modeling of base oil blends jonna kässi - diva portal506104/fulltext01.pdf · modeling of base oil...

48
DEGREE PROJECT BACHELOR OF SCIENCE IN CHEMICAL ENGINEERING PRO Model OGRAM ling of base oil blend Jonna Kässi Stockholm 2011 ds

Upload: doankhanh

Post on 09-Mar-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

DEGREE PROJECT

BACHELOR OF SCIENCE IN

CHEMICAL ENGINEERING PROGRAM

Modeling of base oil blends

CHEMICAL ENGINEERING PROGRAM

Modeling of base oil blends

Jonna Kässi

Stockholm

2011

Modeling of base oil blends

Page 2: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

2

Royal Institute of Technology Chemical Engineering

DEGREE PROJECT

TITLE: Modeling of base oil blends

SVENSK TITEL: Modellering av basoljeblandningar

KEY WORDS: Lubricant, base oil, naphthenic, paraffinic, correlation, calculating

correlation, ASTM, viscosity, density, pour point, aniline point, flash

point, viscosity index, VGC, refractive index, blending program,

hydrocarbon type, IR, Acid number, colour, colour saybolt

WORKPLACE: Nynas AB, Nynäshamn

SUPERVISOR

AT NYNAS: Luis Bastardo-Zambrano

SUPERVISOR

AT KTH: Sara Naumann

STUDENT: Jonna Kässi

DATE:

PASSED:

EXAMINER: Sara Naumann

Page 3: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

3

Acknowledgment During the degree project in spring 2011 I had very good support from my supervisors.

I would like to start off with thanking my supervisor, Luis Bastardo-Zambrano at Nynas AB for

his guidance and good reception during my work at Nynas AB.

I am also very grateful that I had the possibility to write my degree project at the company and

was able to work with real problems.

I would also like to thank my supervisor and examiner, Sara Naumann, the Bachelor of science in

Chemical engineering program at the Royal Institute of Technology for her good advises and the

support during the work.

Thank you all!

Jonna Kässi

Sweden, Stockholm 2011

Page 4: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

4

Abstract Nynas AB is a company that refines oil for different applications such as insulating oils for the

electrical industry and base oils for both the lubricant and chemical industry. Different types of

base oils are produced for the lubricant industry in order to provide required properties such as

good viscosity, solvency, volatility, etc. But sometimes, the oils produced in the refineries

(known as “straight cut” oils) do not have the all properties required by a customer, and a way

for achieving those properties is to blend different straight cut base oils. To save money and

time, empirical correlations are used to facilitate the prediction of the properties of those blends.

Those correlations are adapted to products from a single site produced from certain crude oils.

The company has recently decided to introduce a new stream of products with different

characteristics, which means that the new properties of the products and blends can not be

predicted by using the existing empirical correlations. The objective of this project was to

analyze blends containing these new products and find the new correlations.

The names of the oils are classified information and were renamed in the report and also

number of the tables with result in appendices has been reduced to protect Nynas AB.

The correlations were surprisingly good for most of the blends. The differences between the

values obtained by the blending program (which were calculating the properties) and the

experimental values were very small. But the calculated values for properties such as flash point

and pour point, were quite different from the experimental ones for some of the samples. Finally,

there was one type of blends, between the Naphthenic oil 2 (N 2) and Paraffinic oil B (P (B)),

were it was not possible to get any results with the blending program, because the viscosities at

40 °C of those oils (N 2 and P(B)) were too similar.

As mentioned before, the property that was most difficult to predict was the pour point,

specially for blends containing paraffinic oil blend with a naphtenic oil. However, suggestions

were made based on the experimental values of how to get correlations based on. Anyhow,

empirical correlations were developed based on the experimental data.

Sammanfattning på svenska kan hittas på sidan 5!

Page 5: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

5

Sammanfattning Nynas AB är ett företag som förädlar olja för olika applikationer såsom isolerade oljor för den

elektriska industrin och basoljor för både smörjmedel och kemiska industrin. Olika typer av

basoljor produceras för smöjmedelsindustrin för att ge önskade egenskaper såsom god

viskositet, soliditet, volatilitet etc. För att spara pengar och tid, så används empiriska

korrelationer som vanligen används inom smörjmedelsindustrin, för att kunna förutsäga

egenskaper hos dessa blandningar. Nyligen har bolaget beslutat att införa en ny serie av

produkter med olika egenskaper och blandningarna kan därmed inte automatiskt förutsägas

med hjälp av befintliga empiriska korrelationer. Eftersom företagets nuvarande korrelationer är

anpassade för en rena basoljor, var målet att analysera blandningarna av två olika basoljor samt

att finna nya samband.

Alla oljornas namn i rapporten är omdöpta och mätvärden och andra resultat har reducerats för

att bevara Nynas ABs sekretess.

De befintliga sambanden var överraskande bra för de flesta oljeblandningarna. Skillnaderna

mellan de värden som erhölls genom befintliga Blandningsprogrammet (som beräknade

egenskaperna) och de experimentella värdena var mycket små. Dock så krävdes det att nya

samband togs fram för till exempel lägsta flyttemperaturs egenskaper för blandningar med

parafinisk olja blandat med naftenisk olja.

En av blandningarna som inte gav några resultat var Naftenisk olja 2 (N 2) blandat med

Parafinisk olja B (P(B)), detta eftersom för viskositeten vid 40 °C för de oljorna ligger väldigt

nära varandra och detta försvårade beräkningen.

Abstract in English can be found in page 4!

Page 6: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

6

Table of Contents 1 Introduction ................................................................................................................................................... 7

1.1 Objective of the diploma work ....................................................................................................... 7

1.2 Method ..................................................................................................................................................... 7

1.2.1 Background of two blending programs ............................................................................................... 7

2 Base oils at Nynas AB and the blendings ............................................................................................ 8

2.1 Basic chemistry and chemical terms............................................................................................ 8

3 Blending calculators at Nynas AB ...................................................................................................... 10

3.1 The Blending program .................................................................................................................... 10

3.2 The Excel sheet .................................................................................................................................. 11

3.2.1 Suplementary equations.......................................................................................................................... 11

4 Experimental .............................................................................................................................................. 13

5 Results ........................................................................................................................................................... 14

6 Discussion .................................................................................................................................................... 16

7 Conclusions ................................................................................................................................................. 17

8 Proposal for further work ..................................................................................................................... 18

9 References ................................................................................................................................................... 19

Appendix I – Difference tables: Exp. - and Calc. data ...................................................................... 20

Appendix II – Diagrams of P and N products ..................................................................................... 30

Appendix III – Diagrams of N 3 with P and N .................................................................................... 35

Appendix IV – Diagrams of P/P and N/N products ......................................................................... 39

Appendix V – Pour Point calculations for Thinner oils .................................................................. 44

Appendix VI – Pour Point calculations for Heavy oils .................................................................... 47

Page 7: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

7

1 INTRODUCTION In the lubricant industry, different types of base oils are blended when an entirely pure or

”straight cut” base oil does not provide the desired properties for the formulation. Those

properties can be viscosity, solvency, volatility etc; or a combination of those properties for

example viscosity gravity constant, VGC. To save money and time, empirical correlations have

been used in the base oil and lubricant industry, in order to facilitate the prediction of the

properties of those blends, and in that way avoid analyzing the product in the laboratory. At

Nynas AB, the correlations available today are adapted to products from a single site produced

from a certain crude oil. But the company has decided to introduce a new stream of products

with different characteristics, which means that the new properties of the products and blends

can not be predicted by using the existing empirical correlations.

1.1 OBJECTIVE OF THE DIPLOMA WORK The objectives of this degree project were first of all to find new correlations for blends with

paraffinic and naphtenic oils. The second objective was to compare experimental results with

existing correlations for blends with two different naphtenic oils or blends with two different

paraffinic oils.

1.2 METHOD In order to reach these objectives, blends of different components at various concentrations

were analyzed in the laboratory and compared with results from the two programs Nynas AB

use today predict properties of base oil blends. It was investigated if one Blending program at

Nynas AB can replace with the two existing ones.

1.2.1 BACKGROUND OF TWO BLENDING PROGRAMS

The equations and correlations were programmed in the two existing programs called the

“Blending program” and the “Excel sheet”. The programs were based on calculations described

in the standard ASTM 7152, where ASTM stands for American Society for Testing and Materials

(ASTM 2011). The values obtained from calculations using the different correlations were

reviewed by experts from the company.

