modelling galaxies through cosmic times @ kavli institute for … · 2020. 5. 21. ·...

36
Stellar Populations in the Near-Infrared range Modelling galaxies through cosmic times @ Kavli Institute for Cosmology in Cambridge September 14, 2015 Sofia Meneses-Goytia

Upload: others

Post on 09-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Stellar Populations in the Near-Infrared range

    Modelling galaxies through cosmic times @ Kavli Institute for Cosmology in Cambridge

    September 14, 2015

    Sofia Meneses-Goytia

  • Motivation¡ Galactic evolution of “far away” galaxies¡ Close enough to obtain integrated spectra

    ¡ NIR (not fully explored, yet)¡ cool, late-type stars (RGB + AGB)¡ Atomic and molecular features

    ¡ Prepare for JWST & E-ELT¡ Moving to NIR observations requires NIR models

    2

  • Basic outline3

    Men

    eses

    -Goy

    tia e

    t al.

    2015

    b (in

    pre

    ss)

    Fits

  • Stellar spectral libraryIRTF spectral libraryRayner et al. 2009 and Cushing et al. 2005

    ¡ 210 stars (292 spectra)

    ¡ FWHM varies with wavelength

    ¡ 0.8 to 2.5 µm or 5.2 µm

    ¡ F, G, K and M stars

    4

    -3.0-2.5-2.0-1.5-1.0-0.50.00.5

    2000400060008000

    [Z/Z

    ⊙]

    Teff (K)

    -1.00.01.02.03.04.05.0

    log

    g

    -1.00.01.02.03.04.05.0

    log

    g

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    [Z/Z

    ⊙]

    parameters determinationflux calibrationresolution

    Meneses-Goytia et al. 2015a (in press) and 2015b (in press)

  • Isochrones 5

    Meneses-Goytia et al. 2015b (in press)

    -2-1 0 1 2 3 4 5 6

    3.4 3.5 3.6 3.7 3.8

    log

    g

    log Teff (K)

    10.0 Gyr

    -2-1 0 1 2 3 4 5 6

    3.3 3.4 3.5 3.6 3.7 3.8 3.9

    log

    g

    log Teff (K)

    1.0 Gyr

    -2-1 0 1 2 3 4 5 6

    3.4 3.6 3.8 4 4.2

    log

    g

    log Teff (K)

    0.1 GyrMarigo et al., 2008Girardi et al., 2000

    BaSTI, 2012

    -10

    -5

    0

    5

    100.4 0.6 0.8 1.0 1.2 1.4 1.6

    K

    (J-K)

    Marigo et al., 2008

    0.4 0.6 0.8 1.0 1.2 1.4 1.6(J-K)

    Girardi et al., 2000

    0.4 0.6 0.8 1.0 1.2 1.4 1.6(J-K)

    BaSTI, 2012

    -2-1 0 1 2 3 4 5 6

    3.4 3.5 3.6 3.7 3.8

    log

    g

    log Teff (K)

    10.0 Gyr

    -2-1 0 1 2 3 4 5 6

    3.3 3.4 3.5 3.6 3.7 3.8 3.9

    log

    g

    log Teff (K)

    1.0 Gyr

    -2-1 0 1 2 3 4 5 6

    3.4 3.6 3.8 4 4.2

    log

    g

    log Teff (K)

    0.1 GyrMarigo et al., 2008Girardi et al., 2000

    BaSTI, 2012

    -2-1 0 1 2 3 4 5 6

    3.4 3.5 3.6 3.7 3.8

    log

    g

    log Teff (K)

    10.0 Gyr

    -2-1 0 1 2 3 4 5 6

    3.3 3.4 3.5 3.6 3.7 3.8 3.9

    log

    g

    log Teff (K)

    1.0 Gyr

    -2-1 0 1 2 3 4 5 6

    3.4 3.6 3.8 4 4.2

    log

    g

    log Teff (K)

    0.1 GyrMarigo et al., 2008Girardi et al., 2000

    BaSTI, 2012

  • The SSP models6

    Rela

    tive

    flux

    Wavelength (µm)

    ¡ Population of stars with a common age and metallicity¡ For each star

    ¡ Mass¡ Atmospheric parameters¡ Spectrum¡ Stellar class + type

    ¡ Total (stellar) mass of the population

    Meneses-Goytia et al. 2015b (in press)

