modelling of sloshing in free surface tanks for shipmo3d

56
Modelling of Sloshing in Free Surface Tanks for ShipMo3D Ship Motion Predictions Kevin McTaggart Prepared for: Canadian Coast Guard Major Crown Projects Directorate Ottawa This publication is protected by copyright. Any publication, use or release of this document is strictly prohibited without the express written permission of Her Majesty the Queen in right of Canada. Cana- dian Coast Guard Major Crown Projects Directorate is hereby granted the right to use and have used information contained in this report for its own purposes. This report is not a statement of endorsement of its contents by the Department of National Defence of Canada or Her Majesty the Queen in right of Canada. Defence Research and Development Canada – Atlantic External Client Report DRDC Atlantic ECR 2011-084 January 2012

Upload: others

Post on 26-Oct-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

Modelling of Sloshing in Free Surface Tanksfor ShipMo3D Ship Motion Predictions

Kevin McTaggart

Prepared for:

Canadian Coast Guard Major Crown Projects DirectorateOttawa

This publication is protected by copyright. Any publication, use or release of this document is strictlyprohibited without the express written permission of Her Majesty the Queen in right of Canada. Cana-dian Coast Guard Major Crown Projects Directorate is hereby granted the right to use and have usedinformation contained in this report for its own purposes.

This report is not a statement of endorsement of its contents by the Department of National Defence ofCanada or Her Majesty the Queen in right of Canada.

Defence Research and Development Canada – AtlanticExternal Client ReportDRDC Atlantic ECR 2011-084January 2012

Page 2: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

c© Her Majesty the Queen in Right of Canada as represented by the Minister of NationalDefence, 2012

c© Sa Majeste la Reine (en droit du Canada), telle que representee par le ministre de laDefense nationale, 2012

Page 3: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

Abstract

Ship roll motions in waves can be significantly influenced by the presence of tankscontaining liquids, which experience sloshing. Sloshing effects must be consideredwhen transporting liquid cargo; however, sloshing can also be used to advantage.Many vessels have specially designed flume tanks to provide passive roll stabilization.This report describes the implementation of a model of fluid sloshing in tanks for theShipMo3D ship motion library. The sloshing model is based on potential flow, givinga solution that is computationally efficient and robust. The potential flow modelincludes a simplified treatment of flow damping arising from viscous effects. Thetank sloshing model has been implemented for computations in both the frequencyand time domains. Example computations for a generic frigate demonstrate thereduction of roll motions using a flume tank.

Resume

Le mouvement de roulis des navires peut etre considerablement influence par lapresence de citernes renfermant des liquides qui sont assujettis au ballottement. Ilest important de tenir compte de l’effet de ballottement lors du transport de cargai-sons contenant des liquides. Cependant, il est egalement possible d’en tirer parti. Bonnombre de batiments sont en effet munis de citernes antiroulis specialement concuespour assurer la stabilisation passive dans la houle. Le present rapport decrit la miseen œuvre d’un modele du ballottement des fluides contenus dans des citernes ser-vant a enrichir la bibliotheque de donnees sur les mouvements de navires du logicielShipMo3D. Le modele de ballottement est base sur l’ecoulement potentiel et offre dessolutions efficaces et fiables sur le plan des calculs. Le modele base sur l’ecoulementpotentiel comprend un traitement simplifie de l’amortissement de l’ecoulement du ala viscosite. Le modele du ballottement en citerne a ete mis en œuvre pour effectuerdes calculs dans le domaine temporel et le domaine frequentiel. Des exemples de cal-culs pour une fregate generique demontrent la reduction du roulis lorsque l’on utiliseune citerne antiroulis.

DRDC Atlantic ECR 2011-084 i

Page 4: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

This page intentionally left blank.

ii DRDC Atlantic ECR 2011-084

Page 5: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

Executive summary

Modelling of Sloshing in Free Surface Tanks forShipMo3D Ship Motion Predictions

Kevin McTaggart; DRDC Atlantic ECR 2011-084; Defence Research andDevelopment Canada – Atlantic; January 2012.

