modeling)physiological)systems)and)laboratory) fischell...

12
BIOE 340 Fall, 2012 Modeling Physiological Systems and Laboratory Fischell Department of Bioengineering University of Maryland College Park, MD Lab 5: Ordinary Differential Equations Laboratory Assignment 5B 1. Introduction The ability to transmit electrical signals throughout the body is vital to the coordination of almost all physiological processes. The generation of a thought, the contraction of a muscle, and the initiation of a heart beat are all initiated by bioelectrical events. Each bioelectric transmission begins with the stimulation of a single cell, which is then propagated accordingly. This cellular stimulation is known as an action potential and is the basic component of bioelectricity. In this laboratory you will develop a computer simulation based upon the HodgkinHuxley model to gain a better understanding of membrane conductance and how it relates to bioelectrical stimulation (action potential), and transmission. At rest, most cells have a negative potential with respect to the surrounding extracellular fluid. This resting potential is due to the careful distribution of sodium (Na+), potassium (K+), chloride (Cl), and calcium (Ca++) ions. The typical resting intracellular and extracellular concentrations of each ion may be found below in Table 1. The cell has specialized pumps in order to maintain a specific concentration gradient for each ion. In fact, a majority of the cell’s energy is directed towards fueling these pumps, which demonstrates the importance of maintaining these specific ionic gradients. It is vital for the cell to maintain specific ion concentrations, and corresponding resting potential, for the initiation of an electrical stimulation. It is through the manipulation of these ionic concentrations that the cell is able to produce an electrical stimulation to generate electrical transmission. Table 1. Comparison of ionic concentrations inside and outside a typical mammalian cell [1] COMPONENT INTRACELLULAR CONCENTRATION (mM) EXTRACELLULAR CONCENTRATION (mM) Na + 515 145 K + 140 5 Mg 2+ 0.5 12 Ca 2+ 10 4 12 H + 7 × 10 5 (10 7.2 M or pH 7.2) 4 × 10 5 (10 7.4 M or pH 7.4) Cl 515 110 The main components of an action potential include the resting phase, depolarization phase, repolarization phase, hyperpolarization phase, and then a return to resting phase. As stated previously, the resting phase potential is determined by the resting ionic concentrations in and around the cell (Table 1). Depolarization of the membrane occurs when there is an influx of positive Na+ ions into the cell. At the peak of depolarization Na+ channels become deactivated and K+ channels open, leading to the efflux of K+ from the cell. The efflux of K+ from the cell results in the repolarization of the cell. The hyperpolarization of the cell is caused by an excess of K+ leaving the cell. The cell returns to resting potential when the ion concentrations return to their resting state, in large part due to the activity of specialized pumps such as the sodiumpotassium ATPase. A diagram of the action potential series may be found below in Figure 1.

Upload: others

Post on 22-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modeling)Physiological)Systems)and)Laboratory) Fischell ...terpconnect.umd.edu/~jpfisher/index_files/lab5bassign.pdf · Laboratory)Assignment)5B)!-70 0 40 30 20 10-10-20-30-40-50-60

BIOE  340  Fall,  2012  

 Modeling  Physiological  Systems  and  Laboratory  

Fischell  Department  of  Bioengineering  University  of  Maryland  

College  Park,  MD    

Lab  5:  Ordinary  Differential  Equations  Laboratory  Assignment  5B  

 1.   Introduction     The  ability  to  transmit  electrical  signals  throughout  the  body  is  vital  to  the  coordination  of  almost  all  physiological  processes.    The  generation  of  a  thought,  the  contraction  of  a  muscle,  and  the  initiation  of  a  heart  beat  are  all  initiated  by  bioelectrical  events.    Each  bioelectric  transmission  begins  with  the  stimulation  of  a  single  cell,  which  is  then  propagated  accordingly.    This  cellular  stimulation  is  known  as  an  action  potential  and  is  the  basic  component  of  bioelectricity.    In  this  laboratory  you  will  develop  a  computer  simulation  based  upon  the  Hodgkin-­‐Huxley  model  to  gain  a  better  understanding  of  membrane  conductance  and  how  it  relates  to  bioelectrical  stimulation  (action  potential),  and  transmission.     At  rest,  most  cells  have  a  negative  potential  with  respect  to  the  surrounding  extracellular  fluid.    This  resting  potential  is  due  to  the  careful  distribution  of  sodium  (Na+),  potassium  (K+),  chloride  (Cl-­‐),  and  calcium  (Ca++)  ions.    The  typical  resting  intracellular  and  extracellular  concentrations  of  each  ion  may  be  found  below  in  Table  1.  The  cell  has  specialized  pumps  in  order  to  maintain  a  specific  concentration  gradient  for  each  ion.    In  fact,  a  majority  of  the  cell’s  energy  is  directed  towards  fueling  these  pumps,  which  demonstrates  the  importance  of  maintaining  these  specific  ionic  gradients.    It  is  vital  for  the  cell  to  maintain  specific  ion  concentrations,  and  corresponding  resting  potential,  for  the  initiation  of  an  electrical  stimulation.    It  is  through  the  manipulation  of  these  ionic  concentrations  that  the  cell  is  able  to  produce  an  electrical  stimulation  to  generate  electrical  transmission.       Table  1.  Comparison  of  ionic  concentrations  inside  and  outside  a  typical  mammalian  cell  [1]  