  • SED of SSP models 7

    Meneses-Goytia et al. 2015b (in press)

    0.96

    0.98

    1.00

    1.02

    1.04

    1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

    Ratio

    s

    Wavelength (µm)

    GirS / MarSBaSS / MarSBaSS / GirS

    1.0

    2.0

    3.0

    F/F 1

    .65

    µm

    +con

    stan

    t

    MarSGirS

    BaSS

    Ca Fe PP C Pa Na Si C Ca Ni Pa Al Si Fe K Si C Ti Mg

    Fe Ni Si

    Ca Fe Mg

    Ca Al K

    Br C C Ni Si Fe Al Si Br Na Fe Ca Mg

    CO

    I I II I >4

    I I I I I �>4

    I I I I I I I I I I I

    I I I I I I

    �[

    ?I I II I I I I 6

    >[

    ?

    I I I I?

    0.95

    0.97

    0.99

    1.01

    1.03

    1.1 1.3 1.5 1.7 1.9 2.1 2.3

    Rat

    ios

    Wavelength (µm)

    14.0 Gyr / 7.00 Gyr0.80

    0.90

    1.00

    1.10

    1.20

    Rat

    ios

    7.00 Gyr / 1.00 Gyr14.0 Gyr / 1.00 Gyr

    0.50

    1.00

    1.50

    2.00

    2.50

    F/F 1

    .65 µ

    m+c

    onst

    ant

    MarS

    1.00 Gyr7.00 Gyr14.0 Gyr

    1.1 1.3 1.5 1.7 1.9 2.1 2.3Wavelength (µm)

    GirS

    1.1 1.3 1.5 1.7 1.9 2.1 2.3Wavelength (µm)

    BaSS

    0.95

    0.97

    0.99

    1.01

    1.03

    1.05

    1.1 1.3 1.6 1.8 2.0 2.3R

    atio

    s

    Wavelength (µm)

    +0.2 dex / +0.0 dex

    0.9

    1.0

    1.1

    Rat

    ios

    +0.0 dex / -0.7 dex+0.2 dex / -0.7 dex

    0.5

    1.0

    1.5

    2.0

    2.5

    F/F 1

    .65 µ

    m+c

    onst

    ant

    MarS

    -0.7 dex+0.0 dex+0.2 dex

    1.1 1.3 1.6 1.8 2.0 2.3Wavelength (µm)

    GirS

    1.1 1.3 1.6 1.8 2.0 2.3Wavelength (µm)

    BaSS

    colour vs. agecolour-colourindex vs. ageother authors

  • Comparison with early type galaxies¡ Mármol-Queraltó et al. (2009) & Silva et al. (2008) ¡ Low redshift ¡ Elliptical and S0 galaxies ¡ 60 ≤ σ ≤ 360 km s1¡ 12 field galaxies and two Fornax @ FWHM = 7.2 Å¡ 7 Fornax galaxies @ FWHM = 6.9 Å¡ 2 Fornax galaxies @ FWHM = 6.1 Å¡ 2.19 to 2.31 µm in K band

    8

    features

  • Galaxies vs. models

    0.57

    0.62

    0.67

    0.72

    0.77

    0.85 0.90 0.95 1.00

    (J-H

    )

    (J-Ks)

    0.14

    0.19

    0.24

    0.29

    (H-K

    s)

    50

    100

    150

    200

    250

    300

    350

    (km

    s-1

    )

    0.14

    0.19

    0.24

    0.29

    0.57 0.62 0.67 0.72 0.77(H

    -Ks)

    (J-H)

    fieldFornax

    - 0.7 dex- 0.4 dex+ 0.0 dex+ 0.2 dex

    2 Gyr7 Gyr

    14 Gyr

    9

    0.70

    0.90

    1.10

    1.30

    1.50

    1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24

    Fe I

    DCO

    fieldFornax

    − 0.7 dex− 0.4 dex+ 0.0 dex+ 0.2 dex

    2 Gyr7 Gyr

    14 Gyr 50 100 150 200 250 300 350

    (km

    s−1

    )