Introduction: Ship roll motions in waves can be significantly influenced by thepresence of tanks containing liquids, which experience sloshing. Sloshing effects mustbe considered when transporting liquid cargo; however, sloshing can also be used toadvantage. Many vessels have specially designed flume tanks to provide passive rollstabilization. Flume tank dimensions can be designed to provide optimal reductionof roll motions. In comparison to other roll stabilization methods, flume tanks (andU-tube tanks) have the advantages of being effective at zero ship speed and beingprotected from environmental hazards such as ice.

Principal Results: This report describes the implementation of a model of fluidsloshing in tanks for the ShipMo3D ship motion library. The sloshing model is basedon potential flow, giving a solution that is computationally efficient and robust. Thepotential flow model includes a simplified treatment of flow damping arising fromviscous effects. The tank sloshing model has been implemented for computationsin both the frequency and time domains. Numerical roll predictions for a bargemodel with sloshing tanks show good agreement with experimental results. Examplecomputations for a generic frigate demonstrate the reduction of roll motions using aflume tank. The sloshing tank capability has been integrated into ShipMo3D Version3.0.

Significance of Results: The ShipMo3D ship motion library can now be used toassess the influence of tank sloshing on ship motions. This capability can be usedto design flume tanks for roll stabilization. The potential flow model of sloshing issuitable for analysis of a ship with moderate motion amplitudes. Due to the complexnature of sloshing phenomena, it is recommended that predicted results be comparedwith other approaches, such as model tests or computational fluid dynamics.

Future Plans: Future work will likely investigate more sophisticated models of tanksloshing, including large amplitude motions and more detailed treatment of viscouseffects.

DRDC Atlantic ECR 2011-084 iii

Page 6: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

Sommaire

Modelling of Sloshing in Free Surface Tanks forShipMo3D Ship Motion Predictions

Kevin McTaggart ; DRDC Atlantic ECR 2011-084 ; Recherche et developpementpour la defense Canada – Atlantique ; janvier 2012.

Introduction : Le mouvement de roulis des navires peut etre considerablement influencepar la presence de citernes renfermant des liquides qui sont assujettis au ballottement. Ilest important de tenir compte de l’effet de ballottement lors du transport de cargaisonscontenant des liquides. Cependant, il est egalement possible d’en tirer parti. Bon nombrede batiments sont en effet munis de citernes antiroulis specialement concues pour assurerla stabilisation passive dans la houle. Les dimensions des citernes antiroulis peuvent etreconcues de maniere a reduire le plus possible les effets du roulis. Comparativement a d’autresmethodes de stabilisation, les citernes antiroulis (et les citernes a tube en U) ont l’avantaged’etre efficaces meme lorsque le navire est a l’arret, et sont protegees contre les dangersassocies a certaines conditions environnementales, comme la glace.

Resultats principaux : Le present rapport decrit la mise en œuvre d’un modele duballottement des fluides contenus dans des citernes servant a enrichir la bibliotheque dedonnees sur le mouvement des navires du logiciel ShipMo3D. Le modele de ballottementest base sur l’ecoulement potentiel et offre des solutions efficaces et fiables sur le plan descalculs. Le modele base sur l’ecoulement potentiel comprend un traitement simplifie del’amortissement de l’ecoulement du a la viscosite. Le modele du ballottement en citernea ete mis en œuvre pour effectuer des calculs dans le domaine temporel et le domainefrequentiel. Les previsions numeriques du roulis pour un modele de barge dote de citernesantiroulis font etat d’une bonne concordance avec les resultats experimentaux. Des exemplesde calculs pour une fregate generique demontrent la reduction du roulis lorsque l’on utiliseune citerne antiroulis.

