modeling the catchment via mixtures: an uncertainty framework for dynamic hydrologic...

30
Modeling the Catchment Via Mixtures: an Uncertainty Framework for Dynamic Hydrologic Systems Dynamic Hydrologic Systems Lucy Marshall A i P f f W h d A l i Assistant Professor of W atershed Analysis Department of Land Resources and Environmental Sciences Montana State University Email: [email protected] Thanks to: Kelsey Jencso, Tyler Smith, Brian McGlynn- MSU Ashish Sharma- University of New South Wales David Nott- National University of Singapore

Upload: others

Post on 08-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Modeling the Catchment Via Mixtures: an Uncertainty Framework for Dynamic Hydrologic SystemsDynamic Hydrologic SystemsLucy MarshallA i P f f W h d A l iAssistant Professor of Watershed AnalysisDepartment of Land Resources and Environmental SciencesMontana State UniversityyEmail: [email protected]

    Thanks to: Kelsey Jencso, Tyler Smith, Brian McGlynn- MSUAshish Sharma- University of New South WalesDavid Nott- National University of Singapore

  • Conceptualizing first order watershed processesprocesses

    Tenderfoot Cr.E F tTenderfoot Cr.E F t • 7 nested watershedsExp. ForestExp. Forest 7 nested watersheds

    • Lodgepole pine vegetation• Melt driven runoff

    F i t t

    ¯̄̄̄̄̄

    • Freezing temperatures can occur in every month

    • 555 ha• Full range of slope

    and topographic convergence

    0 500 1,000250 Meters

    Well TransectFlume SNOTEL

    0 500 1,000250 Meters0 500 1,000250 Meters

    Well TransectWell TransectFlumeFlume SNOTELSNOTEL

    0 500 1,000250 Meters

    Well TransectFlume SNOTEL

    0 500 1,000250 Meters0 500 1,000250 Meters

    Well TransectWell TransectFlumeFlume SNOTELSNOTEL

    convergence, divergence

    • Elevation ranges from 1840m to 2420The Tenderfoot Creek

    Experimental Forest

    2420

  • noff

    m/h

    r)0.5RunoffSn

    owm

    elt/R

    ain

    mm

    /day

    02040

    SWE

    (mm

    )0

    300Snow MeltRainSWE

    (a)100000

    ST2WST5W

    Ru

    (mm

    0.0( )

    Win

    ter

    24 transect total -binary connectivity- III

    ea (m

    2 )

    TFT2S

    ST2W

    TFT4N

    area

    m2

    cum

    ulat

    ed A

    re

    10000TFT1NTFT5STFT3S

    ST7EST1E

    TFT1S

    Spr

    ing

    umul

    ated

    II

    Ups

    lope

    Ac

    ST2EST6E

    ST3W

    ST3E

    ST4ETFT2N

    ST6W ST7WTFT3S

    slop

    e ac

    c

    TFT4S

    TFT5NST1W

    ST5E

    TFT3N

    St Ri i Hill l um

    mer

    Up

    I

    10/06 12/06 2/07 4/07 6/07 8/07 10/07

    1000

    ST4W

    Stream-Riparian-HillslopeWater Table Connection No Connection S

    Kelsey Jencso

  • Conceptualizing first order watershed processesprocesses

    Unknown Process/Model Implementation

    0.9

    1

    450

    500 0

    1

    2

    Snow melt-Temp/energy dependent?-Elevation effects?

    0.5

    0.6

    0.7

    0.8

    off (

    mm

    )

    250

    300

    350

    400 3

    4

    5 Soil Moisture Accounting/sub surface flow

    effects?-Rain on snow?

    -Thresholds?-Seasonal?

    0.2

    0.3

    0.4Run

    o

    100

    150

    200

    observed runoffSWErainfall Storages/

    surface flow Seasonal?

    0.7

    0.8

    0.9 MS runoff mm/hrSun Runoff mm/hr

    StringerSun

    03/01 04/01 05/01 06/01 07/01 08/01 09/01 10/010

    0.1

    Date

    0

    50 Residence times -Slope effects?-Seasonal?

    0.2

    0.3

    0.4

    0.5

    0.6

    runo

    ff m

    m/h

    r

    -0.1

    0

    0.1

    0.2

    4/1/06 5/1/06 5/31/06 6/30/06 7/30/06 8/29/06

    date

  • Conceptual rainfall-runoff modeling in hydrologyhydrology

    Watershed is represented  P E

    Qs

    pas a variable series of storages.

