modelling approach to the evolution of physicochemical

33
HAL Id: cea-02438353 https://hal-cea.archives-ouvertes.fr/cea-02438353 Submitted on 14 Jan 2020 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Modelling approach to the evolution of physicochemical conditions in deep geological repository: alteration of engineered materials and redox control Olivier Bildstein, P. Thouvenot, J. Lartigue, B. Cochepin, I. Munier To cite this version: Olivier Bildstein, P. Thouvenot, J. Lartigue, B. Cochepin, I. Munier. Modelling approach to the evo- lution of physicochemical conditions in deep geological repository: alteration of engineered materials and redox control. Subsurface Environmental Simulation Benchmarking Workshop V, Oct 2016, La Corogne, Spain. cea-02438353

Upload: others

Post on 24-Jan-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

HAL Id: cea-02438353https://hal-cea.archives-ouvertes.fr/cea-02438353

Submitted on 14 Jan 2020

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinée au dépôt et à la diffusion de documentsscientifiques de niveau recherche, publiés ou non,émanant des établissements d’enseignement et derecherche français ou étrangers, des laboratoirespublics ou privés.

Modelling approach to the evolution of physicochemicalconditions in deep geological repository: alteration of

engineered materials and redox controlOlivier Bildstein, P. Thouvenot, J. Lartigue, B. Cochepin, I. Munier

To cite this version:Olivier Bildstein, P. Thouvenot, J. Lartigue, B. Cochepin, I. Munier. Modelling approach to the evo-lution of physicochemical conditions in deep geological repository: alteration of engineered materialsand redox control. Subsurface Environmental Simulation Benchmarking Workshop V, Oct 2016, LaCorogne, Spain. �cea-02438353�

MODELLING APPROACH TO THE EVOLUTION OF PHYSICOCHEMICAL CONDITIONS IN DEEP GEOLOGICAL

REPOSITORY: ALTERATION OF ENGINEERED MATERIALS

AND CLAYSTONES - REDOX CONTROL

SeS BENCH V – A CORUÑA - OCTOBER 13-15, 2016

O. Bildstein, P. Thouvenot, J.E. LartigueCEA (French Alternative Energies and Atomic Energy Commission)

B. Cochepin, I. MunierAndra (French Radioactive Waste Management Agency)

| PAGE 1CEA | 10 AVRIL 2012

DISPOSAL CONCEPT IN A CLAYSTONE FORMATION

Current design of deep underground repository for high and intermediate level long-lived waste

SeS BENCH V – A Coruña | OCT. 2016 | PAGE 2

HLW disposal

ILW disposal

U/G facilities

Surface Facilities

Preliminary design

Concretecarbonationbenchmark

Glass-iron-claybenchmark

Redox control in claystones

~100 mCOx claystones

500 m

Update of the atmospheric concrete

carbonation benchmark

DRD/EAP/11-0219

DESIGN: ILLW CELLS, SHAFTS (AND SEALS), ILLW DISPOSAL OVERPACK

Atmospheric carbonation of overpack during the operating period

| PAGE 4

• Bitumized waste• Compacted metallic waste• Organic waste

SeS BENCH V – A Coruña | OCT. 2016

DRYING AND CARBONATION PROCESSES OF ILLW OVERPACK

Dry air (Rh = 40 %)

T = 25°C to 50°C

SlWater vapor diffusion

CO2 gas diffusion

T

Aqueous diffusion of reactants

Two phase water/air flow

Dissolution/precipitation : porosity reduction, permeability variations

Brine formation

CO2 gas dissolution

Dry air (Rh = 40 %)

T = 25°C to 50°C

SlWater vapor diffusion

CO2 gas diffusion

T

Aqueous diffusion of reactants

Two phase water/air flow

Dissolution/precipitation : porosity reduction, permeability variations

Brine formation

CO2 gas dissolution

| PAGE 5

Major challenge comes from:- CO2 fast gaseous transport and high

reactivity with portlandite and CSH- Coupling capability with

« multiphase » flow and transport

SeS BENCH V – A Coruña | OCT. 2016

GEOMETRY + BOUNDARY CONDITIONS

1D Cartesian – 5.5 cm divided in 11 cells (5 mm) for concrete1 extra cell for “atmosphere”

| PAGE 6SeS BENCH V – A Coruña | OCT. 2016

New properties of « atmosphere cell » :- very low aqueous diffusivity- krl = 0; krg = 1

Full multiphase codes :Toughreact (CEA + T. Xu, JLU)iCORE (J. Samper, UDC)HYTEC ??

