ρwl ql − jhl

)= Fw, Φ

∂ρhl∂t

+ div(ρhl ql + jhl

)= Fh; (6)

ql = −Kλl(1)(∇pl − (ρwl + ρhl )g

), jhl = −ΦD∇ρhl . (7)

I Primary variables are then (pl, ρhl ); the amount of dissolved

hydrogen, ρhl ,is now an independent unknown( no morerelated to the pg); and a gas phase cannot be taken inaccount.

I the couple (Saturation,Phase Pressure) cannot describe theflow in such a liquid saturated region ( one-phase flow).

How to have a unique model for both saturated and unsaturatedflows ?

Page 25: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

9/26

Saturated flow ( One phaseLiquid saturated flow

I Sl ≡ 1, pg is then indeterminateI Classical Darcy law for liquid flow (water + dissolved

hydrogen)I Dissolved hydrogen transported by diffusion and convection

I Theliquid solution flow (water + dissolved hydrogen) is described by :

div(ρwl ql − jhl

)= Fw, Φ

∂ρhl∂t

+ div(ρhl ql + jhl

)= Fh; (6)

ql = −Kλl(1)(∇pl − (ρwl + ρhl )g

), jhl = −ΦD∇ρhl . (7)

I Primary variables are then (pl, ρhl ); the amount of dissolved

hydrogen, ρhl ,is now an independent unknown( no morerelated to the pg); and a gas phase cannot be taken inaccount.

I the couple (Saturation,Phase Pressure) cannot describe theflow in such a liquid saturated region ( one-phase flow).

How to have a unique model for both saturated and unsaturatedflows ?

Page 26: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

9/26

Saturated flow ( One phaseLiquid saturated flow

I Sl ≡ 1, pg is then indeterminateI Classical Darcy law for liquid flow (water + dissolved

hydrogen)I Dissolved hydrogen transported by diffusion and convection

I Theliquid solution flow (water + dissolved hydrogen) is described by :

div(ρwl ql − jhl

)= Fw, Φ

∂ρhl∂t

+ div(ρhl ql + jhl

)= Fh; (6)

ql = −Kλl(1)(∇pl − (ρwl + ρhl )g

), jhl = −ΦD∇ρhl . (7)

I Primary variables are then (pl, ρhl ); the amount of dissolved

hydrogen, ρhl ,is now an independent unknown( no morerelated to the pg); and a gas phase cannot be taken inaccount.

I the couple (Saturation,Phase Pressure) cannot describe theflow in such a liquid saturated region ( one-phase flow).

How to have a unique model for both saturated and unsaturatedflows ?

Page 27: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

9/26

Saturated flow ( One phaseLiquid saturated flow

I Sl ≡ 1, pg is then indeterminateI Classical Darcy law for liquid flow (water + dissolved

hydrogen)I Dissolved hydrogen transported by diffusion and convection

I Theliquid solution flow (water + dissolved hydrogen) is described by :

div(ρwl ql − jhl

)= Fw, Φ

∂ρhl∂t

+ div(ρhl ql + jhl

)= Fh; (6)

ql = −Kλl(1)(∇pl − (ρwl + ρhl )g

), jhl = −ΦD∇ρhl . (7)

I Primary variables are then (pl, ρhl ); the amount of dissolved

hydrogen, ρhl ,is now an independent unknown( no morerelated to the pg); and a gas phase cannot be taken inaccount.

I the couple (Saturation,Phase Pressure) cannot describe theflow in such a liquid saturated region ( one-phase flow).

How to have a unique model for both saturated and unsaturatedflows ?