    Model uses rainfall S1 S2 S3 Qr

    Model uses rainfall, evapotranspiration etc. time series as inputs to 

    l ff

    A1 A2 A3

    simulate runoff

    Conceptual distributed models: discretize

    BS Qb

    models: discretizecatchment into individual units, or use hydrologic response units BS Qbresponse units

  • An uncertainty framework – ways of i ti h d l i l it incorporating hydrologic complexity

    St d d M lti l Hi hi lStandard Bayesian

    Model

    Multiple Sources of Data

    Ensemble Model

    Hierarchical Model

    Data

    y | θ x

    y | θ1, x

    y1 | θ1, x y | yA, yBy2 | θ2, x

    Processy | θ, x1

    yA | θ, x1θ1, θ2, x yB | θ, x1Parameters

    y ~ variable of interest Adapted after Clark,

    θ1| θ2, x

    x ~ input data, climatological variablesθ ~ parameters

    Adapted after Clark, Ecology Letters, 2005.

  • Base conceptual modelsp• Two base structures: a simplebucket model and theprobability distributed model(PDM Moore 1985)(PDM,Moore, 1985).

    • Three semi‐distribution sub‐structures: based on aspect,elevation and theirelevation and theircombination to account forspatial variability in inputs.

    • Three snowmelt accounting routines: temperature index,radiation index and the combination.

  • Difficulties in characterizing hydrologic model uncertaintymodel uncertainty

    • Hydrological models: often have highly correlated and 

    interdependent parameters

    Histogram for S1 in AWBM

    interdependent parameters

    600

    700

    800

    900Histogram for S1 in AWBM

    300

    400

    500 • A solution is provided by an adaptive MCMC algorithm using

    th hi t f th l d

    128 129 130 131 132 133 134 135 1360

    100

    200 the history of the sampled 

    parameter states

  • Inference results

    B k d l d b d b

    (a)

    Bucket model semi-distributed by aspect and accounting for snowmelt using the temperature- and radiation index approachradiation-index approach

  • Assessing model uncertainty via Bayesian Model AveragingBayesian Model Averaging

    • Probabilistically weight each model

    E bl f d l∑

    • Ensemble of models is an increasingly accepted way of representing modelrepresenting model ‘structural’ uncertainty

    • The Bayesian

    Model 1 Model 2

    θθθ dMpMyfMym )|(),|()|( 111 ∫= approach accounts for multiple sources of uncertainty

    )|()()|( 111 MymMPyMP •∝

  • The utility of multi model ensembles

    • Models represent competing ‘hypotheses’ about the first order processes• Both models provide information on the processes occurring so that the data is better captured0.45

    0.15

    0.2

    0.25

    0.3

    0.35

    0.490% Conf idence

    ObservedSimple Average of Two Models

    0.4

    0.45

    90% Confidence

    0

    0.05

    0.1

    1 501 1001 1501 2001 2501 3001

    0.450.2

    0.25

    0.3

    0.3590% ConfidenceObserved

    0 15

    0.2

    0.25

    0.3

    0.35

    0.490% ConfidenceObserved

    0

    0.05

    0.1

    0.15

    1 501 1001 1501 2001 2501 3001

    0

    0.05

    0.1

    0.15

    1 501 1001 1501 2001 2501 3001

  • Hierarchical Mixtures of ExpertsHierarchical Mixtures of Experts

    E h t l d l b q

    Logistic gating

    Each conceptual model can be cast as:

    )();( 2,, itiittit xfQ σεθ +=

    q1

    q2

    Model 1 Model 2

    function

    The probability of selecting individual models is based on the gating function, using catchment

    xx

    A single-level two-component Hierarchical Mixture of Experts model

    .

    predictors Xt:

    ),X(G

    ),X(G

    ,t t

    t

    eeg β

    β

    +=

    11 Mixture of Experts model

    Models are sampled via a conditional simulation of independent Bernoulli

    )z|Q(P),,|z(p),,,Q|z(p i

    ,tt,tt,t

    ∑=

    =σθβ==σθβ= 2

    2

    12

    121

    111

    e+1

    independent Bernoulli random variables zt, with probability specified as:

    )z|Q(P),,|z(pi

    i,tti,t∑=

    =σθβ=1

    2 11

  • Mixture models- alternative models suitable at diff idifferent times

    • Probabilistically split

    2.0E-03

    2.5E-03 • Probabilistically split the data according to some catchment indicatorsDifferent

    1.5E-03

    indicators

    • Fit separate models to the data and data errors Models may

    models selected for parts of the

    data

    5.0E-04

    1.0E-03errors. Models may then ‘specialize’

    • Can be likened to B i M d l

    data

    0.0E+001000 1500 2000

    Bayesian Model Averaging, where the weights vary in timetime

    Can fit same model structure with different parameterizations: assumes that model uncertainty does not arise solely out of the assumed model structure