Page 8: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

8

2 BASE OILS AT NYNAS AB AND THE BLENDINGS Mineral oils have a very complex composition, but one can say that they are mainly a blend

between hydrocarbon molecules, among which we find paraffinic, naphthenic, and aromatic

molecules. The properties of the base oils are determined by their chemical composition,

whether they are naphthenic or paraffinic. A base oil is considered to be naphthenic, when the

content of paraffinic molecules measured by Infrared (IR) is between 42 and 50 %, if the content

of paraffinic molecules measured by IR is between 56 to 67 %, the oil is considered paraffinic.

Naphthenic oils are characterized by having good low temperature properties, such as pour

point (temperature at which the oil starts to flow), and very good solvency and their viscosity

diminish quite fast with increased temperature (what is known as low viscosity index, VI).

Paraffinic oils, on the other hand, are characterized by having low volatility, their viscosity does

not change that much with temperature (high VI), and they also have lower solvency and worse

low temperature properties than naphthenic oils. (Nynas 2009)

That is why blends of these two types of oils are generally used in the industry, since they bring

the good characteristics of both types of oils, e.g. good solvency, and low volatility. (Nynas 2009)

The crude oil refined by Nynas AB is naphthenic and comes from different places in the world.

The naphthenic crude reserves can be found in Europe, the Americas and Asia. On the other

hand, Middle East crudes are mainly paraffinic. (Nynas 2009)

The oils used in this work were the naphthenic base oils N 1, N 2 and N 3, and the paraffinic base

oils were P(A) and P(B). All of these oils were blended in pairs at viscosities of 10, 30, 50, 70 and

90 volume % which resulted in 50 blends.

2.1 BASIC CHEMISTRY AND CHEMICAL TERMS In order to understand the basic chemistry behind this work it is necessary to get a background

description of the mineral oil composition. As has been mentioned above, mineral oils consist

mainly of hydrocarbon molecules and those hydrocarbon molecules can be classified into

naphthenic, paraffinic and aromatic. Paraffinic molecules are mainly long carbon chains (n-

alkenes) or in iso-structure of the alkenes, figure 1. Naphthenic molecules, on the other hand,

have ring structures formed by five to eight carbon atoms (cykloalkenes), figure 2. Finally,

aromatic compounds are formed by six carbon atoms arranged in a ring structure with single

and double bonds, figure 3, but can also be larger molecules such as polycyclic aromatics. The

unsaturated nature of aromatic molecules allows them to react easily with other components.

Even though aromatic molecules give high solvency to the oil, they are bad for the oil is oxidation

stability, on top of that they are toxic and harmful to the environment, and that is why they are

removed or transformed during the refining process. Figure 4 shows a hypothetical oil molecule.

(Nynas 2009)

Page 9: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

9

Figure 1 Paraffinic oils (Kässi 2011)

Figure 2 Naphthenic oils

Figure 3 Aromatic oils

Figure 4 A blending of all three Naphthenic, paraffinic and aromatic

P stands for Paraffinic, N stands for Naphthenic and A for Aromatic.

Page 10: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

10

3 BLENDING CALCULATORS AT NYNAS AB Nynas AB uses two different computional programs to predict base oil blending properties.

These two programs were called the Blending program, figure 5 below, and the Excel sheet,

figure 6, in this thesis. Both of these tools were programmed with ASTM standards and linear

correlations. To complement the Excel sheet more Excel sheets and equations have been used at

Nynas. These equations are described in 3.2.1.

3.1 THE BLENDING PROGRAM The Blending program was used at Nynas AB to calculate the properties of mixtures of two or

three base oils. This program are programmed with ATSM standards. As mentioned before, the

program worked for certain blends of naphthenic products and it was important to find new

correlations for calculating blends with new types of products. The information about the base

oils density, viscosity at 40 °C, flash and aniline point, colour, refractive index, sulphur and

concentration of aromatic compounds measured by IR are used as input data. The program then

use information from the two base oils and the desired viscosity at 40 °C for the blend, in order

to calculate first, the amount of the each component necessary to obtain that blend, and second

the values for the different properties of the “theoretical blend”. The correlations used in this

blending program were obtained from some ASTM standards, and sometimes empirical

correlations developed for some properties, for example aniline point, color and sulphur content

(which usually are linear equations).

The correlations used in the blending program were not valid for blends using the naphthenic

base oil N 3. Figure 5 shows the calculation sheet for a product with base oils N 1 (10 vol-%) and

P(B) (90 vol-%).

Figure 5 The Blending program

Page 11: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

11

3.2 THE EXCEL SHEET Another tool used by Nynas AB was an Excel sheet, developed a long time ago, figure 6. The Excel

sheet does not calculate as many properties as the Blending program does. The colours, sulphur,

refractive index, pour- and aniline point and the concentrations of different hydrocarbon types

are missing in the Excel sheet. On the other hand, the Excel sheet calculates the viscosity of the

blend at 100 °C, in centistokes (cSt). When the Excel sheet was used for calculating the relative

amount of ingredients for blends, the missing properties were calculated using a linear

correlation, based on the amount of different components needed to obtain a specific viscosity at

40°C. Figure 6 shows the same blend as figure 5 with N 1 and P(B).

Figure 6 Excel sheet blending program

3.2.1 SUPLEMENTARY EQUATIONS

Some other equations were used in this thesis to complement the Excel sheet two equations and

one complementary Excel sheet, figure 7 next page.

1) The first equation was from set was by plotting the experimental data for the pour point of

the blends against the composition and making a polynomial fit (2nd to 4th grade) of the data

points.

2) The second one was what we called the “Aniline method” - equation (1), using a linear

correlation between the aniline point (or pour point) and the composition of the blend, see

equation (1).

Page 12: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

12

Equation “Aniline method”:

������� � �� � ���� (1)

������� � � ��� ��� � ��� ��� ��� �

�� � � ��� ��� � ��� 100 % ���� ��� 1; � � �� � !�� % �� ��� ���� ��� 1

��� � � ��� ��� � �� ��� 100 % ���� ��� 2; � � � �� � !�� % �� ��� ���� ��� 2

For most of the blends the “Aniline method” works. This method can be successfully used also

for calculating others properties, such as sulphur content, colour and refractive index.

3) The other Excel sheet “Calculation of ASTM D2140” was used to calculate experimental VGC

and Hydrocarbon type (concentration of aromatic, paraffinic and naphtenic molecules; Ca, Cp,

Cn) of using ASTM standards. This sheet can be seen in figure 7.

Figure 7 The complementary Excel sheet for the calculations of VGC and Hydrocarbon types

Page 13: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

13

4 EXPERIMENTAL Five different base oils were blended two and two with each other in five difference

concentrations, which gives 50 blends to analyse.

The measurements of the different properties were conducted using specific instruments

following the instructions described in the standard method for each property, see table 1

below. The calculations of the properties were conducted using the Blending program from

Nynas AB.

Table 1 Properties and analysis method

Property Analysis Method Property Analysis Method

Density, 15°C ASTM D4052 Colour ASTM D1500

Viscosity, 40°C ASTM D445 Colour Saybolt ASTM D156

Viscosity, 100°C ASTM D445 Refractive Index, 20°C ASTM D1747

Viscosity Index (VI) ASTM D2270 Hydrocarbon type Ca, (IR) IR-method

Aniline point ASTM D611 Hydrocarbon type Ca ASTM D2140

Pour point ASTM D97 Hydrocarbon type Cp ASTM D2140

Flash point ASTM D93 Hydrocarbon type Cn ASTM D2140

Viscosity Gravity

Constant (VGC)

ASTM D2501 Acid number ASTM D974

Page 14: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

14

5 RESULTS Tables were created for all blends with the experimental data, the calculated data (from Excel

sheet) and the differences between them. Also the values obtained using the Blending program

were compared with the experimental data, see table 2 below (the tables with the data for the

rest of the blends can be found in Appendix I, tables 3-22). The differences between the

experimental and the calculated values were not so large for most of the blends. Anyhow, for

some blends the calculated values obtained using the empirical correlations from the Excel sheet

were better than those obtained with the Blending program, and vice versa. The largest

differences were observed in the temperature properties and some properties of hydrocarbon

values, such as blends between N 2 and N 1.

The VGC values for most of the products were near 0,8 which means that they have a more

paraffinic character. If the VGC values had been closer to 1,0 the oil would be considered more

aromatic (ASTM 2005).

To calculate the hydrocarbon types were important to get the measuring of refractive index

right. Slightest deviation resulted in values outside of the trendline. The content of sulphur was

very low for most of the blends, although some blends containing N 3 had nearly 0,009-0,01 wt-

% sulphur.

In Appendix II and III shows figures with experimental values which are plotted in diagrams.