Drying with Richards’ equation :MIN3P (S. Béa, CONICET ; U. Mayer, UBC)HYTEC (J. Corvisier, Mines Paristech)Crunchflow (CEA + C. Steefel, LBNL)

COMPONENT 1: DRYING RESULTS

| PAGE 7

TOUGH2Full multiphase (EOS4)Richards (EOS9)

OK to use Richards’ equation for benchmarking exercise

Hytec (Richards’ equation)

SeS BENCH V – A Coruña | OCT. 2016

COMPONENT 2: REACTION TRANSPORT RESULTS AT CONSTANT SL

Making sure the same effective diffusion coefficient is used…

| PAGE 8

For Crunchflow, b = 3.2 has to be used(instead of b = 4.2 for Toughreact)

SeS BENCH V – A Coruña | OCT. 2016

bl

aeff SDD ω0=

coupling equation (Millington-Quirk relationship):

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Conc

entr

atio

n (m

ol/L

)

Distance (m)

INVERSFADES-TOUGHF-4 m

F-50 y

F-5 year

F-10 y

F-100 y

T-4 m

T-50 y

T-5 year

T-10 y

T-100 y

COMPONENT 2B: CONCRETE CARBONATION AT CONSTANT SL

| PAGE 9

Carbonation front is similar, but the size of grid cells limits precise comparison

SeS BENCH V – A Coruña | OCT. 2016

| PAGE 10

Calcite precipitation front is similar (MIN3P a little ahead of time/distance) SeS BENCH V – A Coruña | OCT. 2016

COMPONENT 2B: CONCRETE CARBONATION AT CONSTANT SL

| PAGE 11

Same mineral paragenesis but timing not exactly the same for all codesSeS BENCH V – A Coruña | OCT. 2016

COMPONENT 2B: CONCRETE CARBONATION AT CONSTANT SL

Ca-Si-Hydrates

| PAGE 12

Precipitation of gypsum in the simulation with Crunchflow and HytecSeS BENCH V – A Coruña | OCT. 2016

COMPONENT 2B: CONCRETE CARBONATION AT CONSTANT SL

sulfates

| PAGE 13

0,000

0,005

0,010

0,015

0,020

0,025

0,030

0,035

0 10 20 30 40 50 60 70 80 90 100

Volu

me

frac

tion

Time (years)

TOUGHREACT CRUNCH

MIN3P HYTEC

monocabo-aluminate

katoite

dawsonite

straetlingite

gibbsite

Dawsonite does not precipitate with Crunchflow and HytecStraetlingite more persistent with Crunchflow SeS BENCH V – A Coruña | OCT. 2016

COMPONENT 2B: CONCRETE CARBONATION AT CONSTANT SL

aluminum

| PAGE 14

Same mineral paragenesis but timing not exactly the same for all codes

SeS BENCH V – A Coruña | OCT. 2016

COMPONENT 2B: CONCRETE CARBONATION AT CONSTANT SL

Fe Mg

COMPONENT 2A: PORTLANDITE-CALCITE SYSTEMAT CONSTANT SL

| PAGE 15SeS BENCH V – A Coruña | OCT. 2016

The discrepancies observed in the complex prompted a simpler simulation case (component 2A) with only

Portlandite and Calcite

COMPONENT 2A: PORTLANDITE-CALCITE SYSTEMAT CONSTANT SL

| PAGE 16SeS BENCH V – A Coruña | OCT. 2016

CONCRETE CARBONATION SUMMARY

Concrete carbonation exercise differences between codes do not seem to be linked to the grid size

or coupling method differences in results attributable to transport in the gas phase? CPU concerns: no SIA small time steps CPU times go up !

Component 2a with simplified chemistry

Component 3 with fully coupled drying+carbonationonly with Toughreact

New component : variable porosity?

| PAGE 17SeS BENCH V – A Coruña | OCT. 2016

Glass & steelcorrosion andredox controlin claystones

DRD/EAP/11-0219

HLW DISPOSAL CELL

14 janvier 2020

• different types of material in physical contact, technological gaps

long term calculations of geochemicalevolution (100 000 years)

Vitrified wastepackages

Cross section

3 cm gap steel liner

disposalpackage

0.8 cm gap

3 cm gap

scale

| PAGE 19SeS BENCH IV – Cadarache | OCT. 2014

• 1D radial domain• transport: diffusion only• water saturated, constant porosity• isothermal conditions• H2(g) from anoxic corrosionpH2(max) = 60 bar

• glass Φ = 0.42 m, H = 1 mporosity = 0.12

• metallic components total thickness = 0,095 m, porosity = 0.25

• connected fractured zone0.4 * excavation diameter = 0.268 mporosity = 0.20; Deff(25°C) = 5.2 10-11 m2/s