Page 28: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Choice of suitablevariables

Choice i Model

Choice ii Model

Capillary PressureCurve, and Inverse

Three Numerical Tests

Conclusions

10/26

Construction of asaturated(1-phase)/unsaturated(2-phases )model

I According to the phase state , the primary variables are:

I two-phase unsaturated : Liquid pressure pl/Phase SaturationSl; like in (4)-(5)

I one-phase saturated : Liquid pressure pl/Hydrogen massconcentration, ρhl , like in (6) - (7)

I Considering pl and ρhl as main variables in both casessaturated and unsaturated , then eqs. (4)-(7) reduce to aunique couple of equations:

Φ∂

∂t(Slρ

wl ) + div (ρwl ql + jwl ) = Fw, (8)

Φ∂

∂t

(ρhtot)

+ div(ρhl ql + ρgqg + jhl

)= Fh ; (9)

I with ρhtot = Slρhl + CvpgSg ; Cvp

hg = ρhg (∼ ideal gas)

Page 29: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Choice of suitablevariables

Choice i Model

Choice ii Model

Capillary PressureCurve, and Inverse

Three Numerical Tests

Conclusions

10/26

Construction of asaturated(1-phase)/unsaturated(2-phases )model

I According to the phase state , the primary variables are:I two-phase unsaturated : Liquid pressure pl/Phase SaturationSl; like in (4)-(5)

I one-phase saturated : Liquid pressure pl/Hydrogen massconcentration, ρhl , like in (6) - (7)

I Considering pl and ρhl as main variables in both casessaturated and unsaturated , then eqs. (4)-(7) reduce to aunique couple of equations:

Φ∂

∂t(Slρ

wl ) + div (ρwl ql + jwl ) = Fw, (8)

Φ∂

∂t

(ρhtot)

+ div(ρhl ql + ρgqg + jhl

)= Fh ; (9)

I with ρhtot = Slρhl + CvpgSg ; Cvp

hg = ρhg (∼ ideal gas)

Page 30: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Choice of suitablevariables

Choice i Model

Choice ii Model

Capillary PressureCurve, and Inverse

Three Numerical Tests

Conclusions

10/26

Construction of asaturated(1-phase)/unsaturated(2-phases )model

I According to the phase state , the primary variables are:I two-phase unsaturated : Liquid pressure pl/Phase SaturationSl; like in (4)-(5)

I one-phase saturated : Liquid pressure pl/Hydrogen massconcentration, ρhl , like in (6) - (7)

I Considering pl and ρhl as main variables in both casessaturated and unsaturated , then eqs. (4)-(7) reduce to aunique couple of equations:

Φ∂

∂t(Slρ

wl ) + div (ρwl ql + jwl ) = Fw, (8)

Φ∂

∂t

(ρhtot)

+ div(ρhl ql + ρgqg + jhl

)= Fh ; (9)

I with ρhtot = Slρhl + CvpgSg ; Cvp

hg = ρhg (∼ ideal gas)

Page 31: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Choice of suitablevariables

Choice i Model

Choice ii Model

Capillary PressureCurve, and Inverse

Three Numerical Tests

Conclusions

10/26

Construction of asaturated(1-phase)/unsaturated(2-phases )model

I According to the phase state , the primary variables are:I two-phase unsaturated : Liquid pressure pl/Phase SaturationSl; like in (4)-(5)

I one-phase saturated : Liquid pressure pl/Hydrogen massconcentration, ρhl , like in (6) - (7)

I Considering pl and ρhl as main variables in both casessaturated and unsaturated , then eqs. (4)-(7) reduce to aunique couple of equations:

Φ∂

∂t(Slρ

wl ) + div (ρwl ql + jwl ) = Fw, (8)

Φ∂

∂t

(ρhtot)

+ div(ρhl ql + ρgqg + jhl

)= Fh ; (9)

I with ρhtot = Slρhl + CvpgSg ; Cvp

hg = ρhg (∼ ideal gas)

Page 32: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Choice of suitablevariables

Choice i Model

Choice ii Model

Capillary PressureCurve, and Inverse

Three Numerical Tests

Conclusions

10/26

Construction of asaturated(1-phase)/unsaturated(2-phases )model

I According to the phase state , the primary variables are:I two-phase unsaturated : Liquid pressure pl/Phase SaturationSl; like in (4)-(5)