    1.80

    2.00

    2.20

    2.40

    2.60

    2.80

    3.00

    Ca

    I

    1.90 2.30 2.70 3.10 3.50 3.90 4.30Na I

    0.10

    0.30

    0.50

    0.70

    1.16 1.18 1.20 1.22 1.24

    Mg

    I

    DCO

    fieldFornax

    − 0.7 dex− 0.4 dex+ 0.0 dex+ 0.2 dex

    2 Gyr7 Gyr

    14 Gyr

    0.70

    0.90

    1.10

    1.30

    1.50

    1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24

    Fe I

    DCO

    fieldFornax

    − 0.7 dex− 0.4 dex+ 0.0 dex+ 0.2 dex

    2 Gyr7 Gyr

    14 Gyr 50

    100

    150

    200

    250

    300

    350

    (km

    s−1

    )

    1.80

    2.00

    2.20

    2.40

    2.60

    2.80

    3.00

    Ca

    I

    0.10

    0.30

    0.50

    0.70

    Mg

    I

    1.70

    2.10

    2.50

    2.90

    3.30

    3.70

    4.10

    Na

    I

    0.70 0.90 1.10 1.30 1.50Fe I

    1.80 2.00 2.20 2.40 2.60 2.80 3.00Ca I

    0.10 0.30 0.50 0.70 0.90Mg I

    1.17

    1.18

    1.19

    1.20

    1.21

    1.22

    1.23

    1.00 1.40 1.80 2.20 2.60 3.00 3.40

    DC

    O

    H

    fieldFornax

    − 0.7 dex− 0.4 dex+ 0.0 dex+ 0.2 dex

    2 Gyr7 Gyr

    14 Gyr

    50

    100

    150

    200

    250

    300

    350

    (km

    s−1

    )

    1.50 2.50 3.50 4.50 5.50Mg b

    0.100.200.300.400.500.600.700.80

    Mg

    I

    Meneses-Goytia et al. 2015c (in prep)

  • Optical + NIR

    1.17

    1.18

    1.19

    1.20

    1.21

    1.22

    1.23

    1.00 1.40 1.80 2.20 2.60 3.00 3.40

    D CO

    H

    fieldFornax

    − 0.7 dex− 0.4 dex+ 0.0 dex+ 0.2 dex

    2 Gyr7 Gyr

    14 Gyr

    0.70

    0.90

    1.10

    1.30

    Fe I

    1.80

    2.00

    2.20

    2.40

    2.60

    2.80

    3.00

    Ca I

    0.100.200.300.400.500.600.700.80

    Mg

    I1.90

    2.30

    2.70

    3.10

    3.50

    3.90

    4.30

    Na I

    2.50 4.50 6.50 8.50C24668

    50 100 150 200 250 300 350 (km s−1)

    1.50 2.50 3.50 4.50 5.50Mg b

    10

    1.17

    1.18

    1.19

    1.20

    1.21

    1.22

    1.23

    1.00 1.40 1.80 2.20 2.60 3.00 3.40

    DC

    O

    H

    fieldFornax

    − 0.7 dex− 0.4 dex+ 0.0 dex+ 0.2 dex

    2 Gyr7 Gyr

    14 Gyr

    50

    100

    150

    200

    250

    300

    350

    (km

    s−1

    )

    1.50 2.50 3.50 4.50 5.50Mg b

    0.100.200.300.400.500.600.700.80

    Mg

    I

    Meneses-Goytia et al. 2015c (in prep)

    1.17

    1.18

    1.19

    1.20

    1.21

    1.22

    1.23

    1.00 1.40 1.80 2.20 2.60 3.00 3.40

    DC

    O

    H

    fieldFornax

    − 0.7 dex− 0.4 dex+ 0.0 dex+ 0.2 dex

    2 Gyr7 Gyr

    14 Gyr

    50

    100

    150

    200

    250

    300

    350

    (km

    s−1

    )

    1.50 2.50 3.50 4.50 5.50Mg b

    0.100.200.300.400.500.600.700.80

    Mg

    I

  • Only NIR combo 11

    1.171.181.191.201.211.221.23

    0.85 0.90 0.95 1.00

    D CO

    (mag

    )

    (J−Ks)

    0.10

    0.30

    0.50

    0.70

    Mg

    I (Å)

    1.802.002.202.402.602.803.00

    Ca I

    (Å)

    0.700.901.101.301.50

    Fe I

    (Å)

    1.802.202.603.003.403.804.20

    Na I

    (Å)

    50 100 150 200 250 300 350 (km s−1)

    0.57 0.62 0.67 0.72 0.77(J−H)