Most plots were linear (or linear in log-log diagram) and it was possible to find a trend line and

thus obtain an equation to calculate those properties for the blends; for example blends between

naphthenic products. The viscosity index (VI) chart shows only how the viscosity index varies

with respect to the concentration of the components in the blend. It was also difficult to obtain

an equation to predict it with help of drawing a trend line, but it can still be calculated for each

mixture using the mixture viscosity at 40 °C and the calculated viscosity at 100 °C following the

standard ASTM 2270. The viscosity at 40 °C for blends with N 3 has relatively high values in

blends with 90 vol-% N 3 and fall quickly at lower concentrations of N 3.

The results for pour point calculations with equation 1 (page 12) or with the polynomial

function for the thinner oil blends (those blends of low viscosity oils) can be found in Appendix

V, and the heavier blends (those containing N 3) can be found in the Appendix VI. As shown in

the appendices the pour point results obtained with equation 1 were quite close to the

experimental data for most of the base oil blends studied. But for blends using P(A) and P(B) the

differences between the calculated and the experimental of pour point were significant. A similar

trend can be seen in Figure 13 in Appendix II. Which means that below 50 vol-% paraffinic oil

content the line has a negative slope and at concentrations above 50 vol-% the line has a positive

slope.

Finally it was not possible to calculate results of blends between N 2 and P(B), table 3 in

Appendix I. This phenomenon is going to be discussed in the Discussion. But table 4 in Appendix

I, shows an experiment with a “guessing method” and it shows that those guessed values are

very close to each other. Which are another evidence of the impossibility calculating these

blends based on the viscosity at 40 OC. The guessing was made with help of the Excel sheet.

Page 15: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

15

Table 2 Result of 1B blending; Differences between calculated and experimental data

Result of the series 1B N 1 P(B) Note:

90 vol-% N 1 Unity Analys experimental Excel sheet Different Calculate Different Data Data Exp&calc Blend. Program lab&bl.prog

Visc. @40 11,5 0 11,5 11,5 0,0 Visc. @100 2,67 2,67 0,0 2,7 VI 48,4 46 2,4 48,4 Celsius Flash 148,8 146 2,8 145 3,8 Aniline 76,1 74,49 1,6 76 0,1 Pour Point -60 60,0 -53 7,0 wt% Sulphur 0,0237 0,0172876 0,0 0,02 0,0 kg/m3 Density @15 887,6 887,3 0,3 887,1 0,5 Refractive index 1,4856 1,4854613 0,0 1,485 0,0 mgKOH/g Acid 0,01 0,0 0,01 0,0 Ca 10,1 8,1 2,0 8 2,1 Cp 41,5 48 6,5 48 6,5 Cn 48,5 43,9 4,6 44 4,5 Ca IR 12 Colour ASTM D1500 0,5 0,5 0,0 0,5 0,0 ASTM 156 (S) 11 11,0 11 0,0 VGC 0,855 0,855 0,0 0,855 0,0 content N 1 90 89,53 0,5 87,71 2,3 P(B) 10 10,47 0,5 12,29 2,3

Page 16: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

16

6 DISCUSSION The results show that the best correspondence with the experimental data were obtained by

using the correlations from the existing Excel sheet. But for the blends of certain products the

correlations of the old Blending program worked better than the ones from the Excel sheet. For

almost all blends containing N 1 a trend line could be drawn in the diagrams for the different

properties indicating a linear correlation (or linear in log-log diagram), facilitating the calcu-

lations with these blends.

The largest differences between the experimental values and those obtained with the Blending

program were, as expected, obtained for the blends containing N 3. The Blending program was

not programmed to calculate blends with N 3 oil, which have high viscosity.

Some difficulties measuring the sulphur content of the blends were encountered, and those were

related to the fact that the container used to load the samples for these measurements were

sometimes poorly cleaned, and cross contamination from previous samples could have occurred.

The most difficult part of the project were to find the correlations to calculate pour point of the

blends containing P(A) or P(B), see Figures 13 and 18. As it can be seen in the figures, the pour

point of those blends are very similar to each other. There are many possible explanations for

those trends. One of them is that the naphthenic oil acts as a pour point depressent (an additive

that can be used to lower the temperature at which an oil starts to flow). The lower pour points

obtained in the presence of naphthenic oils might be explained by the difficulty of packing ring

shape naphthenic molecules at low temperature, with respect of the relatively easy way of

packing straight paraffinic ones. The effect of these straight paraffinic molecules (also known as

waxes) in the blend’s pour point can be dimisnished by preheating the sample before measuring

the pour point, and in that way disrupt the wax crystalline structure (Carl-Gustaf 2011).

Differences were observed between blends containing N 1 and paraffinic oils, which had lower

pour points than blends containing N 3 or N 2 and paraffinic base oils, see Figure 18. These

differences can be explained by the fact that the pour point of base oils depends also on the oil’s

viscosity, meaning that the lower the viscosity of the base oil the lower is the pour point.

In view of these results, it is suggested to calculate the pour point of the blends containing

paraffinic oils using different equations depending on the paraffinic content in the blend, for

example one equation for concentrations below 50 vol-% and another one for concentrations

above 50 vol-%.

Measuring the flash point of blends containing N 3 were quite difficult. This might be due to the

high flash point of N 3, so when the flash point of the blends is reached the gas mixture above the

blend does not ignite so violently as in blends containing products with lower flash point, or

higher volatility. (Carl-Gustaf 2011) This less violent ignition of the gasses upon the oil blend is

more difficult for the instrument to detect.

It was very difficult to calculate properties of the blends between N 2 and P(B). That can be

explained by the fact that those oils have almost the same viscosity at 40 °C. As shows in Figure

8, the viscosity of most blends between these two products at 40 °C is lower than the viscosity of

any of the blending components at the same temperature.

Page 17: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

17

7 CONCLUSIONS The values calculated using the correlations obtained from the existing Excel sheet worked

satisfactory for most of the blends, the same can be said about the values obtained using the

existing Blending program. To combine these two programs would be best for a new Blending

program. Some properties could not be calculated using any of those two programs or the other

investigated equations. For those properties new correlations could be found by using a plotting

technique of analysis values in a diagram and draw trend lines for different intervals, and use

them in a new Blending program as an equation.

For the pour point, it was difficult to obtain a good correlation between the calculated and the

experimental values obtained when blending the paraffinic oils P(A) and P(B) with N 3 or N 2.

Finally, it was not possible to calculate the properties of blends prepared using N 2 and P(B),

because the experimental viscosity of the blends at 40°C were lower than that of its components.

Page 18: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

18

8 PROPOSAL FOR FURTHER WORK In continued work P(A) and P(B) should be analyzed blended with N 4 for examining the pour

point. The pour point of P(C) with naphthenic oils N 1, N 2, N 3 and other napthenic oils should

also be studied further. This is to investigate if the trend in pour point is similar for all the

paraffinic/naphthenic blends.

The pour point should also be analyzed again by preheating the samples before measuring the

pour point. This should reduce one source of error when calculating the correlations if the base

oils contain waxes. (Carl-Gustaf 2011)

Page 19: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

19

9 REFERENCES ASTM (2005). American Society for Testing and Materials, Standard test method for Calculation

of Viscosity-Gravity Constant (VGC) of petroleum oils. United States. ASTM D2501-91 p.

911.

Nynas (2009). Naphthenic specialty oils for Greases, Handbook. Sweden, Nynas AB 2009.

ASTM. (2011). http://www.astm.org/, 2011-05-15.

Carl-Gustaf, Främberg. (2011). Technical Service Manager. Nynas AB.