I one-phase saturated : Liquid pressure pl/Hydrogen massconcentration, ρhl , like in (6) - (7)

I Considering pl and ρhl as main variables in both casessaturated and unsaturated , then eqs. (4)-(7) reduce to aunique couple of equations:

Φ∂

∂t(Slρ

wl ) + div (ρwl ql + jwl ) = Fw, (8)

Φ∂

∂t

(ρhtot)

+ div(ρhl ql + ρgqg + jhl

)= Fh ; (9)

I with ρhtot = Slρhl + CvpgSg ; Cvp

hg = ρhg (∼ ideal gas)

Page 33: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Choice of suitablevariables

Choice i Model

Choice ii Model

Capillary PressureCurve, and Inverse

Three Numerical Tests

Conclusions

11/26

Construction of asaturated(1-phase)/unsaturated(2-phases)modelChoice of suitable variables

I the Total Hydrogen mass concentration ρhtot ≡ ρhl Sl + ρhgSg ,is definite in both states of flow (according to the flow state):

I two-phases unsaturated state :

ρhtot = a(Sg)(pl + pc(Sg)) ;Sg > 0 (10)

with: a(Sg) = Ch(1− Sg) + CvSg ∈ [Ch, Cv]. (11)

I one-phase saturated :ρhtot = ρhl ; Sg = 0.

I There is now two possible choices for the main variables ineq. (8) and (9):

Choice i : Liquid pressure, pl / Total Hydrogen concentration, ρhtotChoice ii : Liquid pressure, pl / Hydrogen mass concentration, ρhl

Page 34: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Choice of suitablevariables

Choice i Model

Choice ii Model

Capillary PressureCurve, and Inverse

Three Numerical Tests

Conclusions

11/26

Construction of asaturated(1-phase)/unsaturated(2-phases)modelChoice of suitable variables

I the Total Hydrogen mass concentration ρhtot ≡ ρhl Sl + ρhgSg ,is definite in both states of flow (according to the flow state):

I two-phases unsaturated state :

ρhtot = a(Sg)(pl + pc(Sg)) ;Sg > 0 (10)

with: a(Sg) = Ch(1− Sg) + CvSg ∈ [Ch, Cv]. (11)

I one-phase saturated :ρhtot = ρhl ; Sg = 0.

I There is now two possible choices for the main variables ineq. (8) and (9):

Choice i : Liquid pressure, pl / Total Hydrogen concentration, ρhtotChoice ii : Liquid pressure, pl / Hydrogen mass concentration, ρhl

Page 35: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Choice of suitablevariables

Choice i Model

Choice ii Model

Capillary PressureCurve, and Inverse

Three Numerical Tests

Conclusions

12/26

Choice i:saturated(1-phase)/unsaturated(2-phases )modelLiquid pressure, pl / Total Hydrogen concentration, ρhtot

I In system (8)-(9) we compute Sg = Sg(pl, ρhtot), (from

(11)); Sl = 1− Sg, andρhl = ρhl (pl, ρ

htot) = min(Chpg(pl, ρ

htot), ρ

htot), pg(pl, ρ

htot) =

pl + pc(Sg(pl, ρhtot)).

I Noticing a() is > Ch, increasing and pg > pl + pc(0); theState of flow is then characterized by:

unsaturated : ρhtot > Ch(pl + pc(0))

saturated : ρhtot ≤ Ch(pl + pc(0))

ρhtot ≡ ρhl

I Then:I 1st equation is parabolic(unsaturated)/elliptic(saturated) in plI 2nde equation is parabolic in ρhtot

Page 36: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Choice of suitablevariables

Choice i Model

Choice ii Model

Capillary PressureCurve, and Inverse

Three Numerical Tests

Conclusions

12/26

Choice i:saturated(1-phase)/unsaturated(2-phases )modelLiquid pressure, pl / Total Hydrogen concentration, ρhtot

I In system (8)-(9) we compute Sg = Sg(pl, ρhtot), (from

(11)); Sl = 1− Sg, andρhl = ρhl (pl, ρ

htot) = min(Chpg(pl, ρ

htot), ρ

htot), pg(pl, ρ

htot) =

pl + pc(Sg(pl, ρhtot)).