    0.14 0.19 0.24 0.29(H−Ks)

    fieldFornax

    2 Gyr7 Gyr

    14 Gyr

    − 0.7 dex− 0.4 dex+ 0.0 dex+ 0.2 dex

    1.17

    1.18

    1.19

    1.20

    1.21

    1.22

    1.23

    1.00 1.40 1.80 2.20 2.60 3.00 3.40

    DC

    O

    H

    fieldFornax

    − 0.7 dex− 0.4 dex+ 0.0 dex+ 0.2 dex

    2 Gyr7 Gyr

    14 Gyr

    50

    100

    150

    200

    250

    300

    350

    (km

    s−1

    )

    1.50 2.50 3.50 4.50 5.50Mg b

    0.100.200.300.400.500.600.700.80

    Mg

    IM

    enes

    es-G

    oytia

    et a

    l. 20

    15c

    (in p

    rep)

  • Full-spectrum fittingwith single stellar population

    12

    050

    100150200250300350400

    0 50 100 150 200 250 300 350 400

    (km

    s−1

    ) MQ

    09

    (km s−1)

    −0.75

    −0.45

    −0.15

    0.15

    0.45

    0.75

    −0.75 −0.45 −0.15 0.15 0.45 0.75

    [Z/Z

    ⊙] T

    03

    [Z/Z⊙]

    02468

    10121416

    0 2 4 6 8 10 12 14 16

    Age

    (Gyr

    ) T03

    Age (Gyr)

    −0.75

    −0.45

    −0.15

    0.15

    0.45

    0.75

    −0.75 −0.45 −0.15 0.15 0.45 0.75

    [Z/Z

    ⊙] V

    03

    [Z/Z⊙]

    02468

    10121416

    0 2 4 6 8 10 12 14 16

    Age

    (Gyr

    ) V03

    Age (Gyr)

    −0.75

    −0.45

    −0.15

    0.15

    0.45

    0.75

    −0.75 −0.45 −0.15 0.15 0.45 0.75

    [Z/Z

    ⊙] T

    16

    [Z/Z⊙]

    02468

    10121416

    0 2 4 6 8 10 12 14 16

    Age

    (Gyr

    ) T16

    Age (Gyr)

    fieldFornax

    models limitsESO382−G016 − MarS

    1 10Age (Gyr)

    −0.6

    −0.4

    −0.2

    0.0

    0.2

    [ Z/Z

    O · ]

    2/DOF

    6.21e−05 8.40e−05 1.06e−04 1.28e−04 1.50e−04 1.72e−04 1.94e−04

    Meneses-Goytia et al. 2015c (in prep)

    ESO382−G016

    2.20 2.22 2.24 2.26 2.28 2.30Wavelength, µm

    0.6

    0.7

    0.8

    0.9

    1.0

    1.1

    Rel

    ativ

    e flu

    x

    specifics

  • Non-classical stellar populationsand AGB stars

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    90 150 210 330

    Nor

    mal

    ised

    wei

    ght

    fiel

    d ga

    laxi

    es

    (km s−1)

    8.4 Gyr0.2 dex

    7.9 Gyr0.2 dex

    9.7 Gyr0.2 dex

    7.9 Gyr0.2 dex

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    Nor

    mal

    ised

    wei

    ght

    For

    nax

    gala

    xies

    12.0 Gyr0.2 dex

    11.5 Gyr0.2 dex

    7.9 Gyr0.2 dex

    7.9 Gyr0.2 dex

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    7.9 8.9 10.0 11.2 12.6 14.1

    Nor

    mal

    ised

    wei

    ght

    cla

    ssic

    al S

    SP a

    t 0.2

    dex

    Age (Gyr)

    SSP with MS up to RGB tipAGB

    0.85

    0.90

    0.95

    1.00

    1.05

    50 100 150 200 250 300 350

    2 non−c

    lass

    ical

    / 2 c

    lass

    ical

    (km s−1)

    fieldFornax

    13

    Men

    eses

    -Goy

    tia e

    t al.

