modeling the source: a mechanistic approach for …...hillslope processes: 1. control the pace and...

24
Modeling the source: A mechanistic approach for hillslope sediment fluxes Josh Roering, University of Oregon Bill Dietrich, University of California, Berkeley

Upload: others

Post on 25-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modeling the source: A mechanistic approach for …...Hillslope processes: 1. Control the pace and character of sediment flux into channel networks Divergent or 2. Determine landscape

Modeling the source: A mechanistic approach for hillslope sediment fluxes

Josh Roering, University of OregonBill Dietrich, University of California, Berkeley

Page 2: Modeling the source: A mechanistic approach for …...Hillslope processes: 1. Control the pace and character of sediment flux into channel networks Divergent or 2. Determine landscape

Modeling the source: Outline

1) Hillslopes and channels: function and coupling) p p g

2) Tectonics, climate, lithology, topography,and sediment fluxes: Quantitative framework and first order linkagesfluxes: Quantitative framework and first-order linkages

3) Process-based models)• Soil (or sediment) production• Sediment transport

C t h t d di ti• Catchment-averaged predictions

Page 3: Modeling the source: A mechanistic approach for …...Hillslope processes: 1. Control the pace and character of sediment flux into channel networks Divergent or 2. Determine landscape

Hillslope processes:p p1. Control the pace and character of sediment 

flux into channel networks2 Determine landscape morphology (e g relief)Divergent or 2. Determine landscape morphology (e.g., relief)Divergent or 

planar landforms

Channel networks:1. Set the lower boundary condition to which 

hillslopes adjust2 Transfer sediment produced by hillslope2. Transfer sediment produced by hillslope 

processesConvergent terrainterrain

Page 4: Modeling the source: A mechanistic approach for …...Hillslope processes: 1. Control the pace and character of sediment flux into channel networks Divergent or 2. Determine landscape

Framework for process‐based prediction of

zx

based prediction of sediment fluxes

 

∂∂x

 

P = soil productionqs = sediment flux 

qs and P depend on:• Topography

l lqs fh = soil thicknesszs =  surface elevationU = rock uplift (or baselevel lowering)

• Climate & Biology• Lithology• Tectonic forcingU =  rock uplift (or baselevel lowering) g• Human activity

Page 5: Modeling the source: A mechanistic approach for …...Hillslope processes: 1. Control the pace and character of sediment flux into channel networks Divergent or 2. Determine landscape

Sediment delivery predictions:

Roering, 2008

1) Spatially explicit2) Catchment‐averaged

Coulthard et al., 2002Current topography Model topography

Perron, in pressp

Alluvial Fan

Page 6: Modeling the source: A mechanistic approach for …...Hillslope processes: 1. Control the pace and character of sediment flux into channel networks Divergent or 2. Determine landscape

Burbank, 2002

• For constant climate, biology, and lithology, relief increases ith rock pliftwith rock uplift

• Landsliding limits topographic development• Sediment delivered to channels will be fresher and coarser along this continuum

Page 7: Modeling the source: A mechanistic approach for …...Hillslope processes: 1. Control the pace and character of sediment flux into channel networks Divergent or 2. Determine landscape

• Ultimately, hillslope erosion rate is set by

First-order linkages

U t ate y, s ope e os o ate s set bybaselevel lowering

• Climate/biology/lithology set theClimate/biology/lithology set the hillslope form required to supply sediment and keep pace with baselevel lowering

Process-form connection Mechanistic understanding Predictive capability for interpreting

Tucker & Bras, 2000, WRR

Predictive capability for interpreting sedimentary record (especially variations)

Th th di t i fl f li t• Thus, the direct influence of climate, biology, and lithology on sediment yield is elusive: These factors should be incorporated through process modelsincorporated through process models (qs and P)

Page 8: Modeling the source: A mechanistic approach for …...Hillslope processes: 1. Control the pace and character of sediment flux into channel networks Divergent or 2. Determine landscape

• Do fluctuating climate states generate greater sediment yield than the mean of those states?