 COMPONENT  

INTRACELLULAR  CONCENTRATION  

(mM)  

EXTRACELLULAR  CONCENTRATION  

(mM)  Na+   5-­‐15   145  K+   140   5  

Mg2+   0.5   1-­‐2  Ca2+   10-­‐4   1-­‐2  

       H+   7  ×  10-­‐5  (10-­‐7.2  M  or  pH  7.2)   4  ×  10-­‐5  (10-­‐7.4  M  or  pH  7.4)  Cl-­‐   5-­‐15   110  

    The  main  components  of  an  action  potential  include  the  resting  phase,  depolarization  phase,  repolarization  phase,  hyperpolarization  phase,  and  then  a  return  to  resting  phase.    As  stated  previously,  the  resting  phase  potential  is  determined  by  the  resting  ionic  concentrations  in  and  around  the  cell  (Table  1).    Depolarization  of  the  membrane  occurs  when  there  is  an  influx  of  positive  Na+  ions  into  the  cell.    At  the  peak  of  depolarization  Na+  channels  become  deactivated  and  K+  channels  open,  leading  to  the  efflux  of  K+  from  the  cell.    The  efflux  of  K+  from  the  cell  results  in  the  repolarization  of  the  cell.    The  hyperpolarization  of  the  cell  is  caused  by  an  excess  of  K+  leaving  the  cell.    The  cell  returns  to  resting  potential  when  the  ion  concentrations  return  to  their  resting  state,  in  large  part  due  to  the  activity  of  specialized  pumps  such  as  the  sodium-­‐potassium  ATPase.    A  diagram  of  the  action  potential  series  may  be  found  below  in  Figure  1.  

Page 2: Modeling)Physiological)Systems)and)Laboratory) Fischell ...terpconnect.umd.edu/~jpfisher/index_files/lab5bassign.pdf · Laboratory)Assignment)5B)!-70 0 40 30 20 10-10-20-30-40-50-60

BIOE  340  Fall,  2012  

 Modeling  Physiological  Systems  and  Laboratory  

Fischell  Department  of  Bioengineering  University  of  Maryland  

College  Park,  MD    

Lab  5:  Ordinary  Differential  Equations  Laboratory  Assignment  5B  

 

-70

0

40

30

20

10

-10

-20

-30

-40

-50

-60

Mem

bran

e P

oten

tial (

mV

)

Na+ channels open and Na+ begins to enter cell

More Na+ channels open, depolarizing inside of the cell

Na+ channels close, K+ channels open, causing K+ to leave cell

K+ continues to leave cell, causing membrane potential to return to resting level

K+ channels begin to close, Na+ channels rest

K+ channels delay closing, causing undershoot

Time

1

2

3

4

5

6excitationthreshold

-70

0

40

30

20

10

-10

-20

-30

-40

-50

-60

Mem

bran

e P

oten

tial (

mV

)

Na+ channels open and Na+ begins to enter cell

More Na+ channels open, depolarizing inside of the cell

Na+ channels close, K+ channels open, causing K+ to leave cell

K+ continues to leave cell, causing membrane potential to return to resting level

K+ channels begin to close, Na+ channels rest

K+ channels delay closing, causing undershoot

Time

1

2

3

4

5

6excitationthreshold

   