    2015

    c (in

    pre

    p)

    -1.0

    0.0

    1.0

    2.0

    3.0

    4.0

    5.0

    2000400060008000

    log

    g

    Teff (K)

    C starsAGB

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    [Z/Z

    ⊙]

  • Summary¡ DCO è AGB stars indicator

    ¡ é(J − K) è younger age and/or higher metallicities

    ¡ Field galaxies: é DCO + é AGB + é(J-K)¡ undergone more extended star formation episodes

    ¡ Na I is strongly enhanced ¡ Bottom-heavy IMF (é dwarfs) + α-enhancement

    ¡ Early-type galaxies are more complex

    ¡ Single stellar populations are not enough¡ Detailed AGB treatment¡ Different IMFs¡ Multiple flexible populations¡ Chemical evolution models¡ Cosmological simulations

    14

  • Thank you

    Modelling galaxies through cosmic times @ Kavli Institute for Cosmology in Cambridge

    September 14, 2015

  • 16

  • Single Stellar Population models

    ¡ Single Stellar Population (SSP) models are tools forinterpreting the observed (stellar) light

    ¡ Single-age single-metallicity models¡ All stars are formed at the same time, with distribution in mass

    given by an Initial Mass Function (IMF), with identical chemicalcomposition

    17

  • Spectral Energy Distribution (SED)¡ SSP spectra

    ¡ Analyze galaxy spectra adapting models to the characteristicsof the data¡ Smoothed to match the resolution of the data and galaxy internal

    velocity dispersion¡ Full spectrum comparison of a particular set of features, measured on

    both, the galaxy spectrum and the SSP SEDs.

    ¡ Insight into¡ Ages¡ Metallicities¡ Abundance ratios¡ IMF (not easily probed in resolved systems)¡ Kinematic parameters determination

    18

  • Paper I –Preparation of the IRTF spectral stellar library¡ The library

    ¡ Determination of stellar parameters ¡ Full−spectrum fitting method¡ Teff and NIR−colour relations¡ Selection of the atmospheric parameters¡ Comparison with recent work

    ¡ Flux calibration

    ¡ Determining the spectral resolution

    10000 12500 15000 17500 20000 22500 25000Wavelength (Å)

    Kselec

    J H Katomic Kmolecular

    FWHM

    Parameters

    19

  • Parameters determinationFull-spectrum fitting

    20

    Men

    eses

    -Goy

    tia e

    t al.

    2015

    a (in

    pre

    ss)

    -1.0

    0.0

    1.0

    2.0

    3.0

    4.0

    5.0

    250035004500550065007500lo

    g g

    Teff (K)

    IRTF templatesMQ08 stars

    -3

    -2.5

    -2

    -1.5

    -1

    -0.5

    0

    0.5

    [Z/Z

    ⊙]

    -500-250

    0250500750

    1000

    4000 5000 6000 7000 8000T e

    ff (K

    )

    FSF Teff (K)

    -2

    -1

    0

    1

    2

    -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

    log

    g

    FSF log g

    -1

    -0.5

    0

    0.5

    1

    -0.75 -0.5 -0.25 0 0.25 0.5

    [Z/Z

    ⊙]

    FSF [Z/Z⊙]

    C97 + S10C07

  • Parameters determinationColour-temperature relations

    21

    Men

    eses

    -Goy

    tia e

    t al.

    2015

    a (in

    pre

    ss)

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

    T eff

    (K)

    (J-K)

    A96 dwarfsR13 M dwarfsP13 L dwarfsP13 T dwarfs

    A99 giantsH00 M giants

    K05 late-type giants

    -1000-500

    0500

    1000150020002500

    2000 3000 4000 5000 6000 7000 8000

    T eff

    (K)

    C07 system Teff (K)

    C97 + S10C07

  • Parameters determinationComparisons with literature

    22

    Meneses-Goytia et al. 2014a (in press)

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    F0 G0 K0 M0 L0 T0

    T eff

    (K)

    spectral type

    supergiantsAB supergiants

    giantsdwarfs

    3000

    4000

    5000

    6000

    7000

    8000

    FSF

    T eff

    (K)

    C97 + S10C07

    -1000

    0

    1000

    4000 5000 6000 7000 8000

    T eff

    (K)

    C07 system Teff (K)

    -1

    0

    1

    2

    3

    4

    5

    6

    FSF

    log

    g

    C97 + S10C07

    -101

    -1 0 1 2 3 4 5 6

    log

    g (d

    ex)

    C07 system log g (dex)

    -1

    -0.5

    0

    0.5

    1

    FSF

    [Z/Z

    ⊙]