• Are hillslopes in a perpetual state of adjustment?

hPeizhen, 2001, Nature

Burbank, 2002

Page 9: Modeling the source: A mechanistic approach for …...Hillslope processes: 1. Control the pace and character of sediment flux into channel networks Divergent or 2. Determine landscape

– Studied processes and

Western U.S. & AustraliaModels: Soil production

characteristic curves for various climate variables

– Show different curves for different coefficients…perhaps way to uc

tion

Heimsath, 1997, 2000, 2001, 2005

p p yexpress climate influence? K for soil transport, earthflow, soil production function, debris flow valleysSo

il pr

odu

Humped 

y

Soil thickness

Exponential decay

•What controls peak production rates and the functional form?

•What controls the production of landslide‐prone material  (i.e., strength reduction via weathering)?

Page 10: Modeling the source: A mechanistic approach for …...Hillslope processes: 1. Control the pace and character of sediment flux into channel networks Divergent or 2. Determine landscape

Humped soil production emerges from forest dynamics:g y• tree‐driven bedrock disturbance decreases as soils thicken

• tree density increases as soils thi k

M dd d G b 2010 JGR

thicken

Mudd and Gabet, 2010, JGR

Page 11: Modeling the source: A mechanistic approach for …...Hillslope processes: 1. Control the pace and character of sediment flux into channel networks Divergent or 2. Determine landscape

Models: Sediment transport into channelsModels: Sediment transport into channels

• Disturbance‐driven (e.g., bioturbation, frost processes) • Landsliding (e.g., rockfalls, debris flows, deep‐seated slides)• Overland flow erosion (e.g., wash, rills, gullies)

Note: Functional relationships for climate, biology, and lithology are unknown

Page 12: Modeling the source: A mechanistic approach for …...Hillslope processes: 1. Control the pace and character of sediment flux into channel networks Divergent or 2. Determine landscape

Disturbance‐driven transport varies 

nt flux

nonlinear with slope

Sedimen

1 ⁄ 2

K = f (power from disturbance agents & soil thickness)

S = Critical slopeSc  = Critical slope

Slope (m/m)

Experimental, field, and morphologic evidence (Gabet, 2000, 2003; Pelletier, 2007, 2009; Roering, 1999, 2001, 2005, 2008)

How does K vary with climate, lithology, and biology?

Page 13: Modeling the source: A mechanistic approach for …...Hillslope processes: 1. Control the pace and character of sediment flux into channel networks Divergent or 2. Determine landscape

Catchment‐averaged nonlinear model DiBiase, 2010, EPSL

1 ⁄ 2 1) steady‐state

2) integrate San GabrielMountains

∗ 1 ∗ 2 ln 12 1 1 ∗ 2 1

pe,  S a

vg

Critical slope (Sc)= 1.25

1Tibet:Ouimet, 2009, G l

verage Slop

0.1

Geology

Av

0

LH =characteristic hillslope lengthr/s=bulk density rock/soil

∗ 2 ⁄ Roering, 2007

0.1 1 10 100

Page 14: Modeling the source: A mechanistic approach for …...Hillslope processes: 1. Control the pace and character of sediment flux into channel networks Divergent or 2. Determine landscape

Models: Landslide transport requirements (Stark, 2009)1. Trigger event spatial and temporal 

distribution (e.g., rainfall, EQ)2. Number and volume distribution of 

landslides generated per event3. Delivery of landslide debris into 

h lchannels

Threshold slopes Pore pressure in hollows

Tucker, 1998

Page 15: Modeling the source: A mechanistic approach for …...Hillslope processes: 1. Control the pace and character of sediment flux into channel networks Divergent or 2. Determine landscape

A statistical approach for landslidesDensmore, 1998

Malamud, 2004

Stark, 2009

• Landslide volumes are limited by topography (relief and drainage density)• Can statistical properties be used to estimate sediment yields?