Page 20: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

20

APPENDIX I – DIFFERENCE TABLES: EXP. - AND CALC. DATA Table 3 The special blend 2 B

Results of the serie 2 B N 2 P(B) Note: 90 vol-% N 2 Unity Analys experimental Excel sheet Differant Calculat Differant Data Data Exp&calc blend.program lab&bl.prog

Visc. @40 111,32 0 111,3 111,3 Visc. @100 9,5206 0 9,5 9,5 VI 41,7 0 41,7 41,7 Celsius Flash 219,3 0,00 219,3 219,3 Aniline 90,9 0,00 90,9 90,9 Pour Point -36 36,0 36,0 wt% Sulphur 0,0774 0,1 0,1 kg/m3 Density @15 910,5 0 910,5 910,5 Refractive index 1,4994 1,5 1,5 mgKOH/g Acid 0,01 0,0 0,0 Ca 13,7 10,6 3,1 13,7 Cp 50 52,8 2,8 50,0 Cn 36,3 36,7 0,4 36,3 Ca IR Colour ASTM D1500 1 1,0 0,0 ASTM 156 (S) 0 0,0 0,0 Calc.D2140 VGC 0,849 0,8 0,8 Halt N 2 90 90,0 90,0 P(A) 10 10,0 10,0

Table 4 Guess method of visc at 40, for 2 B

Content Calc. Wish valuea Differance Average content Average P(B) N 2 Visc-40 P(B) N 2 P(B) N 2 P(B) N 2 Visc-40 10 vol-% N 2 90,76 9,24 111,13 90 10 0,76 0,76 90,305 9,695 111,135 89,85 10,15 111,14 90 10 0,15 0,15 30 vol-% N 2 69,84 30,16 111,37 70 30 0,16 0,16 70,26 29,74 111,365 70,68 29,32 111,36 70 30 0,68 0,68 50 vol-% N2 49,77 50,23 111,62 50 50 0,23 0,23 50,155 49,85 111,615 50,54 49,46 111,61 50 50 0,54 0,54 70 vol-% N2 29,11 70,89 111,9 30 70 0,89 0,89 29,815 70,19 111,89 30,52 69,48 111,88 30 70 0,52 0,52 90 vol-% N2 10,15 89,85 112,18 10 90 0,15 0,15 9,825 90,18 112,185 9,5 90,5 112,19 10 90 0,5 0,5

Page 21: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

21

Table 5 Blend 2 A with 90 vol-% P(A)

Results of the serie 2 A N 2 P(A) Note: 90 vol-% P(A) Unity Analys experimental Excel sheet Differant Calculat Differant

Data Data Exp&calc blend.program lab&bl.prog

Visc. @40 15,4 0 15,4 15,4 0,0 Visc. @100 3,45 3,39 0,1 3,5 VI 100,8 86 14,8 100,8 Celsius Flash 188,4 189 0,6 188 0,4 Aniline 99,3 99,26 0,0 99 0,3 Pour Point -33 33,0 -50 17,0 wt% Sulphur 0,0111 0,010234 0,0 0,01 0,0 kg/m3 Density @15 855 855,6 0,6 855,7 0,7

Refractive index 1,4695 1,470123 0,0 1,47 0,0

mgKOH/g Acid 0,01 <0,01 0,0 IR Ca 2,6 1,1 1,5 1 1,6 Cp 59,2 64,8 5,6 64 4,8 Cn 38,2 34,2 4,0 35 3,2 Ca IR 3 Colour ASTM D1500 0,5 0,55495 0,1 <1,0 ASTM 156 (S) 17 17,0 17,0 VGC 0,81 0,811 0,0 0,811 0,0 Halt P(A) 90 89,01 1,0 89,62 0,4 N 2 10 10,99 1,0 10,38 0,4

Table 6 Blend 2 A with 30 vol-% P(A)

Results of the serie 2 A N 2 P(A) Note: 30 vol-% P(A)

Unity Analys experimental Excel sheet Differant Calculat Differant

Data Data Exp&calc blend.program lab&bl.prog

Visc. @40 47,4 0 47,4 47 0,4 Visc. @100 6,15 6,08 0,1 6,2 VI 63,2 59 4,2 63,2 Celsius Flash 197 203 6,0 200 3,0 Aniline 90,9 90,56 0,3 91 0,1 Pour Point -45 45,0 -35 10,0 wt% Sulphur 0,0633 0,063361 0,0 0,05 0,0 kg/m3 Density @15 894,4 893,5 0,9 893,7 0,7 Refractive index 1,4907 1,490897 0,0 1,49 0,0 mgKOH/g Acid 0,01 0,0 <0,01 0,0 IR Ca 10,6 8,4 2,2 8 2,6 Cp 52,4 55,6 3,2 56 3,6 Cn 36,9 36 0,9 36 0,9 Ca IR 11 Colour ASTM D1500 0,9 0,8459 0,1 <1,0 ASTM 156 (S) 0 0,0 0,0 VGC 0,84 0,838 0,0 0,839 0,0 Halt P(A) 30 30,82 0,8 32,21 2,2 N 2 70 69,18 0,8 67,79 2,2

Page 22: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

22

Table 7 Blend N 12 with 30 vol-% N 1

Results of the serie N 12 N 1 N 2 Note: 30 vol-% N 1

Unity Analys experimental Excel sheet Differant Calculat Differant

Data Data Exp&calc blend.program lab&bl.prog

Visc. @40 44,50 0,00 44,5 49 4,5 Visc. @100 5,66 5,63 0,0 5,7 VI 43,80 41 2,8 43,8 Celsius Flash 162,50 175 12,5 174 11,5 Aniline 80,90 80,94 0,0 111 30,1 Pour Point -42,00 42,0 -34 8,0 wt% Sulphur 0,07 0,070039 0,0 0,01 0,1 kg/m3 Density @15 906,80 907,10 0,3 878,4 28,4

Refractive index 1,4973 1,49723 0,0 1,482 0,0

mgKOH/g Acid 0,01 0,0 <0,01 0,0 Ca 14,6 13,1 1,5 3 11,6 Cp 47 53,1 6,1 63 16,0 Cn 38,4 33,8 4,6 35 3,4 Ca IR 5 Colour ASTM D1500 0,5 0,8522 0,4 <0,5 0,0 ASTM 156 (S) 0 0,0 10 10,0 VGC 0,852 0,857 0,0 0,818 0,0 content N 2 30 29,56 0,4 26,04 4,0 N 1 70 70,44 0,4 73,96 4,0

Table 8 Blend N 12 with 10 vol-% N 1

Results of the serie N 12 N 1 N 2 Note: 10 vol-% N 1

Unity Analys experimental Excel sheet Differant Calculat Differant

Data Data Exp&calc blend.program lab&bl.prog

Visc. @40 80,20 0,00 80,2 84 3,8 Visc. @100 7,77 7,75 0,0 7,8 VI 38,40 38 0,4 38,4 Celsius Flash 186,40 195 8,6 199 12,6 Aniline 84,40 84,24 0,2 121 36,6 Pour Point -36,00 36,0 -28 8,0 wt% Sulphur 0,08 0,084196 0,0 0 0,1 kg/m3 Density @15 912,40 912,30 0,1 876 36,4

Refractive index 1,5004 1,500311 0,0 1,481 0,0

mgKOH/g Acid 0,01 0,0 0,01 0,0 Ca 14,9 11,7 3,2 1 13,9 Cp 48,1 50,1 2,0 67 18,9 Cn 37,1 38,2 1,1 32 5,1 Ca IR 3 Colour ASTM D1500 0,5 0,9497 0,4 <0,5 0,0 ASTM 156 (S) 0 0,0 11 11,0 VGC 0,856 0,856 0,0 0,806 0,0 content N 2 10 10,06 0,1 8,63 1,4 N 1 90 89,94 0,1 91,37 1,4

Page 23: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

23

Table 9 Blend 1B with 90 vol-% N 1

Results of the serie 1B N 1 P(B) Note: 90 vol-% N 1 Unity Analys experimental Excel sheet Differant Calculat Differant Data Data Exp&calc blend.program lab&bl.prog

Visc. @40 11,5 0 11,5 11,5 0,0 Visc. @100 2,67 2,67 0,0 2,7 VI 48,4 46 2,4 48,4 Celsius Flash 148,8 146 2,8 145 3,8 Aniline 76,1 74,49 1,6 76 0,1 Pour Point -60 60,0 -53 7,0 wt% Sulphur 0,0237 0,0172876 0,0 0,02 0,0 kg/m3 Density @15 887,6 887,3 0,3 887,1 0,5 Refractive index 1,4856 1,4854613 0,0 1,485 0,0 mgKOH/g Acid 0,01 0,0 0,01 0,0 Ca 10,1 8,1 2,0 8 2,1 Cp 41,5 48 6,5 48 6,5 Cn 48,5 43,9 4,6 44 4,5 Ca IR 12 Colour ASTM D1500 0,5 0,5 0,0 0,5 0,0 ASTM 156 (S) 11 11,0 11 0,0 VGC 0,855 0,855 0,0 0,855 0,0 content N 1 90 89,53 0,5 87,71 2,3 P(B) 10 10,47 0,5 12,29 2,3

Table 10 Blend 1B with 50 vol-% N 1

Results of the serie 1B N 1 P(B) Note: 50 vol-% N 1 Unity Analys experimental Excel sheet Differant Calculat Differant Data Data Exp&calc blend.program lab&bl.prog