Figure  1.  Schematic  of  a  typical  action  potential  [2].       Electrostatic  attraction  and  concentration  gradient  are  the  two  main  driving  forces  for  the  flux  of  ions  across  the  cellular  membrane.    The  two  are  combined  into  a  single  term,  known  as  the  electrochemical  potential  of  an  ion.    The  electrostatic  driving  force  of  the  ion  flux  is  derived  from  the  separation  of  charge  set  up  by  the  phospholipid  bilayer  of  the  membrane.    In  this  sense,  the  membrane  acts  as  a  capacitor  separating  the  negative  charge  on  the  inner  side  of  the  membrane  from  the  positive  charge  on  the  exterior.    Thus  when  the  sodium  channels  are  open,  Na+  is  drawn  into  the  cell,  attracted  to  the  negative  interior.    When  potassium  channels  are  open  at  step  3,  K+  is  drawn  out  of  the  cell  by  its  chemical  gradient.    The  chemical  driving  force,  concentration  gradient,  is  based  upon  simple  diffusion  theory  suggesting  that  transport  of  a  species  will  flow  from  high  concentration  to  low  concentration.    The  cell  returns  to  its  resting  concentration  through  use  of  the  ATP  driven  sodium  potassium  pump.        

The  Nernst  equation  (1)  is  employed  to  quantitatively  characterize  the  electrochemical  potential  of  each  ion:  

 in

outi C

CzFRTE

][][

ln=   (1)  

Page 3: Modeling)Physiological)Systems)and)Laboratory) Fischell ...terpconnect.umd.edu/~jpfisher/index_files/lab5bassign.pdf · Laboratory)Assignment)5B)!-70 0 40 30 20 10-10-20-30-40-50-60

BIOE  340  Fall,  2012  

 Modeling  Physiological  Systems  and  Laboratory  

Fischell  Department  of  Bioengineering  University  of  Maryland  

College  Park,  MD    

Lab  5:  Ordinary  Differential  Equations  Laboratory  Assignment  5B  

 where  R  is  the  ideal  gas  constant  (8.31451  j/molK),  T  is  the  absolute  temperature  (K),    F  is  Faraday’s  constant  (96,485.3  C/mol),  and  z  is  the  valence  of  the  ion.     The  Nernst  equation  yields  a  Nernst  potential,  electrochemical  potential,  for  each  particular  ion  which  is  translated  into  a  quantitative  driving  force  by  subtracting  this  potential  from  the  membrane  potential.    The  driving  force  for  the  transport  of  the  ion  is  proportional  to  the  absolute  value  of  the  difference  between  the  Nernst  potential  and  the  membrane  potential.    In  other  words,  when  the  Nernst  potential  equals  that  of  the  membrane  potential  there  is  no  driving  force  for  the  spontaneous  flux  of  that  particular  ion.    On  the  other  hand,  when  the  difference  between  the  Nernst  potential  and  the  membrane  potential  is  large  there  is  a  large  driving  force  for  the  transport  of  that  particular  ion.    As  will  be  discussed  later,  this  voltage  difference  is  used  to  characterize  the  current  and  fluxes  of  each  respective  ion.    2.   Hodgkin-­‐Huxley  Model:  Modeling  Ionic  Transport  and  Action  Potentials     The  Hodgkin-­‐Huxley  model  will  be  used  to  simulate  cellular  electric  stimulation  and  action  potentials.    The  model  is  based  upon  a  relatively  simple  electronic  circuit  with  four  branch  currents;  three  representing  ion  currents  (Na+,  K+,  Leak),  and  one  representing  the  capacitive  current  (See  Figure  2  below).  

 Figure  2.  Electronic  diagram  of  the  Hodgkin-­‐Huxley  model.  Vm  is  the  membrane  voltage.  Cm  is  the  membrane  capacitance.  GNa,  GK,  GL  are  the  respective  ion  conductances.  ENa,  EK,  EL,  are  the  respective  Nernst  potentials.       The  specific  coordination  of  ion  fluxes  across  the  cellular  membrane  is  the  basis  of  an  action  potential.    Therefore,  our  simulation  must  begin  with  the  characterization  of  ionic  transport.    Ionic  transport  will  be  modeled  after  simple  electrical  circuit  theory,  more  specifically  Ohm’s  law.    As  shown  below,  Ohm’s  law  linearly  relates  current  to  the  voltage  applied,  and  the  resistance  seen  by  charge.  

  gVI =   (2)  

Cm

ENa

GNa

INa

EK

GK

IK

EL

GL

IL

outside

insideVm

Cm

ENa

GNa

INa

EK

GK

IK

EL

GL

IL

outside

insideVm

Page 4: Modeling)Physiological)Systems)and)Laboratory) Fischell ...terpconnect.umd.edu/~jpfisher/index_files/lab5bassign.pdf · Laboratory)Assignment)5B)!-70 0 40 30 20 10-10-20-30-40-50-60

