modeling rotational raman scattering in the earth’s atmosphere

37
Modeling rotational Raman scattering in the Earth’s atmosphere Rutger van Deelen Jochen Landgraf Otto Hasekamp Ilse Aben September 13, 2006, KNMI

Upload: vita

Post on 19-Mar-2016

37 views

Category:

Documents


0 download

DESCRIPTION

Modeling rotational Raman scattering in the Earth’s atmosphere. Rutger van Deelen Jochen Landgraf Otto Hasekamp Ilse Aben. September 13, 2006, KNMI. Three questions. Multiple scattering. Multiple Raman scattering? Polarization? Dependence on input solar spectrum?. Measured GOME spectra. - PowerPoint PPT Presentation

TRANSCRIPT

  • Modeling rotational Raman scattering in the Earths atmosphereRutger van DeelenJochen Landgraf Otto HasekampIlse Aben

    September 13, 2006, KNMI

  • Three questionsMultiple scattering. Multiple Raman scattering?

    Polarization?

    Dependence on input solar spectrum?

  • Measured GOME spectrasolar irradiance spectrumEarth radiance spectrum

  • The GOME reflectivity spectrum

  • The GOME reflectivity spectrumRaman

  • Rotational Raman scatteringCabannes96 % elasticRaman4 % inelasticAIR (N2, O2)Raman

  • Filling-in

  • Filling-in

  • Doubling-addingapproachPerturbation theory approachw Pw Pw Pw PAw Pmultiple orders of Raman scattering,comes out naturally,scalarone order of Raman scattering,fast,vector

  • Rayleighwray(l)tray(l) single scattering albedooptical thicknessphasefunctionPrayQ

  • RayleighCabannes + Ramanwray(l)w(l,l)tray(l) = tcab(l) + S tram(l,l)

    tray(l) single scattering albedooptical thicknessphasefunctioninelasticelastictotalPrayPramPcabwcab(l)wram(l,l)QlQinelastic

  • Doubling-adding approachRT

  • Doubling-adding approachRTRabTabab

  • Perturbation theory approach: based on the Greens functiona(z,l,W)b(z,l,W)

  • Perturbation theory approach: based on the Greens functionarrow includes multiple scattering!a(z,l,W)b(z,l,W)G = G(z,l,W;z,l,W)Gdescribes how the atmosphere responds to light

  • Perturbation theory approach: based on the Greens functionabGG = Gray Gray [ D Gray ] + Gray [ D Gray ]2 Gray [ D Gray ]3 + Dyson seriessource and target are fixedarrow includes multiple scattering!

  • Perturbation theory approach: expansion of the Greens functionabGrayRayleigh

  • Perturbation theory approach: expansion of the Greens functionabGrayabGrayGrayD-Rayleigh + 1 order of RamanRayleighfor all

  • Perturbation theory approach: expansion of the Greens functionaDDbGrayabGrayGrayGrayGrayGrayaDb-+- ...Rayleigh + 1 order of RamanRayleigh + 2 orders of RamanRayleighfor allfor all

  • Perturbation theory approach: expansion of the Greens functionaDDbGrayabGrayGrayGrayGrayGrayaDb++- ...Rayleigh + 1 order of RamanRayleigh + 2 orders of RamanRayleighfor allfor allbw

  • Comparison pert - daFilling-in[%]

  • Comparison pert - daFilling-in[%]Differencepert - da

  • PolarizationStokes vector

  • Polarization

  • Neglect of polarizationError filling-in[%]

    scalar -vectorErrorcontinuum[%]

    scalar -vector

  • The simulated Ring effect depends on the input solar spectrum

  • Using a retrieved solar spectrum insteadClear skyland

  • ConclusionRadiative transfer problem including Raman scattering involves scattering from one direction to another direction &from a certain wavelength to another wavelength1. Neglecting multiple Raman scattering: errors < 0.6 %

    2. Neglecting polarization: errors < 0.2 % on filling-inScalar approach can be used to simulate Ring effect.Polarization effects mainly due to elastically scattered radiation.

    3.Different input solar spectra: differences up to 8%Solution: construct a solar spectrum on a high resolution wavelength grid from the measurements. Better than 0.5%.AnswersChallenge

  • Thank you for your attentionwww.sron.nl/[email protected]

  • Backup slides

  • The doubling-adding productInvolves integration over all possible angles AND all possible wavelengths(Use optimized wavelength grid, only relevant bins)

  • Optimizing the wavelength grid( w + ww + www )/3( w + ww )/2wwwavenumber shift [cm-1]orderof scattering

  • Optimizing the wavelength gridorderof scattering( w + ww + www )/3( w + ww )/2wwwavenumber shift [cm-1]threshold

  • Polarization: the phase matrix elementsP11ramP11cabQQQQQP33ramP22ramP21ramP44ramP22cabP21cabP33cabP44cabP34 = 0

  • How much multiple Raman scattering?total Raman scattering fractionreflectivity multiple Ramanscattering fraction

  • Using the retrieved solar spectrum (A)

  • Using the retrieved solar spectrum (B)

    Today, modeling of Raman scattering in the Earths atmosphere

    Satellite instruments measure backscattered radiationoften talked about about absorptionScattering, you dont see anything without scattering

    A small fraction is inleatsiclayy scattered..

    I am going to talk about modeling this scattered radaitionThe restrioctions and challenges that are involved.

    Much structure UV 240-400 nmless towards IRTwo modelswe can study two questions

    multiple orderr of Raman scattering

    one order of Raman scatteringVandaag:modeleren van GOME spectraFocus: fijne spectrale structuren

    1. Meting laten zien+fjne structuren2. Sterkte van deze structuren