I Noticing a() is > Ch, increasing and pg > pl + pc(0); theState of flow is then characterized by:

unsaturated : ρhtot > Ch(pl + pc(0))

saturated : ρhtot ≤ Ch(pl + pc(0))

ρhtot ≡ ρhlI Then:

I 1st equation is parabolic(unsaturated)/elliptic(saturated) in plI 2nde equation is parabolic in ρhtot

Page 37: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Choice of suitablevariables

Choice i Model

Choice ii Model

Capillary PressureCurve, and Inverse

Three Numerical Tests

Conclusions

12/26

Choice i:saturated(1-phase)/unsaturated(2-phases )modelLiquid pressure, pl / Total Hydrogen concentration, ρhtot

I In system (8)-(9) we compute Sg = Sg(pl, ρhtot), (from

(11)); Sl = 1− Sg, andρhl = ρhl (pl, ρ

htot) = min(Chpg(pl, ρ

htot), ρ

htot), pg(pl, ρ

htot) =

pl + pc(Sg(pl, ρhtot)).

I Noticing a() is > Ch, increasing and pg > pl + pc(0); theState of flow is then characterized by:

unsaturated : ρhtot > Ch(pl + pc(0))

saturated : ρhtot ≤ Ch(pl + pc(0))ρhtot ≡ ρhl

I Then:I 1st equation is parabolic(unsaturated)/elliptic(saturated) in plI 2nde equation is parabolic in ρhtot

Page 38: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Choice of suitablevariables

Choice i Model

Choice ii Model

Capillary PressureCurve, and Inverse

Three Numerical Tests

Conclusions

12/26

Choice i:saturated(1-phase)/unsaturated(2-phases )modelLiquid pressure, pl / Total Hydrogen concentration, ρhtot

I In system (8)-(9) we compute Sg = Sg(pl, ρhtot), (from

(11)); Sl = 1− Sg, andρhl = ρhl (pl, ρ

htot) = min(Chpg(pl, ρ

htot), ρ

htot), pg(pl, ρ

htot) =

pl + pc(Sg(pl, ρhtot)).

I Noticing a() is > Ch, increasing and pg > pl + pc(0); theState of flow is then characterized by:

unsaturated : ρhtot > Ch(pl + pc(0))

saturated : ρhtot ≤ Ch(pl + pc(0))ρhtot ≡ ρhl

I Then:I 1st equation is parabolic(unsaturated)/elliptic(saturated) in plI 2nde equation is parabolic in ρhtot

Page 39: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Choice of suitablevariables

Choice i Model

Choice ii Model

Capillary PressureCurve, and Inverse

Three Numerical Tests

Conclusions

13/26

Choice i:saturated(1-phase)/unsaturated(2-phases )modelExistence of solutions

I After an ad hoc variable change, the Alt-Luckhaus theoremapplies, and the existence of a solution could be proved (F.

Smaı, PhD Thesis) .

Suppose rmin ≤ ρhtot ≤ rmax and pl ≥ 0 and assume thatinitial and Dirichlet conditions are enough regular.Then there is a weak solution to the simplified formulation.

I Could also certainly be investigated using ”Entropy weaksolutions”, defined by Kruzkov (hyperbolic) and extended byCarillo (parabolic).Remarks:

I no need of capillary pressure for this formulation(h-component eq. in (6) Parabolic −→ Hyperbolic)

I Coefficients in the div operators and in the ∂∂t

operatorscould become discontinuous

Page 40: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Choice of suitablevariables

Choice i Model

Choice ii Model

Capillary PressureCurve, and Inverse

Three Numerical Tests

Conclusions

13/26

Choice i:saturated(1-phase)/unsaturated(2-phases )modelExistence of solutions

I After an ad hoc variable change, the Alt-Luckhaus theoremapplies, and the existence of a solution could be proved (F.