BIOE  340  Fall,  2012  

 Modeling  Physiological  Systems  and  Laboratory  

Fischell  Department  of  Bioengineering  University  of  Maryland  

College  Park,  MD    

Lab  5:  Ordinary  Differential  Equations  Laboratory  Assignment  5B  

 Accordingly,  each  ion  can  be  rewritten  to  relate  the  current  across  the  membrane  to  its  specific  conductance  and  voltage  (driving  force)  shown  below  (Equations  3  and  4).    The  currents  may  be  modeled  as  a  static  current  (3)  or  a  dynamic  current  (4)       )( ii EVgI −=   (3)  

  ))(()( ii EVtgtI −=   (4)  where  V =  Membrane  Potential/Voltage.    Using  the  equation  above,  it  is  possible  to  fully  characterize  the  current-­‐voltage  relationship  within  a  cell  based  upon  the  Hodgkin-­‐Huxley  model  shown  above  in  Figure  3  (5).  

  appLLKKNaNam IEvgEvgEvgdtdvC +−−−−−−= )()()(   (5)  

restVVv −=  Both  the  Na+  and  K+  conductance  are  dependent  on  time  and  voltage;  therefore  further  modeling  must  be  completed  in  order  to  properly  characterize  their  behavior.    The  following  sections  go  into  detail  about  the  specific  modeling  of  K+  and  Na+  conductance.    2.1   Potassium  Model     In  order  to  appropriately  fit  the  data  obtained  from  their  experiments  Hodgkin  and  Huxley  set  the  

maximum  K+  conductance  equal  to Kg .    The  maximum  conductance  is  multiplied  by  a  proportionately  constant   n  (0< n <1)  which  is  the  probability  of  finding  any  one  of  the  four  “ n ”  gates  of  the  channel  in  the  open  state  (6).    Thus  the  probability  of  the  channel  being  open  at  any  given  time  is  equal  to 4n .     ),(),( 4 vtngvtg KK =   (6)  Assuming  that   n  obeys  first  order  kinetics  one  is  able  to  derive  a  first  order  differential  equation  describing  n  as  a  function  of  time  (equation  7).  

  nvnvdtvtdn

nn )()1)((),(βα −−=   (7)  

In  the  equation  above   nα is  the  rate  constant  of  a  channel  particle  moving  from  a  closed  state  to  an  

open  state,  and mβ is  the  rate  constant  of  a  channel  particle  moving  from  an  open  state  to  a  closed  state.  

Since  the  rate  constants   nα  and   mβ  depend  only  on  membrane  voltage,  which  is  held  constant  under  the  Hodgkin-­‐Huxley  voltage  clamp  simulation,  it  is  possible  to  solve  this  differential  equation  to  obtain  a  dynamic  relationship  for  n  (equation  8).  

 n

t

ennntn τ−

°∞∞ −−= )()(   (8)     1)( −+= nnn βατ   (9)  

 1)( −

∞ += nnnn βαα   (10)  Through  curve  fitting  Hodgkin  and  Huxley  were  able  to  numerically  describe   nα and   nβ (11,  12).  

Page 5: Modeling)Physiological)Systems)and)Laboratory) Fischell ...terpconnect.umd.edu/~jpfisher/index_files/lab5bassign.pdf · Laboratory)Assignment)5B)!-70 0 40 30 20 10-10-20-30-40-50-60

BIOE  340  Fall,  2012  

 Modeling  Physiological  Systems  and  Laboratory  

Fischell  Department  of  Bioengineering  University  of  Maryland  

College  Park,  MD    

Lab  5:  Ordinary  Differential  Equations  Laboratory  Assignment  5B  

 

 1)

1010exp(

)10(01.

−−−

= vv

nα   (11)  

  )80

exp(125. vn

−=β   (12)  

2.2  Na+  Model     For  Na+  ionic  currents,  the  overall  modeling  approach  is  the  same  as  with  K+.    The  maximum  Na+  conductance  is  defined  as Nag ,  m  (0<m <1)  is  defined  as  the  activation  parameter,  and   h is  defined  as  the  inactivation  parameter  ((0< h <1).    Therefore,  the  probability  that  a  Na+  channel  is  open  is  approximately  equal  to hm3 .    The  equation  for  the  dynamic  conductance  of  Na+  may  be  found  below  (13).     ),(),(),( 3 vthvtmgvtg NaNa =   (13)  

Similarly  to  K+  conductance  m  and   h  can  be  assumed  to  obey  first  order  kinetics  (14,  15).  