• undisturbed claystone (50 m)porosity = 0.18; Deff(25°C) = 2,6 10-11 m2/s

GEOMETRY AND TRANSPORT PROPERTIES

argilites (50 m – 183 cells)

glass (21cm – 21 cells)

overpack + lining + gaps

(13,8cm – 14 cells)

Major challenge comes from:- highly reactive system

(strong pH and redox perturbation)- complex geochemical system

(15 chemical elements, 80 aqueousspecies, 60 minerals)

| PAGE 20SeS BENCH IV – Cadarache | OCT. 2014

EXISTING BENCHMARK SUB-COMPONENTS

| PAGE 21

Component 1: iron corrosion only(45 000 yrs)

magnetite, Ca-siderite, and greenalite dominate(oxide) (carbonate) (silicate)

also smaller amounts of aluminosilicates(nontronites and saponites)

POROSITY CLOGGING (not takenexplicitly into account)

modeling vs. experimental resultsiron/claystone at 90°C for 1 yearsmall amount of magnetitesiderite(-Ca), Fe-silicates

more phenomenological model for corrosion

canister zone

0,1 µm

Component 2: iron corrosion + glass alteration (100 000 yrs)

(Schlegel et al. 2007)

iron claystone

COMPONENT 1: RESULTS IN THE BASE CASE

14 janvier 2020 | PAGE 22

ONLY 2 CODES : MIN3P-Crunchflow (a very good agreement is obtained!) …

in the iron zone

CORROSION IN HLW DISPOSAL CELL

14 janvier 2020

Vitrified wastepackages

Cross section

3 cm gap steel liner

disposalpackage

0.8 cm gap

3 cm gap

scale

| PAGE 23SeS BENCH V – A Coruña | OCT. 2016

RELATED TOPICS

reactivity of H2 in claystones(in tiny 20 nm connected pores)

only at interfaces in repository redox control in claystones? RN sorption/migration? porosity clogging

discussion: coupling of electrochemical corrosion reactions with reactive transport codes

| PAGE 24SeS BENCH V – A Coruña | OCT. 2016

• production of hydrogen: how reactive is it?

• redox in claystones: who is in control?• how is corrosion represented in reactive transport codes?

pore size

pore

vol

ume

STEEL CORROSION “GEOCHEMICAL” REACTION

Corrosion in reactive transport codes changes in pH and Eh occur through:

Fe(s) + 2 H2O Fe2+ + H2 + 2 OH-

| PAGE 25SeS BENCH V – A Coruña | OCT. 2016

base case

claystonezoneiron zone

claystonezone

iron zone

corrosion rate /10

STEEL CORROSION “GEOCHEMICAL” REACTION

To match the mineralogical paragenesis, we have to modify:- (very low) diffusional properties in the

corroded layer - (high) magnetite precipitation rate

| PAGE 26SeS BENCH V – A Coruña | OCT. 2016

claystonezoneiron zone

from Schlegel et al. 2014

iron claystone

… but the paragenesis of secondary minerals is not predicted correctly

CORROSION: ELECTROCHEMICAL REACTIONS

Corrosion: an electrochemical modelredox reactions occurring at the interface

non-equilibrium reactions involving electrons in the conduction band

corrosion generates fluxes of Fe2+, Fe3+, H2, H+, …

| PAGE 27SeS BENCH V – A Coruña | OCT. 2016

Diffusion Poisson Coupled Model (DPCM)from Bataillon et al. Electrochem. Acta 2010

ironsolution oxide layer

CONCLUSIONS

Coupling of electrochemical corrosion reactions with reactive transport codes: use elemental fluxes (Fe, H2)? use mineral reaction rates (corrosion and oxide layer

precipitation/dissolution)? use fluxes for Fe2+ and Fe3+ and aqueous kinetics?

| PAGE 28SeS BENCH V – A Coruña | OCT. 2016

Direction de l’Energie NucléaireDépartement des Technologies NucléairesService de Modélisation des Transferts et de Mesures Nucléaires

Commissariat à l’énergie atomique et aux énergies alternativesCentre de Cadarache | 13108 Saint Paul-lez-DuranceT. +33 (0)4 42 25 37 24 | F. +33 (0)4 42 25 62 72

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

| PAGE 29

CEA | 10 AVRIL 2012

THANK YOU FOR YOUR ATTENTION

Update onglass/iron/clay

benchmark

DRD/EAP/11-0219

RESULTS IN THE BASE CASE (3)

14 janvier 2020 | PAGE 31

in the glass zone

RESULTS IN THE BASE CASE (4)

14 janvier 2020 | PAGE 32

in the clay zone