    C97 + S10C07

    -1-0.5

    00.5

    1

    -1 -0.5 0 0.5 1

    [Z/Z

    ⊙]

    C07 system [Z/Z⊙]1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    CTR

    Tef

    f (K)

    C97 + S10C07

    -1000

    0

    1000

    1000 2000 3000 4000 5000 6000 7000 8000

    T eff

    (K)

    C07 system Teff (K)

    -600-300

    0300600

    1500 2500 3500 4500 5500 6500 7500T e

    ff (K

    )This work Teff (K)

    -1.0-0.50.00.51.0

    -0.5 0.5 1.5 2.5 3.5 4.5

    log

    g

    This work log g

    -1-0.5

    00.5

    1

    -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

    [Z/Z

    ⊙]

    This work [Z/Z⊙]

    IRTF-C07IRTF

    0

    1

    2

    3

    4

    53.43.63.844.24.44.6

    log

    g

    log Teff (K)

    B0

    B0

    A0

    A0

    F0

    F0

    F5

    G0

    G0

    K0

    K0

    K0

    M0

    M0

    M0

    IaIab

    IbII

    IIIIV

    VZAMS

    III

  • Parameter coverage 23-1.0

    0.0

    1.0

    2.0

    3.0

    4.0

    5.0

    10002000300040005000600070008000

    log

    g

    Teff (K)

    -3

    -2.5

    -2

    -1.5

    -1

    -0.5

    0

    0.5

    [Z/Z

    ⊙]

    Meneses-Goytia et al. 2015a (in press)

    0

    20

    40

    60

    80

    100

    120

    140

    160

    -2.7 -2.3 -1.9 -1.5 -1.1 -0.7 -0.3 0.1 0.5

    N

    [Z/Z⊙]

  • Testing the flux calibration 24

    0.0

    0.5

    1.0

    -0.5 0.0 0.5 1.0 1.5 2.0

    (J-H

    )

    (J-K)

    3.3

    3.6

    3.9

    4.2

    4.5

    log

    T eff

    -0.2

    0.0

    0.2

    0.5

    0.8

    (H-K

    )3.3

    3.6

    3.9

    4.2

    4.5

    log

    T eff

    -0.2

    0.0

    0.2

    0.5

    0.8

    0.0 0.5 1.0

    (H-K

    )

    (J-H)

    IRTFPickles

    3.23.43.63.84.04.24.44.6

    log

    T eff

    -0.50.00.51.01.52.02.53.0

    3.0 3.4 3.8 4.2 4.6

    (J-K

    )

    log Teff

    -2.3-1.8-1.3-0.8-0.30.2

    [Z/Z

    ⊙]

    0.0

    0.5

    1.0

    1.5

    (J-H

    )

    -2.3-1.8-1.3-0.8-0.30.2

    [Z/Z

    ⊙]

    -0.5

    0.0

    0.5

    1.0

    1.5

    (H-K

    )

    IRTFPickles

    -2.3-1.8-1.3-0.8-0.30.2

    [Z/Z

    ⊙]

    Meneses-Goytia et al. 2015a (in press)

  • Spectral resolution and radial velocity

    25

    Meneses-Goytia et al. 2015a (in press)

    1.05•104 1.10•104 1.15•104 1.20•104 1.25•104 1.30•104 1.35•104Wavelength, Å

    1.4

    1.6

    1.8

    2.0

    2.2

    2.4

    2.6

    2.8

    Rel

    ativ

    e flu

    x

    1.50•104 1.55•104 1.60•104 1.65•104 1.70•104 1.75•104Wavelength, Å

    1.0

    1.2

    1.4

    1.6

    1.8

    Rel

    ativ

    e flu

    x

    1.95•104 2.00•104 2.05•104 2.10•104Wavelength, Å

    0.6

    0.7

    0.8

    0.9

    1.0

    1.1

    Rel

    ativ

    e flu

    x

    2.15•104 2.20•104 2.25•104 2.30•104 2.35•104Wavelength, Å

    0.50

    0.55

    0.60

    0.65

    0.70

    0.75

    0.80

    Rel

    ativ

    e flu

    x

  • 26

    0.0

    0.2

    0.4

    0.6

    N/N

    tota

    l

    FWHM = 5.9 ± 0.3 Å

    0.0

    0.2

    0.4

    0.6

    N/N

    tota

    l

    FWHM = 7.6 ± 0.3 Å

    0.0

    0.2

    0.4

    0.6

    N/N

    tota

    l

    FWHM = 9.3 ± 0.6 Å

    0.0

    0.2

    0.4

    0.6

    0 4 8 12 16

    N/N

    tota

    l

    FWHM (Å)