Visc. @40 29,7 0 29,7 30 0,3 Visc. @100 5,06 5,03 0,0 5,1 VI 94,9 92 2,9 94,9 Celsius Flash 167 166 1,0 161 6,0 Aniline 98,9 95,47 3,4 100 1,1 Pour Point -39 39,0 -41 2,0 wt% Sulphur 0,014 0,0111215 0,0 0,01 0,0 kg/m3 Density @15 882 881,7 0,3 881,2 0,8 Refractive index 1,483 1,4830189 0,0 1,483 0,0 mgKOH/g Acid 0,01 0,0 0,01 0,0 Ca 7,8 4,4 3,4 4 3,8 Cp 53,4 57,2 3,8 58 4,6 Cn 38,8 38,4 0,4 38 0,8 Ca IR 7 Colour ASTM D1500 0,5 0,5 0,0 <0,5 0,0 ASTM 156 (S) 11 11,0 11 0,0 VGC 0,831 0,831 0,0 0,83 0,0 content N 1 50 49,49 0,5 44,98 5,0 P(B) 50 50,51 0,5 55,02 5,0

Page 24: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

24

Table 11 Blend 1A with 70 vol-% N 1

Results of the serie 1A N 1 P(A) Note: 70 vol-% N 1

Unity Analys experimental Excel sheet Differant Calculat Differant

Data Data Exp&calc blend.program lab&bl.prog

Visc. @40 10,3 0 10,3 10,3 0,0 Visc. @100 2,56 2,52 0,0 2,6 VI 62,9 55 7,9 62,9 Celsius Flash 143 151 8,0 150 7,0 Aniline 80,05 79,12 0,9 80 0,0 Pour Point -51 51,0 -55 4,0 wt% Sulphur 0,018 0,01297 0,0 0,01 0,0 kg/m3 Density @15 876,5 875,7 0,8 875,1 1,4

Refractive index 1,4782 1,47979 0,0 1,479 0,0

mgKOH/g Acid 0,01 0,0 0,01 0,0 Ca 9,6 3,4 6,2 6 3,6 Cp 47,9 49,9 2,0 52 4,1 Cn 42,5 46,8 4,3 42 0,5 Ca IR 9 Colour ASTM D1500 0,5 0,5 0,0 0,5 0,0 ASTM 156 (S) 15 15,0 16 1,0 VGC 0,845 0,84 0,0 0,843 0,0 content N 1 70 68,29 1,7 65,71 4,3 P(A) 30 31,71 1,7 34,29 4,3

Table 12 Blend P(A) and N 1 with 10 vol-% N 1

Results of the serie 1A N 1 P(A) Note: 10 vol-% N 1

Unity Analys experimental Excel sheet Differant Calculat Differant

Data Data Exp&calc blend.program lab&bl.prog

mm2/s Visc. @40 12,6 0 12,6 12,6 0,0 mm2/s Visc. @100 3,01 3 0,0 3,0 VI 88,2 86 2,2 88,2 Celsius Flash 171 178 7,0 174 3,0 Celsius Aniline 98,1 97,22 0,9 98 0,1 Celsius Pour Point -36 36,0 -52 16,0 wt% Sulphur 0,003 0,002358 0,0 0 0,0 kg/m3 Density @15 852,8 853,2 0,4 853 0,2

Refractive index 1,4682 1,468496 0,0 1,468 0,0

mgKOH/g Acid 0,01 0,0 0,01 0,0 % Ca 2,5 1 1,5 1 1,5 % Cp 58,7 63,9 5,2 64 22,7 % Cn 38,8 35,1 3,7 36 25,2 % Ca IR 3 3,0 Colour ASTM D1500 0,5 0,5 0,0 0,5 0,0 ASTM 156 (S) 24 24,0 24 0,0 VGC 0,812 0,81 0,0 0,813 0,0 content N 1 10 11,54 1,5 10,59 0,6 P(A) 90 88,46 1,5 89,44 0,6

Page 25: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

25

Table 13 Blend AB with 90 vol-% P(A)

Results of the serie AB P(A) P(B) Note: 90 vol-% P(A)

Unity Analys experimental Excel sheet Differant Calculat Differant

Data Data Exp&calc blend.program lab&bl.prog

Visc. @40 15,794 0 15,8 15,8 0,0 Visc. @100 3,5139 3,5 0,0 3,5 VI 99,4 97 2,4 99,4 Celsius Flash 188,1 191 2,9 189 0,9 Aniline 102,85 103,07 0,2 104 1,2 Pour Point -33 33,0 -49 16,0 wt% Sulphur 0,0011 0,00055 0,0 0,02 0,0 kg/m3 Density @15 851,4 851,5 0,1 851,8 0,4

Refractive index 1,4676 1,467663 0,0 1,468 0,0

mgKOH/g Acid 0,01 <0,01 0,0 IR Ca 1,5 0,2 1,3 0 1,5 Cp 60,6 66,3 5,7 66 5,4 Cn 37,8 33,6 4,2 34 3,8 Ca IR 2 Colour ASTM D1500 0,5 0,5 0,0 <0,5 0,0 ASTM 156 (S) 25 25,0 24 1,0 VGC 0,805 0,805 0,0 0,806 0,0 Halt P(A) 90 89,40 0,6 88,49 1,5 P(B) 10 10,6 0,6 11,51 1,5

Table 14 Blend AB with 30 vol-% P(A)

Results of the serie AB P(A) P(B) Note: 30 vol-% P(A)

Unity Analys experimental Excel sheet Differant Calculat Differant

Data Data Exp&calc blend.program lab&bl.prog

Visc. @40 53,1 0 53,1 53 0,1 Visc. @100 7,63 7,59 0,0 7,6 VI 107,1 105 2,1 107,1 Celsius Flash 197 219 22,0 213 16,0 Aniline 118,6 115,25 3,4 119 0,4 Pour Point -21 21,0 -33 12,0 wt% Sulphur 0,0019 0,002509 0,0 0,01 0,0 kg/m3 Density @15 867,2 866,8 0,4 867,5 0,3

Refractive index 1,476 1,475857 0,0 1,476 0,0

mgKOH/g Acid 0,01 0,0 <0,01 0,0 IR Ca 2,2 0,6 1,6 1 1,2 Cp 63 68 5,0 68 5,0 Cn 34,8 31,4 3,4 32 2,8 Ca IR 2 Colour ASTM D1500 0,5 0,5 0,0 <0,5 0,0 ASTM 156 (S) 15 15,0 15 0,0 VGC 0,802 0,801 0,0 0,802 0,0 Halt P(A) 30 30,02 0,0 28,12 1,9 P(B) 70 69,98 0,0 71,88 1,9

Page 26: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

26

Table 15 Blend 3 B with 90 vol-% P(B)

Results of the serie 3B N 3 P(B) Note: 90 vol-% P(B)

Unity Analys experimental Excel sheet Differant Calculat Differant

Data Data Exp&calc blend.program lab&bl.prog

Visc. @40 129,49 0 129,5 124 5,5 Visc. @100 12,71 12,79 0,1 12,7 VI 88,6 90 1,4 88,6 Celsius Flash 247 248 1,0 247 0,0 Aniline 117,9 117,94 0,0 123 5,1 Pour Point -21 21,0 -22 1,0 wt% Sulphur 0,0081 0,007472 0,0 0 0,0 kg/m3 Density @15 883,1 881,4 1,7 880,4 2,7

Refractive index 1,4843 1,483771 0,0 1,483 0,0

mgKOH/g Acid 0,01 0,0 <0,01 0,0 IR Ca 3,6 2,1 1,5 2 1,6 Cp 61,7 66,4 4,7 68 6,3 Cn 34,7 31,5 3,2 31 3,7 Ca IR 3 Colour ASTM D1500 0,9 0,67688 0,2 <1,0 0,1 ASTM 156 (S) 0 0,0 0,0 VGC 0,808 0,806 0,0 0,804 0,0 Halt P(B) 90 91,96 2,0 93,69 3,7 N 3 10 8,04 2,0 6,31 3,7

Table 16 Blend 3B with 10 vol-% P(B)

Results of the serie 3B N 3 P(B) Note: 10 vol-% P(B)

Unity Analys experimental Excel sheet Differant Calculat Differant

Data Data Exp&calc blend.program lab&bl.prog

Visc. @40 1856,8 0 1856,8 1857 0,2 Visc. @100 31,958 31,9 0,1 32,0 VI -103,5 -104 0,5 103,5 Celsius Flash 237 239 2,0 238 1,0 Aniline 84,2 83,35 0,9 85 0,8 Pour Point 0 0,0 13 13,0 wt% Sulphur 0,0492 0,047219 0,0 0,04 0,0 kg/m3 Density @15 953,5 953 0,5 951,3 2,2