Smaı, PhD Thesis) .

Suppose rmin ≤ ρhtot ≤ rmax and pl ≥ 0 and assume thatinitial and Dirichlet conditions are enough regular.Then there is a weak solution to the simplified formulation.

I Could also certainly be investigated using ”Entropy weaksolutions”, defined by Kruzkov (hyperbolic) and extended byCarillo (parabolic).Remarks:

I no need of capillary pressure for this formulation(h-component eq. in (6) Parabolic −→ Hyperbolic)

I Coefficients in the div operators and in the ∂∂t

operatorscould become discontinuous

Page 41: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Choice of suitablevariables

Choice i Model

Choice ii Model

Capillary PressureCurve, and Inverse

Three Numerical Tests

Conclusions

13/26

Choice i:saturated(1-phase)/unsaturated(2-phases )modelExistence of solutions

I After an ad hoc variable change, the Alt-Luckhaus theoremapplies, and the existence of a solution could be proved (F.

Smaı, PhD Thesis) .

Suppose rmin ≤ ρhtot ≤ rmax and pl ≥ 0 and assume thatinitial and Dirichlet conditions are enough regular.Then there is a weak solution to the simplified formulation.

I Could also certainly be investigated using ”Entropy weaksolutions”, defined by Kruzkov (hyperbolic) and extended byCarillo (parabolic).Remarks:

I no need of capillary pressure for this formulation(h-component eq. in (6) Parabolic −→ Hyperbolic)

I Coefficients in the div operators and in the ∂∂t

operatorscould become discontinuous

Page 42: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Choice of suitablevariables

Choice i Model

Choice ii Model

Capillary PressureCurve, and Inverse

Three Numerical Tests

Conclusions

14/26

Choice ii:saturated(1-phase)/unsaturated(2-phases )Liquid pressure, pl / Hydrogen mass concentration, ρhl

I Introducing in system (8)-(9), from (pc)−1, the extended

gas-phase Pressure p∗g = π + pl; and the extended saturation

S∗g = f(ρhlCh− pl

).

Sg

pc(Sg)

0 10

π =ρhlCh

− pl

f(π)

1

0

0

Figure: pc = pg − pl; p∗g =ρhlCh

.

I leads to a system with the main variables pl and ρhl

Page 43: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Choice of suitablevariables

Choice i Model

Choice ii Model

Capillary PressureCurve, and Inverse

Three Numerical Tests

Conclusions

14/26

Choice ii:saturated(1-phase)/unsaturated(2-phases )Liquid pressure, pl / Hydrogen mass concentration, ρhl

I Introducing in system (8)-(9), from (pc)−1, the extended

gas-phase Pressure p∗g = π + pl; and the extended saturation

S∗g = f(ρhlCh− pl

).

Sg

pc(Sg)

0 10

π =ρhlCh

− pl

f(π)

1

0

0

Figure: pc = pg − pl; p∗g =ρhlCh

.

I leads to a system with the main variables pl and ρhl

Page 44: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Choice of suitablevariables

Choice i Model

Choice ii Model

Capillary PressureCurve, and Inverse

Three Numerical Tests

Conclusions

15/26

Choice ii:saturated(1-phase)/unsaturated(2-phases)modelLiquid pressure, pl / Hydrogen mass concentration, ρhl

I 1st equation is parabolic (unsaturated)/elliptic(saturated) inpl, non uniformly ( coefficient of ∇pl → 0 as sg → 1)2nde equation is strictly parabolic in ρhl

I Remarks:I capillary pressure is absolutely necessary for this formulationI pl and ρhl are continuous no matter the discontinuity of the

Saturations ( porous media highly heterogeneous)I The coefficients in all the div and ∂

∂toperators are continuous

Page 45: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Choice of suitablevariables