 mm

dtdm

mm βα −−= )1(   (14)  

 hh

dtdh

hh βα −−= )1(   (15)  

These  first  order  differential  equations  may  be  solved  under  voltage  clamp  conditions  to  determine  dynamic  first  order  equations  for  m  and   t (16,  17).  

 m

t

emmmtm τ−

°∞∞ −−= )()(   (16)  

 h

t

ehhhth τ−

°∞∞ −−= )()(   (17)  where  

  mm

mmβα

α+

=∞

  mmm βατ

+=

1

  hh

hhβα

α+

=∞

  hhh βατ

+=

1

 From  experimental  observations  one  is  able  to  simplify  the  equation  for  Na+  conductance.    Since  m  is  an  increasing  function  it  may  assumed  that  there  is  total  inactivation  of  the  channel,  thus ∞h is  approximately  equal  to  zero.    Additionally,  since  Na+  conductance  is  negligible  at  rest  one  is  able  to  set  

°m  equal  to  zero  resulting  in  equation  18  below.  

 h

t

m eehmgvtgt

NaNa

ττ

−−

°∞ −= 33 )1(),(   (18)  

As  with  K+,  Hodgkin  and  Huxley  were  able  to  develop  analytical  expressions  for   mα  , mβ , hα ,  and hβ(19,20).  

Page 6: Modeling)Physiological)Systems)and)Laboratory) Fischell ...terpconnect.umd.edu/~jpfisher/index_files/lab5bassign.pdf · Laboratory)Assignment)5B)!-70 0 40 30 20 10-10-20-30-40-50-60

BIOE  340  Fall,  2012  

 Modeling  Physiological  Systems  and  Laboratory  

Fischell  Department  of  Bioengineering  University  of  Maryland  

College  Park,  MD    

Lab  5:  Ordinary  Differential  Equations  Laboratory  Assignment  5B  

 

  ,1)

1025exp(

)25(1.

−−−

= vv

mα                 )18

exp(4 vm

−=β   (19)  

  ),20

exp(07. vh

−=α                     { } 11

10)30(exp −+⎟⎠

⎞⎜⎝

⎛ −=

vhβ   (20)  

3.   Objectives  3.1      Experimental  Analysis     A  working  code  has  been  provided.    First,  develop  an  m-­‐file  from  that  code  and  gain  an  understanding  of  the  code.  Add  comments  to  each  part  of  the  code  to  identify  the  purpose  of  the  line.  Second,  add  a  plotting  regime  to  the  m-­‐file  you  develop  in  order  to  plot  the  time  profiles  of  the  potential,v ,  the  gating  variables  n,  m,  and  h,  and  the  conductances,  gk  and  gNa.  Additionally,  calculate  and  plot  the  steady-­‐state  values  of  the  time  constants  and  the  gating  variables  as  functions  of  the  potential  in  the  range  of  voltages  from  -­‐100mV  to  +100mV.  The  code  should  produce  5  well-­‐labeled  figures  when  run.    Include  thorough  comments.  Include  your  code  with  comments  in  the  appendix  section  of  your  lab  report.    Lastly,  you  will  complete  an  experimental  analysis.    The  objective  of  your  experimental  analysis  is  to  investigate  how  certain  variables  affect  the  generation  and  transduction  of  an  action  potential.    Develop  a  hypothesis,  investigate  the  validity  of  that  hypothesis  through  investigation,  discuss  any  findings,  and  formulate  a  conclusion  based  upon  the  data  obtained.    A  few  sample  “experiments”  are  listed  below,  yet  novel  experiments  are  encouraged.  

• What  effect  does  the  resting  potential  (Vr)  have  on  the  action  potential?    Is  there  a  range  of  Vr  that  must  be  maintained  in  order  to  elicit  an  action  potential?  

• What  effect  do  the  maximum  Na+  and  K+  conductance,   Nag  and   Kg ,  have  on  an  action  potential?    What  happens  when  either  of  these  conductances  is  set  to  zero?    

• Investigate  the  influence  of  the  Nernst  potential  for  each  ion.    What  happens  if  the  Nernst  potential  for  Na+  and  K+  are  switched?    

• Investigate  the  influence  of  the  initial  gating  parameters,   hmn ,, .  What  happens  when  they  approach  zero?  What  happens  when  m  exceeds  h?    

 Due  November  1:  A  full  laboratory  report  summarizing  the  experiment  conducted  and  the  results  obtained.    Please  submit  a  hard  copy  of  the  report  by  3:30pm  on  the  due  date  (see  below  for  detailed  description  of  the  lab  report  format/requirements).  Additionally,  email  your  completed  m-­‐file(s)  to  [email protected]  by  3:30  PM  on  Thursday,  November  1st.    Your  code  must  run  and  produce  the  required  figures  when  executed.    