Refractive index 1,5216 1,485394 0,0 1,519 0,0

mgKOH/g Acid 0,01 0,0 <0,01 0,0 IR Ca 14,4 15,4 1,0 14 0,4 Cp 44,2 43,4 0,8 44 0,2 Cn 41,4 41,2 0,2 42 0,6 Ca IR 14 Colour ASTM D1500 2,7 2,447 0,3 <2,5 0,2 ASTM 156 (S) 0 0,0 0,0 VGC 0,874 0,873 0,0 0,87 0,0 Halt P(B) 10 11,50 1,5 14,44 4,4 N 3 90 88,5 1,5 85,56 4,4

Page 27: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

27

Table 17 Blend 3A with 50 vol-% P(A)

Results of the serie 3A N 3 P(A) Note: 50 vol-% P(A)

Unity Analys experimental Excel sheet Differant Calculat Differant

Data Data Exp&calc blend.program lab&bl.prog

Visc. @40 62,921 0 62,9 63 0,1 Visc. @100 7,0523 6,77 0,3 7,1 VI 54,1 37 17,1 54,1 Celsius Flash 191 203 12,0 198 7,0 Aniline 90,1 90,21 0,1 90 0,1 Pour Point -33 33,0 -31 2,0 wt% Sulphur 0,0268 0,027852 0,0 0,02 0,0 kg/m3 Density @15 902,6 899,9 2,7 898,8 3,8

Refractive index 1,4948 1,498049 0,0 1,492 0,0

mgKOH/g Acid 0,01 0,0 <0,01 0,0 IR Ca 8,2 9,6 1,4 7 1,2 Cp 52,2 53,7 1,5 54 1,8 Cn 39,6 36,7 2,9 39 0,6 Ca IR 8 Colour ASTM D1500 2,1 1,54566 0,6 <1,5 ASTM 156 (S) 0 0,0 0,0 VGC 0,845 0,84 0,0 0,841 0,0 Halt P(A) 50 52,47 2,5 56,67 6,7 N 3 50 47,53 2,5 43,33 6,7

Table 18 Blend 3A with 10 vol-% P(A)

Results of the serie 3A N 3 P(A) Note: 10 vol-% P(A)

Unity Analys experimental Excel sheet Differant Calculat Differant

Data Data Exp&calc blend.program lab&bl.prog

Visc. @40 1046,6 0 1046,6 1047 0,4 Visc. @100 24,261 23,46 0,8 24,3 VI -89,3 -107 17,7 89,3 Celsius Flash 213 227 14,0 221 8,0 Aniline 80,9 80,93 0,0 81 0,1 Pour Point -6 6,0 5 11,0 wt% Sulphur 0,043 0,006129 0,0 0,04 0,0 kg/m3 Density @15 949,8 949,6 0,2 949,1 0,7

Refractive index 1,5198 1,473029 0,0 1,518 0,0

mgKOH/g Acid 0,01 0,0 <0,01 0,0 IR Ca 14,3 15,8 1,5 14 0,3 Cp 44 42,5 1,5 42 2,0 Cn 41,7 41,6 0,1 44 2,3 Ca IR 14 Colour ASTM D1500 2,7 2,4525 0,2 <2,5 0,2 ASTM 156 (S) 0 0,0 0,0 VGC 0,876 0,81 0,1 0,875 0,0 Halt P(A) 10 11,25 1,3 13,05 3,1 N 3 90 88,75 1,3 86,95 3,1

Page 28: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

28

Table 19 Blend N 13 with 90 vol-% N 1

Results of the serie N 13 N 3 N 1 Note: 90 vol-% N 1

Unity Analys experimental Excel sheet Differant Calculat Differant

Data Data Exp&calc blend.program lab&bl.prog

Visc. @40 12,218 0 12,2 12,2 0,0 Visc. @100 2,7245 2,67 0,1 2,7 VI 35 21 14,0 35,0 Celsius Flash 148 145 3,0 144 4,0 Aniline 69,5 69,96 0,5 70 0,5 Pour Point -57 57,0 -53 4,0 wt% Sulphur 0,0284 0,022375 0,0 0,02 0,0 kg/m3 Density @15 896 896 0,0 896 0,0

Refractive index 1,4901 1,49027 0,0 1,49 0,0

mgKOH/g Acid 0,01 0,0 <0,01 0,0 IR Ca 13,5 10,1 3,4 10 3,5 Cp 42,7 44,9 2,2 45 2,3 Cn 43,8 45,00 1,2 46 2,2 Ca IR 14 Colour ASTM D1500 0,9 0,72484 0,2 <1 0,1 ASTM 156 (S) 0 0,0 0,0 VGC 0,864 0,86 0,0 0,864 0,0 Halt N 3 10 10,22 0,2 9,51 0,5 N 1 90 89,78 0,2 90,49 0,5

Table 20 Blend N 13 with 10 vol-% N 1

Results of the serie N 13 N 3 N 1 Note: 10 vol-% N 1

Unity Analys experimental Excel sheet Differant Calculat Differant

Data Data Exp&calc blend.program lab&bl.prog

Visc. @40 1137,00 0 1137,0 1137 0,0 Visc. @100 24,24 23,55 0,7 24,2 VI -112,9 -129 16,1 112,9 Celsius Flash 207 206 1,0 192 15,0 Aniline 77,1 77,42 0,3 77 0,1 Pour Point -3 3,0 6 9,0 wt% Sulphur 0,0509 0,049347 0,0 0,05 0,0 kg/m3 Density @15 955,1 955,7 0,6 955,7 0,6

Refractive index 1,5224 1,522636 0,0 1,522 0,0

mgKOH/g Acid 0,01 0,0 0,01 0,0 Ca 15,5 17,1 1,6 16 0,5 Cp 42 39,2 2,8 38 4,0 Cn 42,5 43,7 1,2 46 3,5 Ca IR 16 Colour ASTM D1500 2,5 2,4701 0,0 2,5 0,0 ASTM 156 (S) 0 0,0 0,0 VGC 0,883 0,88 0,0 0,884 0,0 Halt N 3 90 89,55 0,5 88,77 1,2 N 1 10 10,45 0,5 11,23 1,2

Page 29: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

29

Table 21 Blend N 23 with 70 vol-% N 2

Results of the serie N 23 N 2 N 3 Note: 70 vol-% N 2

Unity Analys experimental Excel sheet Differant Calculat Differant

Data Data Exp&calc blend.program lab&bl.prog

Visc. @40 229,14 0 229,1 229 0,1 Visc. @100 12,834 12,69 0,1 12,8 VI -2,2 -7 4,8 2,2 Celsius Flash 215 219 4,0 217 2,0 Aniline 84,1 83,77 0,3 84 0,1 Pour Point -21 21,0 -14 7,0 wt% Sulphur 0,0777 0,080368 0,0 0,07 0,0 kg/m3 Density @15 928,9 928,5 0,4 928 0,9

Refractive index 1,5093 1,50911 0,0 1,508 0,0

mgKOH/g Acid 0,01 0,0 <0,01 0,0 IR Ca 15,2 13,9 1,3 12 3,2 Cp 47 47,2 0,2 47 0,0 Cn 37,9 38,9 1,0 41 3,1 Ca IR 15 Colour ASTM D1500 1,6 1,49028 0,1 1,5 0,1 ASTM 156 (S) 0 0,0 0,0 VGC 0,865 0,864 0,0 0,863 0,0 Halt N 2 70 71,16 1,2 73,66 3,7 N 3 30 28,84 1,2 26,34 3,7

Table 22 Blend N 23 with 50 vol-% N 2

Results of the serie N 23 N 2 N 3 Note: 50 vol-% N 2

Unity Analys experimental Excel sheet Differant Calculat Differant

Data Data Exp&calc blend.program lab&bl.prog

Visc. @40 416,82 0 416,8 417 0,2 Visc. @100 16,664 16,36 0,3 16,7 VI -33,1 -41 7,9 33,1 Celsius Flash 223 223 0,0 220 3,0 Aniline 82,4 82,32 0,1 82 0,4 Pour Point -12 12,0 -7 5,0 wt% Sulphur 0,0698 0,07293 0,0 0,07 0,0 kg/m3 Density @15 938 938 0,0 937,4 0,6

Refractive index 1,5141 1,513928 0,0 1,512 0,0

mgKOH/g Acid 0,01 0,0 <0,01 0,0 IR Ca 15,3 15,1 0,2 13 2,3 Cp 45,5 45,1 0,4 44 1,5 Cn 39,2 39,8 0,6 42 2,8 Ca IR 15 Colour ASTM D1500 2,1 1,81787 0,3 2 0,1 ASTM 156 (S) 0 0,0 0,0 VGC 0,87 0,87 0,0 0,869 0,0 Halt N 2 50 51,89 1,9 54,5 4,5 N 3 50 48,11 1,9 45,5 4,5

Page 30: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

30

APPENDIX II – DIAGRAMS OF P AND N PRODUCTS

Figure 8 Viscosity at 40 degree

Figure 9 Viscosity at 100 degree

0,00

20,00

40,00

60,00

80,00

100,00

120,00

0 10 30 50 70 90 100

Temp.