Choice i Model

Choice ii Model

Capillary PressureCurve, and Inverse

Three Numerical Tests

Conclusions

15/26

Choice ii:saturated(1-phase)/unsaturated(2-phases)modelLiquid pressure, pl / Hydrogen mass concentration, ρhl

I 1st equation is parabolic (unsaturated)/elliptic(saturated) inpl, non uniformly ( coefficient of ∇pl → 0 as sg → 1)2nde equation is strictly parabolic in ρhl

I Remarks:I capillary pressure is absolutely necessary for this formulationI pl and ρhl are continuous no matter the discontinuity of the

Saturations ( porous media highly heterogeneous)I The coefficients in all the div and ∂

∂toperators are continuous

Page 46: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

16/26

Analysis and simulation; Numerical TestsAdvertising

Ongoing benchmark on:”Modelling Multiphase Flows”

http://www.gdrmomas.org/Benchmark/multiphase/

multiphasique.html

Page 47: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

17/26

Analysis and simulation; Quasi-1D scale fieldnumerical simulationsPb 1, Pb 2, Pb 3 in Numerical Test Data Base

Total Hydrogen concentration, ρhtot is denoted X in the following

I Boundary conditions :I Injection of pure gas on left sideI Impervious condition on top and bottom sideI Pure water (Xout = 0) (Test 1) or

Two-phases(Xout 6= 0)(Test 2) and a fixed pressure, on theright side

I Initial conditions :stationary state without injection (Qhin = 0)

Page 48: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

17/26

Analysis and simulation; Quasi-1D scale fieldnumerical simulationsPb 1, Pb 2, Pb 3 in Numerical Test Data Base

Total Hydrogen concentration, ρhtot is denoted X in the following

I Boundary conditions :I Injection of pure gas on left sideI Impervious condition on top and bottom sideI Pure water (Xout = 0) (Test 1) or

Two-phases(Xout 6= 0)(Test 2) and a fixed pressure, on theright side

I Initial conditions :stationary state without injection (Qhin = 0)

Page 49: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

17/26

Analysis and simulation; Quasi-1D scale fieldnumerical simulationsPb 1, Pb 2, Pb 3 in Numerical Test Data Base

Total Hydrogen concentration, ρhtot is denoted X in the following

I Boundary conditions :I Injection of pure gas on left sideI Impervious condition on top and bottom sideI Pure water (Xout = 0) (Test 1) or

Two-phases(Xout 6= 0)(Test 2) and a fixed pressure, on theright side

I Initial conditions :stationary state without injection (Qhin = 0)

Page 50: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

18/26

Analysis and simulationQuasi-1D scale field numerical simulations

I Van Genuchten-Mualem model for capillary pressure andrelative permeabilities

I Fixed temperature, T = 303 K

Porous medium parameters Fluid characteristicsParameter Value Parameter Value

k 5 10−20 m2 Dhl 3 10−9 m2/s

Φ 0.15 (−) µl 1 10−3 Pa.s

Pr 2 106 Pa µg 9 10−6 Pa.s

n 1.49 (−) H(T = 303K) 7.65 10−6 mol/Pa/m3

Slr 0.4 (−) Ml 10−2 kg/mol

Sgr 0 (−) Mg 2 10−3 kg/mol

ρstdl 103 kg/m3

ρstdg 8 10−2 kg/m3

Parameter ValueLx 200 mLy 20 m

Qh 1.5 10−5 m/yearpl,out 106 PaTsimul 5 105 years

For more, see :

http://sources.univ-lyon1.fr/cas test.html

Page 51: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

19/26

Analysis and simulationNumerical test : Implementation

I Fully implicit time discretization of the space/time p.d.e.system

I Newton iteration to solve nonlinearities of the space pdesystem

I Spatial discretization of the pde with a standard linear F.E.from the C++ LIBMESH Library

I GMRES/LU methods (PETSC)