  • Mixture models- alternative parameterizations suitable at different times

    0 3

    0.35

    0.4

    0.45

    0 8

    1

    1.2

    Probability Model 1Modeled

    Fit two parameterizations of the single best model (combined

    0 1

    0.15

    0.2

    0.25

    0.3

    Flow

    (mm

    )

    0.4

    0.6

    0.8

    Prob

    abili

    ty

    Observedg (

    temperature/radiation index melt, pdm model)

    0

    0.05

    0.1

    1 1001 2001 3001 4001 50010

    0.2

  • Mixture models- alternative parameterizations suitable at different times

    0.3

    0.35

    0.4

    0.45

    0.8

    1

    1.2

    Probability Model 1ModeledObserved

    Model preference changes according to:

    •Response to event

    0.1

    0.15

    0.2

    0.25

    Flow

    (mm

    )

    0.4

    0.6

    Prob

    abili

    ty

    Observed

    •Time of season

    Comparison of alternate model simulations can indicate which

    0

    0.05

    1 1001 2001 3001 4001 50010

    0.2simulations can indicate which parameters are most sensitive to selected calibration period

    HME approach gives good fit to data, but has problems with:•Identifiability•Interpretation•Interpretation•Predictions

  • Combining multiple model parameterizations: catchment “states” catchment states

    Hydrologic model: Topmodel q

    Logistic gating

    function

    q 1 q 2

    xx

    Model 1 Model 2

    Two Component HME

    A single-level two-component Hierarchical Mixture of Experts model

    91

    101

    111

    121

    Tarrawarra Catchment Two Component HME

    31

    41

    51

    61

    71

    81 Contour Map

    From Hornberger, 19981 11 21 31 41 51 61 71 81 91 101 111 121

    1

    11

    21

    31

  • Combining multiple model parameterizations: catchment “states” catchment states

    0 0025

    0.003

    Simulations from individual mixture

    0.002

    0.0025component models

    0 001

    0.0015Q1Q2

    0.0005

    0.001

    0

  • Combining Multiple Model Parameterizations Model “States” Parameterizations: Model States

    0.002

    0.0025

    0.8

    0.9

    1

    0.0015

    rge

    (m)

    0 5

    0.6

    0.7

    QobsQmean

    0.001Dis

    cha

    0.3

    0.4

    0.5 QmeanProbability

    0

    0.0005

    0

    0.1

    0.2

    Hour

  • What about prediction?p

    To use the model for prediction means finding anTo use the model for prediction means finding an appropriate catchment descriptor and a function relating this to the probability switching between relating this to the probability switching betweenmodels

    Possible predictorsPossible predictorsAntecedent rainfall

    Modelled catchment storageModelled catchment storage

    Time of the year

    The best predictors are often related to the mostThe best predictors are often related to the most dynamic catchment mechanisms

  • Model Aggregation as a Predictive Tool-Comparison of predictorsComparison of predictors

    Model Predictor -0.5 BICTopmodel N/A 32685op ode / 3 685

  • Model Aggregation as a Predictive Tool-Comparison of predictorsComparison of predictors

    Model Predictor -0.5 BICTopmodel N/A 32685op ode / 3 6852 Component

    HME Preceding rainfall 33445Change in storage

    deficit 33487Change in unsaturatedChange in unsaturated

    zone storage 33428Unsaturated zone

    storage 33455

  • Model Aggregation as a Predictive Tool-Comparison of predictorsComparison of predictors

    Model Predictor -0.5 BICTopmodel N/A 32685op ode / 3 6852 Component

    HME Preceding rainfall 33445Change in storage

    deficit 33487Change in unsaturatedChange in unsaturated

    zone storage 33428Unsaturated zone

    storage 33455

  • Benefits of the HME approachpp

    HME provides an improved framework for incorporating multiple sources of model uncertainty in p g p yhydrology

    The HME approach allows combination of multiple models and parameterizations in a single framework

  • Using Mixture Modeling as a Method of Comparing Model Structures Parameters and ErrorsModel Structures, Parameters and Errors

    • HME can highlight problems in the model structure• For conceptual models: different responses in wet and dry 

    periods; different ways to model the catchment storage

    • For distributed models: different patterns of soil moisture in wet and dry periods; different assumptions about thewet and dry periods; different assumptions about the recession properties

    • A mixture of error distributions can provide better A mixture of error distributions can provide betterprediction limits and better model heteroscedasticity

  • Alternative approach: hierarchical model

    • Most temporally sensitive parameters are conditioned on observed/modeled exogenous data