Importance des resultats : La bibliotheque de donnees du logiciel ShipMo3D sur le mou-vement des navires peut maintenant etre utilisee pour evaluer l’effet des citernes antiroulissur le mouvement des navires. Cette capacite peut etre utilisee pour concevoir des citernesantiroulis assurant la stabilisation dans la houle. Le modele d’ecoulement potentiel pourle ballottement convient a l’analyse du mouvement a amplitude moderee d’un navire. Enraison de la complexite du phenomene de ballottement, il est recommande que les resultatsprevus soient compares a d’autres approches, comme les essais de modeles ou la dynamiquedes fluides numerique.

Travaux ulterieurs prevus : Les recherches futures porteront vraisemblablement sur desmodeles perfectionnes du ballottement en citerne, y compris des mouvements de navires agrande amplitude et sur un traitement plus approfondi des effets de la viscosite.

iv DRDC Atlantic ECR 2011-084

Page 7: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

Table of contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Resume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Executive summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Sommaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Coordinate Systems for Ship Motions in Waves and Sloshing Tank . . . . . 2

3 Equations of Ship Motion in the Frequency Domain Including Sloshing ina Tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Evaluation of Tank Hydrodynamic Forces in Frequency Domain forCoordinate System with Vertical Origin at Tank Fluid Line . . . . . . . . 6

5 Evaluation of Dynamic Tank Sloshing Forces to be Included in FrequencyDomain Ship Motion Computations . . . . . . . . . . . . . . . . . . . . . . 14

6 Evaluation of Dynamic Tank Sloshing Forces to be Included in TimeDomain Ship Motion Computations . . . . . . . . . . . . . . . . . . . . . . 16

7 Parametric Studies of Sloshing Computations . . . . . . . . . . . . . . . . 20

7.1 Sloshing Coefficients for a 1 m by 1 m by 0.5 m Tank . . . . . . . . 20

7.2 Sloshing Coefficients for a 4 m by 4 m by 0.5 m Tank . . . . . . . . 20

7.3 Dependency of Sloshing Coefficients on Mesh for a 4 m by 4 m by2 m Tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7.4 Dependency of Sloshing Coefficients on Encounter FrequencyIncrement for a 4 m by 4 m by 2 m Tank . . . . . . . . . . . . . . . 21

8 Validation of Roll Motions for a Barge Model with Two Sloshing Tanks . . 26

DRDC Atlantic ECR 2011-084 v

Page 8: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

9 Example Case of Sloshing Tank for Roll Stabilization of a Generic Frigate . 29

9.1 Preliminary Design of a Box-Shaped Tank . . . . . . . . . . . . . . . 29

9.2 Finalized Design of a Flume Tank with Narrow Middle . . . . . . . . 30

10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vi DRDC Atlantic ECR 2011-084

Page 9: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

List of tables

Table 1: Sloshing Natural Frequencies for 4 m by 4 m by 2 m Tank SwayMotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Table 2: Barge Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Table 3: Barge Sloshing Tank Dimensions . . . . . . . . . . . . . . . . . . . 26

Table 4: Inertial Properties of Barge with Two Sloshing Tanks with FluidHeight of 0.19 m . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Table 5: Generic Frigate Properties . . . . . . . . . . . . . . . . . . . . . . 29

DRDC Atlantic ECR 2011-084 vii

Page 10: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

List of figures

Figure 1: Translating Earth Coordinate System for Frequency DomainMotions and Solution of Hydrodynamic Forces . . . . . . . . . . . 3

Figure 2: Relative Sea Direction . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 3: Earth-Fixed Coordinate System for Time Domain Motions . . . . 4

Figure 4: Tank Coordinate System for Sloshing . . . . . . . . . . . . . . . . 4

Figure 5: Sway Added Mass for 4 m by 4 m by 2 m Tank . . . . . . . . . . 10

Figure 6: Sway Damping for 4 m by 4 m by 2 m Tank . . . . . . . . . . . . 10

Figure 7: Roll Added Mass for 4 m by 4 m by 2 m Tank . . . . . . . . . . . 11

Figure 8: Roll Damping for 4 m by 4 m by 2 m Tank . . . . . . . . . . . . . 11

Figure 9: Sway Sloshing Retardation Function for 4 m by 4 m by 2 m Tank,Peak Fluid Damping Coefficient εtank = 0.05 . . . . . . . . . . . . 19