Page 16: Modeling the source: A mechanistic approach for …...Hillslope processes: 1. Control the pace and character of sediment flux into channel networks Divergent or 2. Determine landscape

Waipaoa, NZ

Page 17: Modeling the source: A mechanistic approach for …...Hillslope processes: 1. Control the pace and character of sediment flux into channel networks Divergent or 2. Determine landscape

Eel River, CA

Page 18: Modeling the source: A mechanistic approach for …...Hillslope processes: 1. Control the pace and character of sediment flux into channel networks Divergent or 2. Determine landscape

Erosion‐topography relationship for earthflow‐prone terrainEarthflow transportS il

  nm

pppwr zyxKzHgazDUz

)()( 2

2

2

Earthflow transportGully incision

Soil creep

w xyxK

xxpxDU

t

)(22

1.0

, Savg Eel River

age  slop

e,

0.1wetter

Avera

A. Booth, PhD thesis

Erosion rate (mm yr‐1)

0.010.01 0.1 1 10

Page 19: Modeling the source: A mechanistic approach for …...Hillslope processes: 1. Control the pace and character of sediment flux into channel networks Divergent or 2. Determine landscape

Overland flow erosion

= shear stress • Many event‐based modelsc = critical shear stress

y• Dunne (1991) explored morphologic implication of stochastic rainfall

Page 20: Modeling the source: A mechanistic approach for …...Hillslope processes: 1. Control the pace and character of sediment flux into channel networks Divergent or 2. Determine landscape

Conclusions

• When hillslopes and channels are coupled: – Baselevel lowering sets hillslope erosion ratesBaselevel lowering sets hillslope erosion rates– Climate, biology, and lithology set hillslope form, but the relationships are unknown (i.e., we can’t yet use form to predict sediment yield)predict sediment yield)

• Depth‐dependent soil production functions need mechanistic basis

• Models for production of landslide‐prone material are unknown• Models for production of landslide prone material are unknown, but should depend on physical and chemical weathering processes (e.g., fracturing, hydrolysis, hydration)

• Nonlinear sediment transport models predict that average slopeNonlinear sediment transport models predict that average slope and relief become insensitive to erosion rate and have some field and morphologic evidence

• Functional relationships for how climate, biology, and lithologyFunctional relationships for how climate, biology, and lithology influence sediment flux are unknown

Page 21: Modeling the source: A mechanistic approach for …...Hillslope processes: 1. Control the pace and character of sediment flux into channel networks Divergent or 2. Determine landscape

Mackey, GSAB, in pressReal transport is stochastic

(e.g., landslides, tree throw)

• Statistical approach• Continuum models

Page 22: Modeling the source: A mechanistic approach for …...Hillslope processes: 1. Control the pace and character of sediment flux into channel networks Divergent or 2. Determine landscape

Earthflow‐dominated terrain

Eel River, California

Page 23: Modeling the source: A mechanistic approach for …...Hillslope processes: 1. Control the pace and character of sediment flux into channel networks Divergent or 2. Determine landscape

Temporal variations • Steadily decreases since 1960’sTemporal variations in sediment delivery

Steadily decreases since 1960 s• Lonepine slide dominates in 

early 1990’s

Lonepine earthflow:Lonepine earthflow:Active 1981‐1998 b/c of railroad operations

Page 24: Modeling the source: A mechanistic approach for …...Hillslope processes: 1. Control the pace and character of sediment flux into channel networks Divergent or 2. Determine landscape

Debris flow valley networks

In slope‐area space, debris flow networks steepen and curve with increasing erosion rate

Theoretical and empirical evidence

Stock & Dietrich (2003, 2006)

1.0

=0.1 km

2

Stock & Dietrich 2003 ope @ Area

Knawls VA

Deer, CAHoneydew, 

CA

Stock & Dietrich, 2003 0.10.01 0.1 1 10

Erosion rate, E (mm yr‐1)

Slo Knawls, VA