    FWHM = 9.7 ± 0.9 Å

    0.0

    0.2

    0.4

    0.6

    N/N

    tota

    l

    RV = −4.1 ± 6.6 km s−1

    0.0

    0.2

    0.4

    0.6

    N/N

    tota

    l

    RV = −8.5 ± 8.0 km s−1

    0.0

    0.2

    0.4

    0.6

    N/N

    tota

    l

    RV = −13.3 ± 8.7 km s−1

    0.0

    0.2

    0.4

    0.6

    −50.0 −30.0 −10.0 10.0 30.0 50.0

    N/N

    tota

    l

    Radial Velocity (km s−1)

    RV = −13.9 ± 8.1 km s−1

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    10000 12500 15000 17500 20000 22500 25000

    R =

    /

    Wavelength (Å)

    0

    2

    4

    6

    8

    10

    12

    14

    10000 12500 15000 17500 20000 22500 25000

    FWH

    M (Å

    )

    Wavelength (Å)

    Men

    eses

    -Goy

    tia e

    t al.

    2015

    a (in

    pre

    ss)

  • Paper II –Synthesis models¡ Single stellar population synthesis models ¡ The IRTF spectral library¡ Initial mass function¡ Isochrones

    ¡ Model predictions and discussion ¡ Spectral energy distributions¡ Integrated colours¡ Line-strength indices

    ¡ Comparisons with other authors

    27

  • 28Integrated colors vs. age

    0.1

    0.2

    0.3

    1 10

    (H-K

    )

    Age (Gyr)

    0.6

    0.7

    0.8

    (J-H

    )

    0.8

    1.0

    1.2

    (J-K

    )

    MarS

    - 0.7 dex- 0.4 dex+ 0.0 dex+ 0.2 dex

    G04C07P08

    1 10Age (Gyr)

    GirS

    1 10Age (Gyr)

    BaSS

    Men

    eses

    -Goy

    tia e

    t al.

    2015

    b (in

    pre

    ss)

  • Colours-colour diagrams 29

    Men

    eses

    -Goy

    tia e

    t al.

    2015

    b (in

    pre

    ss)

    0.1

    0.2

    0.3

    0.62 0.67 0.72 0.77

    (H-K

    )

    (J-H)

    0.1

    0.2

    0.3

    0.82 0.92 1.02

    (H-K

    )

    (J-K)

    0.62

    0.67

    0.72

    0.77

    (J-H

    )MarS

    F78- 0.7 dex- 0.4 dex+ 0.0 dex+ 0.2 dex

    2 Gyr 7 Gyr

    14 Gyr

    0.62 0.67 0.72 0.77(J-H)

    0.82 0.92 1.02(J-K)

    GirS

    0.62 0.67 0.72 0.77(J-H)

    0.82 0.92 1.02(J-K)

    BaSS

  • Line-strength indices vs. age 30

    Men

    eses

    -Goy

    tia e

    t al.

    2015

    b (in

    pre

    ss)

    1.15

    1.17

    1.19

    1.21

    1.23

    1.25

    1 10

    DC

    O (m

    ag)

    Age (Gyr)

    −0.1

    0.1

    0.3

    0.5

    Mg

    I (Å)

    1.8

    2.0

    2.2

    2.4

    2.6

    Ca

    I (Å)

    0.9

    1.1

    1.3

    1.5

    1.7

    Fe I

    (Å)

    1.7

    2.0

    2.3

    2.6

    2.9

    Na

    I (Å)

    MarS

    − 0.7 dex− 0.4 dex+ 0.0 dex+ 0.2 dex

    1 10Age (Gyr)

    GirS

    1 10Age (Gyr)

    BaSS

  • Comparison with other authors 31M

    enes

    es-G

    oytia

    et a

    l. 20

    15b

    (in p

    ress

    )

    0.90

    1.00

    1.10

    1.20

    1.1 1.3 1.5 1.7 1.9 2.1 2.3

    Rat

    ios

    Wavelength (µm)