Vol -%

Visc at 402 B 2A 1A 1 B

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

0 10 30 50 70 90 100

cSt

Vol -%

Visc 100

2 B 2A 1A 1 B

Page 31: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

31

Figure 10 Viscosity Index

Figure 11 Flash point

0,00

20,00

40,00

60,00

80,00

100,00

120,00

0 10 30 50 70 90 100

Vol -%

VI

2 B 2A 1A 1 B

100,00

120,00

140,00

160,00

180,00

200,00

220,00

240,00

260,00

0 10 30 50 70 90 100

Temp.

Vol -%

Flash point

2 B 2A 1A 1 B

Page 32: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

32

Figure 12 Aniline point

Figure 13 Pour point

60,00

70,00

80,00

90,00

100,00

110,00

120,00

130,00

0 10 30 50 70 90 100

Temp

Vol -%

Aniline point

2 B 2A 1A 1 B

-70,00

-60,00

-50,00

-40,00

-30,00

-20,00

-10,00

0,00

0 10 30 50 70 90 100

Temp

Vol -%

Pour point

2 B 2A 1A 1 B

Page 33: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

33

Figure 14 Sulphur wt-%

Figure 15 Density

0,000

0,010

0,020

0,030

0,040

0,050

0,060

0,070

0,080

0,090

0,100

0 10 30 50 70 90 100

wt-%

Vol -%

Sulphur -%

2 B 2A 1A 1 B

840,00

850,00

860,00

870,00

880,00

890,00

900,00

910,00

920,00

0 10 30 50 70 90 100

kg/m3

Vol -%

Density

2 B 2A 1A 1 B

Page 34: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

34

Figure 16 Refractive index

1,4500

1,4600

1,4700

1,4800

1,4900

1,5000

1,5100

0 10 30 50 70 90 100

Vol -%

Refraktiv index

2 B 2A 1A 1 B

Page 35: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

35

APPENDIX III – DIAGRAMS OF N 3 WITH P AND N

Figure 17 Aniline point

Figure 18 Pour point

60,00

70,00

80,00

90,00

100,00

110,00

120,00

130,00

0 10 30 50 70 90 100

Temp.

Vol -%

Aniline point

3 B 3A N 13 N 23

-70,00

-60,00

-50,00

-40,00

-30,00

-20,00

-10,00

0,00

10,00

0 10 30 50 70 90 100

Temp

Vol -%

Pour point

3 B 3A N 13 N 23

Page 36: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

36

Figure 19 Flash point

Figure 20 Sulphur wt-%

140,00

160,00

180,00

200,00

220,00

240,00

260,00

0 10 30 50 70 90 100

Temp.

Vol -%

Flash point3 B 3A N 13 N 23

0,000

0,010

0,020

0,030

0,040

0,050

0,060

0,070

0,080

0,090

0,100

0 10 30 50 70 90 100

wt-%

Vol -%

Sulphur -%

3 B 3A N 13 N 23

Page 37: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

37

Figure 21 Refractive index

Figure 22 Density

1,4600

1,4700

1,4800

1,4900

1,5000

1,5100

1,5200

1,5300

1,5400

0 10 30 50 70 90 100

Vol -%

Refractive index

3 B

3A

N 13

N 23

840,00

860,00

880,00

900,00

920,00

940,00

960,00

980,00

0 10 30 50 70 90 100

kg/m3

Vol -%

Density

3 B 3A N 13 N 23

Page 38: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

38

Figure 23 Viscosity at 40 degree

Figure 24 Viscosity at 100 degree

0,0

500,0

1000,0

1500,0

2000,0

2500,0

3000,0

3500,0

4000,0

0 10 30 50 70 90 100

cST

Vol -%

Visc at 40

3 B 3A N 13 N 23

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

0 10 30 50 70 90 100

cST

Vol -%

Visc at 100

3 B 3A N 13 N 23

Page 39: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

39

APPENDIX IV – DIAGRAMS OF P/P AND N/N PRODUCTS

Figure 25 Viscosity at 40 degree

Figure 26 Viscosity at 100 degree

0,00

20,00

40,00

60,00

80,00

100,00

120,00

0 10 30 50 70 90 100

cSt

Vol -%

Visc 40

N 12

AB

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

0 10 30 50 70 90 100

cSt

Vol -%

visc 100

N 12

AB

Page 40: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

40

Figure 27 Viscosity Index

Figure 28 Flash point

0,00

20,00

40,00

60,00

80,00

100,00

120,00

0 10 30 50 70 90 100

Vol -%

VI

N 12

AB

0,00

50,00

100,00

150,00

200,00

250,00

300,00

0 10 30 50 70 90 100

temp

Vol -%

Flash point

N 12

AB

Page 41: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

41

Figure 29 Aniline point

Figure 30 Pour point

0,00

50,00

100,00

150,00

200,00

250,00

0 10 30 50 70 90 100

temp

Vol -%

Aniline point

AB

N 12

-70,00

-60,00

-50,00

-40,00

-30,00

-20,00

-10,00

0,00

0 10 30 50 70 90 100

temp

Vol -%

Pour point

N 12

AB

Page 42: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

42

Figure 31 Sulphur wt-%

Figure 32 Density

0,000

0,010

0,020

0,030

0,040

0,050

0,060

0,070

0,080

0,090

0,100

0 10 30 50 70 90 100

wt-%

Vol -%

Sulphur

N 12

AB

800,00

820,00

840,00

860,00

880,00

900,00

920,00

0 10 30 50 70 90 100

kg/m3

Vol -%

Density

N 12

AB

Page 43: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

43

Figure 33 Refractive index

1,4400

1,4500

1,4600

1,4700

1,4800

1,4900

1,5000

1,5100

0 10 30 50 70 90 100

Vol -%

Refraktive index

N 12

AB

Page 44: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

44

APPENDIX V – POUR POINT CALCULATIONS FOR THINNER OILS Table 23 Pour point calculation for thinner oil blends

P(A)+N 1 Exp Calc Diff

X Pour point Pour point

10 vol-% N1 0,115 -36,00 -21,5319 14,46811 <- polymonial order = 4

30 vol-% N1 0,306 -39,00 -26,3546 12,64541 From diagram 50 vol-% N1 0,478 -42,00 -29,7839 12,21606 Temp 100% 70 vol-% N1 0,683 -51,00 -32,8772 18,12283 N 1 -66,00 90 vol-% N1 0,835 -63,00 -34,5909 28,40906 P(A) -36,00

P(A)+N 1 Exp Calc Diff

X Pour point Pour point

10 vol-% N1 0,115 -36,00 -39,462 3,462 30 vol-% N1 0,306 -39,00 -45,168 6,168 50 vol-% N1 0,478 -42,00 -50,34 8,34 <-"anilin-metoden" 70 vol-% N1 0,683 -51,00 -56,487 5,487 90 vol-% N1 0,835 -63,00 -61,038 1,962 N 1+P(B) Exp Calc Diff

X Pour point Pour point

10 vol-% N1 0,102 -24,00 -28,4559 4,455864 <-från diagram, ekvationer 30 vol-% N1 0,297 -30,00 -26,1935 3,8065 50 vol-% N1 0,495 -39,00 -24,7308 14,26922 70 vol-% N1 0,694 -48,00 -23,9865 24,01346 90 vol-% N1 0,895 -60,00 -23,856 36,14404 N 1+P(B) Exp Calc Diff

X Pour point Pour point Temp 100%

10 vol-% N1 0,102 -24,00 -14,1153 9,8847

<-this too! N 1 -66,00

30 vol-% N1 0,297 -30,00 -15,8712 14,1288 P(B) -21,00 50 vol-% N1 0,495 -39,00 -17,6541 21,3459 70 vol-% N1 0,694 -48,00 -19,4433 28,5567 90 vol-% N1 0,895 -60,00 -21,2577 38,7423 N 1+P(B) Exp Calc Diff

X Pour point Pour point

10 vol-% N1 0,102 -24,00 -25,5765 1,5765 <-"anlinin-metoden" 30 vol-% N1 0,297 -30,00 -34,356 4,356 50 vol-% N1 0,495 -39,00 -43,2705 4,2705 70 vol-% N1 0,694 -48,00 -52,2165 4,2165 90 vol-% N1 0,895 -60,00 -61,2885 1,2885 P(A)+N 2 Exp Calc Diff