Figure 10: Sway Sloshing Added Mass from Direct Frequency DomainComputation and from Retardation Function for 4 m by 4 m by2 m Tank, Peak Fluid Damping Coefficient εtank = 0.05 . . . . . . 19

Figure 11: Sway Added Mass and Damping for 1 m by 1 m by 0.5 m Tank,Peak Fluid Damping Coefficient εtank = 0.05 . . . . . . . . . . . . 21

Figure 12: Sway Added Mass and Damping for 4 m by 4 m by 0.5 m Tank,Peak Fluid Damping Coefficient εtank = 0.05 . . . . . . . . . . . . 22

Figure 13: Roll Added Mass and Damping for 4 m by 4 m by 0.5 m Tank,Peak Fluid Damping Coefficient εtank = 0.05 . . . . . . . . . . . . 22

Figure 14: Sway Added Mass for 4 m by 4 m by 2 m Tank with DifferentGeometry Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 15: Sway Damping for 4 m by 4 m by 2 m Tank with DifferentGeometry Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 16: Sway Added Mass for 4 m by 4 m by 2 m Tank with DifferentEncounter Frequency Increments . . . . . . . . . . . . . . . . . . . 24

viii DRDC Atlantic ECR 2011-084

Page 11: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

Figure 17: Sway Damping for 4 m by 4 m by 2 m Tank with DifferentEncounter Frequency Increments . . . . . . . . . . . . . . . . . . . 24

Figure 18: Sway Retardation Functions for 4 m by 4 m by 2 m Tank withDifferent Encounter Frequency Increments . . . . . . . . . . . . . 25

Figure 19: Barge Model Roll RAOs in Beam Seas with JONSWAPSpectrum, Hs = 0.066 m, Tp = 1.6 s, γ = 2.0 . . . . . . . . . . . . 28

Figure 20: Barge Model Roll RAOs in Regular Beam Seas, Wave SteepnessH/λ = 0.0165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 21: Sway Sloshing Natural Frequency for Box Sloshing Tank . . . . . 30

Figure 22: Flume Tank with Narrow Middle for Generic Frigate . . . . . . . 31

Figure 23: Sway Sloshing Added Mass and Damping for 5 m by 12 m by1.2 m Flume Tank with Narrow Middle for Generic Frigate . . . . 33

Figure 24: Roll Sloshing Added Mass and Damping for 5 m by 12 m by1.2 m Flume Tank with Narrow Middle for Generic Frigate . . . . 33

Figure 25: Sway Sloshing Retardation Function for 5 m by 12 m by 1.2 mFlume Tank with Narrow Middle for Generic Frigate . . . . . . . 34

Figure 26: Roll Sloshing Retardation Function for 5 m by 12 m by 1.2 mFlume Tank with Narrow Middle for Generic Frigate . . . . . . . 34

Figure 27: RMS Roll for Generic Frigate in Sea State 5, BretschneiderSpectrum, Significant Wave Height Hs = 3.25 m, Peak WavePeriod Tp = 9.7 s . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

DRDC Atlantic ECR 2011-084 ix

Page 12: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

This page intentionally left blank.

x DRDC Atlantic ECR 2011-084

Page 13: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

1 Introduction

Ship motions in waves affect the performance of both humans and ship systems.If a ship is carrying tanks filled with liquid, then sloshing can occur and influenceship motion. The influence of sloshing can be especially important for roll motions.On many ships, sloshing is used to advantage through passive flume tanks that aredesigned to minimize ship roll motions. In comparison with other roll stabilizationmethods, roll stabilization tanks (including both flume tanks and U-tube tanks) havethe advantages of being effective at all ship speeds. Furthermore, roll stabilizationtanks are rugged and can be contained within the hull, thus making them protectedfrom ice and other environmental hazards that a ship might encounter.