Page 7: Modeling)Physiological)Systems)and)Laboratory) Fischell ...terpconnect.umd.edu/~jpfisher/index_files/lab5bassign.pdf · Laboratory)Assignment)5B)!-70 0 40 30 20 10-10-20-30-40-50-60

BIOE  340  Fall,  2012  

 Modeling  Physiological  Systems  and  Laboratory  

Fischell  Department  of  Bioengineering  University  of  Maryland  

College  Park,  MD    

Lab  5:  Ordinary  Differential  Equations  Laboratory  Assignment  5B  

 %Lab 5 %Hodgkin-Huxley Model function hhm close all v = 0; [an,bn,am,bm,ah,bh] = rate_constants(v); tn = 1./(an+bn); n_ss = an.*tn; tm = 1./(am+bm); m_ss = am.*tm; th = 1./(ah+bh); h_ss = ah.*th; sprintf('The steady state values of the gating variables are: ' ) sprintf('n_ss = %g', n_ss) sprintf('m_ss = %g', m_ss) sprintf('h_ss = %g', h_ss) vrest = -90; V = -82; v0 = V -vrest; y0 = [v0, n_ss, m_ss, h_ss]; tspan=[0,30]; [t,y] = ode45(@hodgkin_huxley_equations,tspan,y0); gbark = 36; gbarna = 120; gk = gbark*y(:,2).^4; gna = gbarna*y(:,3).^3.*y(:,4); %Here you must plot your results based on the solutions that are returned to your function. There should be 5 well-labeled plots in total as defined in the assignment. v = -100:1:100; [an,bn,am,bm,ah,bh] = rate_constants(v); tn = 1./(an+bn); n_ss = an.*tn; tm = 1./(am+bm); m_ss = am.*tm; th = 1./(ah+bh); h_ss = ah.*th;

Page 8: Modeling)Physiological)Systems)and)Laboratory) Fischell ...terpconnect.umd.edu/~jpfisher/index_files/lab5bassign.pdf · Laboratory)Assignment)5B)!-70 0 40 30 20 10-10-20-30-40-50-60

BIOE  340  Fall,  2012  

 Modeling  Physiological  Systems  and  Laboratory  

Fischell  Department  of  Bioengineering  University  of  Maryland  

College  Park,  MD    

Lab  5:  Ordinary  Differential  Equations  Laboratory  Assignment  5B  

  function dy = hodgkin_huxley_equations(t,y) gbark = 36; gbarna = 120; gbarL = 0.3; vK = -12; vNa = 115; vL = 10.6; Iapp = 0; Cm = 1; v = y(1); n = y(2); m = y(3); h = y(4); [an,bn,am,bm,ah,bh] = rate_constants(v); dy = [(-gbark*n^4*(v-vK)-gbarna*m^3*h*(v-vNa)-gbarL*(v-vL)+Iapp)/Cm an*(1-n)-bn*n am*(1-m)-bm*m ah*(1-h)-bh*h]; end function [an,bn,am,bm,ah,bh] = rate_constants(v) an = 0.01*(10-v)./(exp((10-v)/10)-1); bn = 0.125*exp(-v/80); am = 0.1*(25-v)./(exp((25-v)/10)-1); bm = 4*exp(-v/18); ah = 0.07*exp(-v/20); bh = 1./(exp((30-v)/10)+1); end end    

Page 9: Modeling)Physiological)Systems)and)Laboratory) Fischell ...terpconnect.umd.edu/~jpfisher/index_files/lab5bassign.pdf · Laboratory)Assignment)5B)!-70 0 40 30 20 10-10-20-30-40-50-60

BIOE  340  Fall,  2012  

 Modeling  Physiological  Systems  and  Laboratory  

Fischell  Department  of  Bioengineering  University  of  Maryland  

College  Park,  MD    

Lab  5:  Ordinary  Differential  Equations  Laboratory  Assignment  5B  

 Laboratory  Reports     A  primary  goal  of  this  course  is  to  gain  an  understanding  of  how  to  write  laboratory  reports.    These  reports  should  be  written  as  research  papers,  with  the  following  sections:  

• Title  Page  • Abstract  • Introduction  • Experimental  • Results  • Discussion  • Conclusions  • References  • Tables  and  Figures  • Appendix  