X Pour point Pour point

10 vol-% P(A) 0,895 -39,00 -40,0982 1,098155

30 vol-% 0,692 -45,00 -37,6092 7,390768 <-Polynomial order = 4

Page 45: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

45

P(A) 50 vol-%

P(A) 0,493 -39,00 -33,9923 5,007739 From diagram 70 vol-%

P(A) 0,296 -36,00 -28,9589 7,041051 90 vol-%

P(A) 0,110 -33,00 -22,6027 10,39727 P(A)+N 2 Exp Calc Diff <-"anlinin-metoden"

X Pour point Pour point Temp. 100%

10 vol-% P(A) 0,895 -39,00 -33,3153 5,6847 T100 -33,00

30 vol-% P(A) 0,692 -45,00 -33,9246 11,0754 P(A) -36,00

50 vol-% P(A) 0,493 -39,00 -34,5207 4,4793

70 vol-% P(A) 0,296 -36,00 -35,112 0,888

90 vol-% P(A) 0,110 -33,00 -35,6703 2,6703

T100+P(B) Exp Calc Diff

X Pour point Pour point

10 vol-% N2 0,097 -24,00 6,964841 30,96484 <-Polynomial order = 4 30 vol-% N2 0,297 -24,00 -4,78564 19,21436 From diagram 50 vol-% N2 0,459 -25,00 -11,8438 13,15619 70 vol-% N2 0,702 -36,00 -19,1934 16,80661 90 vol-% N2 0,902 -36,00 -22,8382 13,16181 Temp. T100+P(B) Exp Calc Diff 100%

X Pour point Pour point N 2 -33,00

10 vol-% N2 0,097 -24,00 -22,1634 1,8366 P(B) -21,00 30 vol-% N2 0,297 -24,00 -24,5688 0,5688 50 vol-% N2 0,459 -25,00 -26,502 1,502 <-"anlinin-metoden" 70 vol-% N2 0,702 -36,00 -29,4228 6,5772 90 vol-% N2 0,902 -36,00 -31,8216 4,1784 P(A)+P(B) Exp Calc Diff

X Pour point Pour point

10 vol-% P(A) 0,90 -21,00 -20,9852 0,014776 <-Polynomial order = 4

30 vol-% P(A)

0,70 -21,00 -20,8447 0,155262 From diagram 50 vol-%

P(A) 0,50 -24,00 -20,4871 3,51288 70 vol-%

P(A) 0,31 -30,00 -19,8356 10,16439 90 vol-%

P(A) 0,11 -33,00 -18,7695 14,23052

Page 46: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

46

Temp P(A)+P(B) Exp Calc Diff 100%

X Pour point Pour point P(B) -21,00

10 vol-% P(A) 0,90 -21,00 -22,5375 1,5375 P(A) -36,00

30 vol-% P(A) 0,70 -21,00 -25,503 4,503

50 vol-% P(A) 0,50 -24,00 -28,4835 4,4835 <-"anlinin-metoden"

70 vol-% P(A) 0,31 -30,00 -31,4205 1,4205

90 vol-% P(A) 0,11 -33,00 -34,41 1,41

N 2+N 1 Exp Calc Diff

X Pour point Pour point

10 vol-% N1 0,10 -36,00 -18,47 17,53002 <-Polynomial order = 4 30 vol-% N1 0,30 -42,00 -24,1364 17,86363 From diagram 50 vol-% N1 0,50 -48,00 -28,6875 19,31245 70 vol-% N1 0,70 -57,00 -32,1967 24,80328 90 vol-% N1 0,90 -60,00 -34,9103 25,08968 Temp 100% N 2+N 1 Exp Calc Diff N 2 -33,00

X Pour point Pour point N 1 -66,00

10 vol-% N1 0,10 -36,00 -36,3198 0,3198 30 vol-% N1 0,30 -42,00 -42,7548 0,7548 50 vol-% N1 0,50 -48,00 -49,3449 1,3449 <-"anlinin-metoden" 70 vol-% N1 0,70 -57,00 -55,9383 1,0617 90 vol-% N1 0,90 -60,00 -62,6538 2,6538

Page 47: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

47

APPENDIX VI – POUR POINT CALCULATIONS FOR HEAVY OILS Table 24 Pour point calculation for Heavy oil blends

N 3+N 2 Exp Calc Diff

X Pour point

Pour point

10 vol-% N2 0,104 3,00 25,72 22,71587 <- polymonial order = 4 30 vol-% N2 0,317 -6,00 18,23 24,23059 From diagram 50 vol-% N2 0,519 -12,00 12,47 24,47453 70 vol-% N2 0,712 -21,00 8,05 29,05183 90 vol-% N2 0,907 -30,00 4,45 34,45063 Temp. 100 % N 3+N 2 Exp Calc Diff N 2 -33,00

X Pour point

Pour point N 3 6,00

10 vol-% N2 0,104 3,00 1,94 1,0599 30 vol-% N2 0,317 -6,00 -6,34 0,3435 <-"anlinin-metoden" 50 vol-% N2 0,519 -12,00 -14,24 2,2371 70 vol-% N2 0,712 -21,00 -21,75 0,7524 90 vol-% N2 0,907 -30,00 -29,37 0,6309 N 3+P(A) Exp Calc Diff

X Pour point

Pour point

10 vol-% P(A) 0,113 -6,00 10,46 16,46174 <- polymonial order = 4

30 vol-% P(A) 0,337 -24,00 6,86 30,8624 From diagram

50 vol-% P(A) 0,525 -33,00 3,45 36,44881

70 vol-% P(A) 0,719 -33,00 -0,33 32,6676

90 vol-% P(A) 0,908 -33,00 -4,13 28,87047

N 3+P(A) Exp Calc Diff Temp. 100 %

X Pour point

Pour point N 3 6,00

10 vol-% P(A) 0,113 -6,00 1,28 7,275 P(A) -36,00

30 vol-% P(A) 0,337 -24,00 -8,15 15,846

50 vol-% P(A) 0,525 -33,00 -16,04 16,9626 <-"anlinin-metoden"

70 vol-% P(A) 0,719 -33,00 -24,20 8,802

90 vol-% P(A) 0,908 -33,00 -32,12 0,8766

N 3+N 1 Exp Calc Diff

X Pour point

Pour point

10 vol-% N1 0,105 -3,00 3,19 6,188581 <- polymonial order = 4 30 vol-% N1 0,307 -18,00 2,90 20,89951 From diagram

Page 48: Modeling of base oil blends Jonna Kässi - DiVA portal506104/FULLTEXT01.pdf · Modeling of base oil blends Jonna Kässi ... specially for blends containing paraffinic oil blend with

Modeling of base oil blends KTH Jonna Kässi

48

50 vol-% N1 0,504 -33,00 1,90 34,89859 70 vol-% N1 0,700 -45,00 0,32 45,31616 90 vol-% N1 0,898 -57,00 -1,77 55,23095 N 3+N 1 Exp Calc Diff Temp 100 %

X Pour point

Pour point N 3 6,00

10 vol-% N1 0,105 -3,00 -1,52 1,476 N 1 -66,00 30 vol-% N1 0,307 -18,00 -16,08 1,9248 50 vol-% N1 0,504 -33,00 -30,25 2,748 <-"anlinin-metoden" 70 vol-% N1 0,700 -45,00 -44,36 0,636 90 vol-% N1 0,898 -57,00 -58,64 1,6416 N 3+P(B) Exp Calc Diff

X Pour point

Pour point

10 vol-% P(B)

0,12 0,00 8,38 8,378693 <- polymonial order = 4

30 vol-% P(B)

0,34 -12,00 6,79 18,78682 From diagram

50 vol-% P(B)

0,55 -21,00 4,92 25,923

70 vol-% P(B)

0,74 -24,00 2,93 26,92981

90 vol-% P(B)

0,92 -21,00 0,94 21,93516

N 3+P(B) Exp Calc Diff Temp 100 %

X Pour point

Pour point N 3 6,00

10 vol-% P(B)

0,12 0,00 2,90 2,895 P(B) -21,00

30 vol-% P(B)

0,34 -12,00 -3,13 8,8659

50 vol-% P(B)

0,55 -21,00 -8,76 12,2418 <-"anlinin-metoden"

70 vol-% P(B)

0,74 -24,00 -14,00 9,9957

90 vol-% P(B)

0,92 -21,00 -18,83 2,1708