Page 52: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

19/26

Analysis and simulationNumerical test : Implementation

I Fully implicit time discretization of the space/time p.d.e.system

I Newton iteration to solve nonlinearities of the space pdesystem

I Spatial discretization of the pde with a standard linear F.E.from the C++ LIBMESH Library

I GMRES/LU methods (PETSC)

Page 53: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

19/26

Analysis and simulationNumerical test : Implementation

I Fully implicit time discretization of the space/time p.d.e.system

I Newton iteration to solve nonlinearities of the space pdesystem

I Spatial discretization of the pde with a standard linear F.E.from the C++ LIBMESH Library

I GMRES/LU methods (PETSC)

Page 54: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

19/26

Analysis and simulationNumerical test : Implementation

I Fully implicit time discretization of the space/time p.d.e.system

I Newton iteration to solve nonlinearities of the space pdesystem

I Spatial discretization of the pde with a standard linear F.E.from the C++ LIBMESH Library

I GMRES/LU methods (PETSC)

Page 55: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 56: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 57: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 58: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 59: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 60: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 61: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 62: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 63: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 64: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 65: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 66: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 67: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 68: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 69: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 70: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 71: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 72: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 73: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 74: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 75: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 76: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 77: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 78: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 79: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 80: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 81: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 82: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 83: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 84: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 85: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

20/26

Analysis and simulationTest 1: Gas injection in a fully water saturated host rock

First, only solved Hydrogen density increases; second, the gas phase(Sg)appears ⇒ ∇pg,∇pc(Sg) and ∇pl > 0; finally higher∇pc(Sg)⇒ ∇pl < 0; and no water injection slow down the pl

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

4

8

12

16

20

abscissa (m)

ga

ssa

tura

tio

n(%

)0 40 80 120 160 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.02

1.04

1.06

1.08

1.1

1.12

Page 86: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 87: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 88: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 89: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 90: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 91: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 92: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 93: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 94: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 95: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 96: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 97: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 98: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 99: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 100: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 101: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 102: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 103: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 104: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 105: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 106: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 107: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 108: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 109: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 110: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 111: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 112: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 113: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 114: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 115: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 116: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

21/26

Analysis and simulationTest 2: Gas injection in a unsaturated host rock

Injection of Hydrogen increases ρhl , pg; and ( pc(Sg)smallenough)⇒ pl increases up to ”meet” Sg = 0 : a plug of liquidappears and is pushed by the injected gas to the R.H.S. ( withunsaturated Dirichlet cond.); bringing back to Test 1.

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 40 80 120 160 2000

10

20

30

40

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 40 80 120 160 2000

0.5

1

1.5

2

2.5

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 40 80 120 160 200

1

1.5

2

2.5

Page 117: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 118: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 119: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 120: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 121: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 122: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 123: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 124: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 125: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 126: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 127: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 128: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 129: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 130: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 131: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 132: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 133: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 134: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 135: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 136: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 137: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 138: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 139: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 140: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 141: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 142: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 143: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 144: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 145: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 146: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 147: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 148: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 149: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 150: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 151: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 152: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 153: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 154: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 155: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 156: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 157: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

22/26

Analysis and simulationTest 3: Non-equilibrium initial conditions

Starting from Non equilibrium initial condition(discontinuity of thegas-phase pressure at the starting time).

abscissa (m)

tota

lH

2d

ensi

ty(m

ol/

m3

)

0 0.2 0.4 0.6 0.8 10

40

80

120

160

abscissa (m)

ga

ssa

tura

tio

n(%

)

0 0.2 0.4 0.6 0.8 10

4

8

12

16

abscissa (m)

liq

uid

pre

ssu

re(M

Pa

)

0 0.2 0.4 0.6 0.8 1

1

1.5

2

Page 158: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

23/26

t = 10 s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

t = 10

x (m)

pre

ssio

n du

liqu

ide

(rou

ge)

et d

u ga

z (v

ert)