    • Easier to interpret in light of the conceptualized hydrologic processes• Look at extent to which parametric variability informs model Look at extent to which parametric variability informs model

    structural uncertainty

    0 4

    0.45

    0 973

    0.9735•Storage parameter differentiates alternative HME components

    0 2

    0.25

    0.3

    0.35

    0.4

    w (m

    m)

    0 9705

    0.971

    0.9715

    0.972

    0.9725

    0.973

    e Pa

    ram

    eter

    p

    •Condition this on the watershed melt and temperature

    0

    0.05

    0.1

    0.15

    0.2

    Flow

    0 968

    0.9685

    0.969

    0.9695

    0.97

    0.9705

    Stor

    ageModeled

    Observed

    Storage RecessionModel Max log-

    likelihoodHierarchical 157910

    1 1001 2001 3001 4001 50010.968

    HME 18068

  • Comparison of aggregation and hi hi l hhierarchical approaches

    How do these approaches compare for:pp p1. Assessing model structural uncertainty

    Ensemble methods span the breadth of model space with varying degrees to give a better assessment of model uncertaintydegrees to give a better assessment of model uncertainty.HME and hierarchical formulations can highlight problems in the assumed model structure.

    2 Improving model predictions2. Improving model predictionsThe ensemble approach should give a more consistent performance for the main variable of interest. The hierarchical approach does hold promise in improving model performance.promise in improving model performance.

    3. InterpretabilityEnsemble and HME approaches are less useful beyond the variable of interest A more complex hierarchical model may give a model structure interest. A more complex hierarchical model may give a model structure greater flexibility and a simulation more consistent with internal watershed processes.

  • Can we use multi-model approaches for better model building?better model building?

    For improved conceptual model assessment we should consider that parameter variability and model structural uncertainty are linked.The HME approach and multi‐model approaches can be usedThe HME approach and multi model approaches can be used to determine the utility of alternative models under different watershed conditionsThese approaches can be used to improve existing models forThese approaches can be used to improve existing models for better interpretability of internal watershed dynamics and their variability 

  • Modeling the Catchment Via Mixtures: an Uncertainty Framework for Dynamic Hydrologic SystemsDynamic Hydrologic Systems

    Lucy MarshallAssistant Professor of Watershed AnalysisDepartment of Land Resources and Environmental SciencesDepartment of Land Resources and Environmental SciencesMontana State University

    Email: [email protected]

  • References

    Rainfall Runoff ModelsMoore, R. J. (1985). "The probability-distributed principle and runoff production at point and basin scales." Hydrological Sciences 30(2): 273-297.Beven, K., et al. (1995), Topmodel, in Computer Models of Watershed Hydrology, dit d b V P Si h 627 668 W t R P bli ti Hi hl d R h edited by V. P. Singh, pp. 627-668, Water Resources Publications, Highlands Ranch,

    Colorado.Bayesian Inference and Adaptive MCMC Algorithms

    Clark JS (2005) Why environmental scientists are becoming Bayesians. Ecology Letters ( ) y g y gy8(1)Haario, H., et al. (2001), An adaptive Metropolis algorithm, Bernoulli, 7(2), 223-242.Haario, H., M. Laine, et al. (2006). "DRAM: Efficient adaptive MCMC." S d C (4) 339 3 4Statistics and Computing 16(4): 339-354.

    Hierarchical mixtures of ExpertsJacobs, R. A., et al. (1997), A Bayesian approach to Model Selection in Hierarchical Mixtures-of-Experts Architectures Neural Networks 10(2) 231-241Mixtures-of-Experts Architectures, Neural Networks, 10(2), 231-241.Marshall, L., et al. (2006), Modeling the catchment via mixtures: Issues of model specification and validation, Water Resour. Res., 42(11), 1-14.

  • Adaptive Bayesian algorithmsp y g

    • The Adaptive Metropolis(AM) algorithm (Haario et al(AM) algorithm (Haario et al.,2001):• The covariance of the proposal

    distribution is updated using the

    AM Jump Space

    Initial DRAM Jump Space distribution is updated using the

    information gained from thesimulation thus far.

    • Often plagued by initializationbl i h l i h

    p p

    problems, causing the algorithm tobecome trapped in local optima.

    • The Delayed RejectionAdaptive Metropolis (DRAM)Adaptive Metropolis (DRAM)algorithm (Haario et al. 2006):• Reduces the probability that the

    algorithm will remain at the current

    Figure 2. A theoretical parameter surface, diagramming AM &DRAM algorithms’ ability to explore the parameter surface.Rings represent distance from the current location an algorithmcan explore. These exploration limits illustrate DRAM’s ability algorithm will remain at the current

    state.can explore. These exploration limits illustrate DRAM s abilityto search more space and AM’s tendency to falsely convergeto local maxima because of its more constricted search area.