  A  reasonable  approach  to  writing  the  lab  report  may  be  the  following.    Write  the  Materials  and  Methods  section  first,  perhaps  during  the  lab  period.    Construct  all  of  the  figures  and  tables,  and  then  write  the  Results  section.    Consider  the  questions  the  report  will  answer,  and  then  write  the  Introduction.    Next,  use  the  Introduction  and  Results  to  guide  the  writing  of  the  Discussion.    Summarize  everything  in  an  Abstract,  and  then  condense  and  refocus  the  Abstract  into  a  Conclusions  section.    Below  is  a  brief  discussion  of  each  of  the  sections.    These  are  only  suggestions  on  how  research  papers  may  be  written.    Other  strategies  may  also  be  used,  but  the  general  principle  of  clarity  should  be  upheld.    The  entire  report  should  be  no  more  than  10  pages,  including  approximately  6  pages  of  text  and  2  pages  of  figures.    This  guideline  does  not  include  the  Appendix.    Please  remember:  the  goal  of  this  exercise  is  to  construct  a  clearly  written  document  that  describes  a  question  and  then  logically  presents  an  answer  based  upon  experimental  results.    Title  Page     A  title  page  must  be  included.    Indicate  the  title  of  the  lab  as  well  as  the  author’s  name,  affiliation,  and  contact  information.    Abstract     The  abstract  is  a  single  paragraph.    It  should  be  considered  as  an  independent  document,  so  that  the  abstract  does  not  rely  upon  any  material  in  the  body  of  the  report  and,  similarly,  the  body  of  the  report  does  not  rely  upon  any  material  in  the  abstract.    The  first  sentence  should  clearly  state  the  objective  of  the  experiment.    If  the  experiment  is  based  upon  a  hypothesis,  which  is  greatly  preferred,  the  hypothesis  should  be  stated  and  followed  with  statements  describing  its  basis  and  evaluation.    The  subsequent  sentences  describe  how  the  experiment  was  carried  out.    The  following  sentences  describe,  with  as  much  precision  as  possible  without  being  verbose,  the  results  of  the  experiment.    The  final  sentences  describe  the  significance  of  the  results  and  the  impact  of  this  work  on  the  general  field  of  study.    Please  remember  that  the  abstract  and  the  rest  of  the  text  are  essentially  separate  documents.    

Page 10: Modeling)Physiological)Systems)and)Laboratory) Fischell ...terpconnect.umd.edu/~jpfisher/index_files/lab5bassign.pdf · Laboratory)Assignment)5B)!-70 0 40 30 20 10-10-20-30-40-50-60

BIOE  340  Fall,  2012  

 Modeling  Physiological  Systems  and  Laboratory  

Fischell  Department  of  Bioengineering  University  of  Maryland  

College  Park,  MD    

Lab  5:  Ordinary  Differential  Equations  Laboratory  Assignment  5B  

 Introduction     The  introduction  requires  that  a  short  review  of  the  literature  pertaining  to  the  research  topic.    Utilizing  databases  such  as  ISI  Web  of  Science  and  PubMed,  find  a  few  papers  that  discuss  the  subject  under  investigation  and  use  them  as  the  basis  for  your  introduction.    The  introduction  is  then  best  constructed  as  a  descriptive  funnel,  starting  with  broad  topics  and  slowly  focusing  on  the  work  at  hand.    Perhaps  three  to  four  paragraphs  are  needed.    The  first  paragraph  introduces  the  reader  to  the  general  field  of  study;  the  second  paragraph  describes  how  an  aspect  of  this  field  could  be  improved.    The  final  paragraph  is  critical.    It  clearly  states,  most  likely  in  the  first  sentence  of  the  paragraph,  what  experimental  question  will  be  answered  by  the  present  study.    The  hypothesis  is  then  stated.    Next,  briefly  describe  the  approach  that  was  taken  to  test  the  hypothesis.    Finally,  a  summary  sentence  may  be  added  stating  how  the  answer  of  your  question  will  contribute  to  the  overall  field  of  study.    Experimental     This  section  should  be  a  straightforward  description  of  the  methods  used  in  your  study.    Keep  explanations  brief  and  concise.    As  your  methods  are  entirely  computational,  organize  and  present  these  methods  appropriately:  you  may  want  to  refer  to  computational  papers  in  the  literature  for  guidance  of  what  to  present  and  the  appropriate  level  of  detail  to  provide.    Results     The  Results  section  presents  the  experimental  data  to  the  reader,  and  is  not  a  place  for  discussion  or  interpretation  of  the  data.    The  data  should  be  presented  in  tables  and  figures  (see  below).    Introduce  each  group  of  tables  and  figures  in  a  separate  paragraph  where  the  overall  trends  and  data  points  of  particular  interest  are  noted.  Note  that  each  table  and  figure  in  the  paper  must  be  referred  to  in  the  Results  section.    Be  succinct.    Discussion     The  discussion  section,  often  the  most  difficult  to  write,  should  be  relatively  easy  if  the  previous  suggestions  have  been  followed.    First,  begin  with  a  brief  paragraph  that  again  gives  an  overview  to  the  work.    Then,  look  to  your  last  paragraph  of  the  introduction.    If  you  have  characterized  a  phenomena  by  studying  specific  effects,  use  the  results  you  have  presented  to  describe  each  effect  in  a  separate  paragraph.    If  you  have  presented  a  hypothesis,  use  the  results  you  have  presented  to  construct  a  logical  argument  that  supports  or  rejects  your  hypothesis.    Finally,  at  the  end  of  the  discussion,  consider  the  other  works  in  the  literature  that  address  this  topic  and  how  this  work  contributes  to  the  overall  field  of  study.    Conclusions     Again,  first  introduce  the  work  and  then  briefly  state  the  major  results.    Then  state  the  major  points  of  the  discussion.    Finally,  end  with  a  statement  of  how  this  work  contributes  to  the  overall  field  of  study.    References  