(M

Pa)

liquid and gas Pressure profiles

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

2

4

6

8

10

12

14

16

t = 10

x (m)

sat

urat

ion

de g

az (

%)

Gas Saturation profiles

t = 5000 s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

t = 5000

x (m)

pre

ssio

n du

liqu

ide

(rou

ge)

et d

u ga

z (v

ert)

(M

Pa)

liquid and gas Pressure profiles

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

2

4

6

8

10

12

14

16

t = 5000

x (m)

sat

urat

ion

de g

az (

%)

Gas Saturation profiles

t = 100000 s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

t = 100000

x (m)

pre

ssio

n du

liqu

ide

(rou

ge)

et d

u ga

z (v

ert)

(M

Pa)

liquid and gas Pressure profiles

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

2

4

6

8

10

12

14

16

t = 100000

x (m) s

atur

atio

n de

gaz

(%

)

Gas Saturation profiles

Page 159: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Setting

Simulations

Implementation inthe IRSN code:DIPHPOM

Numerical Test I

Numerical Test II

Numerical Test III

Conclusions

24/26

t = 200000 s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

t = 200000

x (m)

pre

ssio

n du

liqu

ide

(rou

ge)

et d

u ga

z (v

ert)

(M

Pa)

liquid and gas Pressure profiles

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

2

4

6

8

10

12

14

16

t = 200000

x (m)

sat

urat

ion

de g

az (

%)

Gas Saturation profiles

t = 1000000 s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

t = 1000000

x (m)

pre

ssio

n du

liqu

ide

(rou

ge)

et d

u ga

z (v

ert)

(M

Pa)

liquid and gas Pressure profiles

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

2

4

6

8

10

12

14

16

t = 1000000

x (m)

sat

urat

ion

de g

az (

%)

Gas Saturation profiles

Page 160: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

25/26

Conclusions

I Construction of a unique model for both, saturated andunsaturated, flows; handling phase appearance anddisappearance

I Ongoing implementation:I 2-phases, N + 1 components (1 solvent and N solutes)

I Thermal flows (Energy equation)

I Modelling in progress:

I Chemical reactions (... CO2 sequestration)

Page 161: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

25/26

Conclusions

I Construction of a unique model for both, saturated andunsaturated, flows; handling phase appearance anddisappearance

I Ongoing implementation:I 2-phases, N + 1 components (1 solvent and N solutes)I Thermal flows (Energy equation)

I Modelling in progress:

I Chemical reactions (... CO2 sequestration)

Page 162: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

25/26

Conclusions

I Construction of a unique model for both, saturated andunsaturated, flows; handling phase appearance anddisappearance

I Ongoing implementation:I 2-phases, N + 1 components (1 solvent and N solutes)I Thermal flows (Energy equation)

I Modelling in progress:I Chemical reactions (... CO2 sequestration)

Page 163: Modeling compressible Multiphase Flow and …...For simplicity, but consistant, with modelling gas migration in deep geological Nuclear Waste Repositories : I 2 phases : liquid (incompressible),

Multiphase Flow andTransport in

saturated-unsaturatedporous media

Alain Bourgeat,Universite ClaudeBernard Lyon 1Institut Camille

Jordan-UMR 5208Contributors:F.Smaı, IRSN

Fontenay aux Rosesand ICJ-UCBLyon1;

M.Jurak, Univ. Zagreb

Physical assumptions

Unsaturated flowequations

Saturated flowequations

Construction of asaturated/unsaturatedmodel

Three Numerical Tests

Conclusions

26/26

References

I Bourgeat, A. and Jurak, M. and Smaı, F. Two-phase, partiallymiscible flow and transport modeling in porous media; application to gasmigration in a nuclear waste repository. Computational Geosciences,Volume13, Number 1, mars 2009 .

I Bourgeat, A. and Jurak, M. and Smaı, F. Modelling and NumericalSimulation of Gas Migration in a Nuclear Waste Repository .http://arxiv.org/abs/1006.2914, June 2010