    M09 / ModelC12 / Model

    0.2

    0.6

    1.0

    1.4

    1.8

    F/F 1

    .65 µ

    m+c

    onst

    ant

    MarS

    ModelM09C12

    1.1 1.3 1.5 1.7 1.9 2.1 2.3Wavelength (µm)

    GirS

    1.1 1.3 1.5 1.7 1.9 2.1 2.3Wavelength (µm)

    BaSS

    0.90

    1.00

    1.10

    2.20 2.24 2.28 2.32 2.36 2.40

    Rat

    ios

    Wavelength (µm)

    M09 / ModelC12 / Model

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    F/F 1

    .65 µ

    m+c

    onst

    ant

    MarS

    ModelM09C12

    2.22 2.26 2.30 2.34 2.38Wavelength (µm)

    GirS

    2.20 2.24 2.28 2.32 2.36 2.40Wavelength (µm)

    BaSS

    0.90

    1.00

    1.10

    1.20

    1.1 1.3 1.5 1.7 1.9 2.1 2.3

    Rat

    ios

    Wavelength (µm)

    M09 / ModelC12 / Model

    0.2

    0.6

    1.0

    1.4

    1.8

    F/F 1

    .65 µ

    m+c

    onst

    ant

    MarS

    ModelM09C12

    1.1 1.3 1.5 1.7 1.9 2.1 2.3Wavelength (µm)

    GirS

    1.1 1.3 1.5 1.7 1.9 2.1 2.3Wavelength (µm)

    BaSS

  • Comparison with other authors 32

    Meneses-Goytia et al. 2015b (in press)

    0.80

    0.90

    1.00

    1.10

    1.20

    1.30

    1.40

    1.1 1.3 1.5 1.7 1.9 2.1 2.3

    Rat

    ios

    Wavelength (µm)

    M09 / Model

    0.2

    0.6

    1.0

    1.4

    1.8

    F/F 1

    .65 µ

    m+c

    onst

    ant

    MarS

    ModelM09

    1.1 1.3 1.5 1.7 1.9 2.1 2.3Wavelength (µm)

    GirS

    1.1 1.3 1.5 1.7 1.9 2.1 2.3Wavelength (µm)

    BaSS

  • Comparison with other authors 33

    Meneses-Goytia et al. 2015b (in press)

    1.80

    2.10

    2.40

    2.70

    3.00

    3.30

    3.60

    3.90

    4.20

    1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23

    Na I

    DCO

    MQ09MarSGirS

    BaSS2 Gyr7 Gyr

    14 Gyr

    1.80

    2.10

    2.40

    2.70

    3.00

    3.30

    3.60

    3.90

    4.20

    1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23

    Na I

    DCO

    C123 Gyr7 Gyr

    14 Gyr

    0.1

    0.2

    0.3

    1 10

    (H-K

    )

    Age (Gyr)

    0.6

    0.7

    0.8

    (J-H

    )

    0.8

    1.0

    1.2

    (J-K

    )

    MarSGirS

    BaSSV10C12M09

    BC03

  • Paper III –Deciphering the stellar content of early-type galaxies¡ The data sample

    ¡ Single stellar population synthesis models

    ¡ Stellar population analysis ¡ Integrated colours and line-strength indices

    ¡ Fitting spectral energy distributions¡ Influence of AGB stars in early-type galaxies

    34

  • Integrated colours and line-strength indices

    0.810.830.850.870.890.910.930.950.970.99

    1.80 2.00 2.20 2.40 2.60

    (J−K

    s)

    log (km s−1)

    0.560.600.640.680.720.760.80

    (J−H

    )

    0.130.150.170.190.210.230.250.270.29

    (H−K

    s)

    fieldFornax

    35

    1.181.191.201.211.221.231.24

    1.80 2.00 2.20 2.40 2.60

    DC

    O (m

    ag)

    log (km s−1)

    0.1

    0.3

    0.5

    0.7

    0.9

    Mg

    I (Å)

    2.1

    2.3

    2.5

    2.7

    2.9

    Ca

    I (Å)

    0.7

    0.9

    1.1

    1.3

    Fe I

    (Å)

    2.3

    2.7

    3.1

    3.5

    3.9

    4.3

    Na

    I (Å)

    fieldFornax

    Men

    eses

    -Goy

    tia e

    t al.

    2015

    b (in

    pre

    ss)

  • Comparison with other authors

    36

    Meneses-Goytia et al. 2015b (in press)