Page 11: Modeling)Physiological)Systems)and)Laboratory) Fischell ...terpconnect.umd.edu/~jpfisher/index_files/lab5bassign.pdf · Laboratory)Assignment)5B)!-70 0 40 30 20 10-10-20-30-40-50-60

BIOE  340  Fall,  2012  

 Modeling  Physiological  Systems  and  Laboratory  

Fischell  Department  of  Bioengineering  University  of  Maryland  

College  Park,  MD    

Lab  5:  Ordinary  Differential  Equations  Laboratory  Assignment  5B  

    Include  all  references  that  have  been  cited  in  the  text.    Use  any  generally  recognized  format  for  the  citations  and  the  References  section.    Software  such  as  Endnote  makes  citing  literature  particularly  easy.    Tables  and  Figures     Tables  and  figures  can  be  placed  in  a  separate  section  after  the  References  section;  it  is  not  necessary  to  spend  the  formatting  time  needed  to  incorporate  them  into  the  text  of  the  document,  though  you  may  do  so.    Again,  clarity  is  the  key  factor,  especially  with  the  graphs.    The  graphs  should  be  large,  with  data  points  and  axis  labels  in  12-­‐point  font.    Legends  can  be  included  within  the  graph  or  in  the  caption.    All  tables  and  figures  need  a  caption.    The  caption  should  identify  the  table  or  figure  in  bold  (i.e.,  Figure  3),  state  a  brief  title  to  the  table  or  figure,  succinctly  present  the  significant  result  or  interpretation  that  may  be  made  from  the  table  or  figure  (this  may  be  modified  from  the  Results  or  Discussion  section),  and  finally  state  the  number  of  repetitions  within  the  experiment  (i.e.,  n=5)  as  well  as  what  the  data  point  actually  represents  (i.e.,  the  data  are  means  and  the  associated  error  bars  represent  standard  deviations).    Appendix     Please  provide  the  MATLAB  code  in  an  appendix.  

Page 12: Modeling)Physiological)Systems)and)Laboratory) Fischell ...terpconnect.umd.edu/~jpfisher/index_files/lab5bassign.pdf · Laboratory)Assignment)5B)!-70 0 40 30 20 10-10-20-30-40-50-60

BIOE  340  Fall,  2012  

 Modeling  Physiological  Systems  and  Laboratory  

Fischell  Department  of  Bioengineering  University  of  Maryland  

College  Park,  MD    

Lab  5:  Ordinary  Differential  Equations  Laboratory  Assignment  5B  

 4.   References  1.   Alberts  B,  Johnson  A,  Lewis  J,  Raff  M,  Roberts  K,  Walter  P.  Molecular  Biology  of  the  Cell.  Fourth  Edition.  Garland  Science  Inc.  2002.  2..   Action  Potential  Schematic.  www.arcadia.edu  (2007)  3.   Barr  RC,  Plonsey,  R.  Bioelectricity:  A  Quantitative  Approach.  Second  Edition.Kluwer  Academic/Plenum  Publishers  Inc.  2000.  4.   K.E.  Herold.  Hodgkin  Huxley  Model  of  Neuron  Action  Potential.  Written  31  March  2005.