In anticipation of ongoing design work, the Canadian Coast Guard tasked DRDCAtlantic with adding a capability for modelling sloshing tanks with free surfaces inthe ShipMo3D ship motion library. Modelling of sloshing has been implemented inboth the frequency and time domains in Version 3 of ShipMo3D [1, 2]. ShipMo3DVersion 3 also includes modelling of U-tube tanks [3]. This report describes theimplementation of a sloshing model, which can be used for analysis of flume tanksand other tanks carrying liquid onboard a ship. Section 2 gives coordinate systemsused for evaluating ship motions in waves. The equations of ship motion including asloshing tank are given in Section 3. Section 4 describes the sloshing forces relativeto an origin at the tank fluid line, and Section 5 describes the resulting forces in thefrequency domain acting on the ship. Extension of computations to the time domainis described in Section 6. Parametric studies in Section 7 show sloshing forces fortanks of different geometries and demonstrate convergence of results for differentvarying input parameters. Section 8 presents validation of roll motion computationsusing experimental data for a barge. Section 9 gives an example design of a flumetank for roll stabilization of a generic frigate. Discussion of results and application isgiven in Section 10, followed by final conclusions in Section 11.

DRDC Atlantic ECR 2011-084 1

Page 14: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

2 Coordinate Systems for Ship Motions inWaves and Sloshing Tank

ShipMo3D uses 2 main coordinate systems for evaluating ship motions in waves.Figure 1 shows a translating earth coordinate system, which is used for frequencydomain motions and also for evaluating hydrodynamic forces. The translating earthcoordinate system moves with the mean forward speed of the ship. Figure 2 showshow relative sea direction is defined in the translating earth coordinate system. Fortime domain computations, which can involve a freely maneuvering ship, motionsare given in the earth-fixed coordinate system of Figure 3. Within ShipMo3D timedomain computations, forces and accelerations at each time step are evaluated usinga translating earth coordinate system and then converted to the earth-fixed system.

Figure 4 shows the coordinate system for a sloshing tank. When describing tank inputgeometry in ShipMo3D, the coordinates are given relative to the tank baseline, whichis located at elevation ztankbl above the ship baseline. When performing hydrodynamiccomputations of flow sloshing within ShipMo3D, vertical coordinates zfl are relativeto the mean fluid level within the tank. The computed results can then be easilytransformed to a specified vertical origin, which is typically the ship vertical centreof gravity. This approach allows the adjustment of the vertical tank location ztankbl

without having to re-evaluate the complex sloshing analysis.

2 DRDC Atlantic ECR 2011-084

Page 15: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................

..................

..................

..................

..................

............

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.....................

...................

zη3

......................................................................................................... ................... xCG•

........................................................................................................................................................

.....................

...................η5.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................

...........................................................................................................

.........................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.....................

...................

yη2

......................................................................................................... ...................x

η1•

..........................................................................

..............................................................................

.........................................

η6

..................

..................

..................

..................

..................

.................................................................................................................................................................................................................................................................................................................................................................................................. ..............................

............................................................................................................................y .......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.....................

...................

z

CG•...............................................................

.........................................................................................

.........................................

η4...........................................................................................................................................................................

Figure 1: Translating Earth Coordinate System for Frequency Domain Motions andSolution of Hydrodynamic Forces

.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.............................................................................................................................................................

...........................................................................................................

..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...............................Ship

.................................................................................................................................................................................................................................................................................................................................

...............................

Sea

•...............................................................

...................................................

......................................... βs

Figure 2: Relative Sea Direction

DRDC Atlantic ECR 2011-084 3

Page 16: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

..................................................

...........................................................................................................................................................................

.

..................................................................................................................................................................................................................................................................................................................................................................................................................................................

...............................Ship

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

................................

...............................

xf

..........................................................................................................................................................................................................................................................................................................

...............................

yf

....................

.......................

.............................

...................................................................

.........................................χ

.................................................................................................................................................................................................................

...............................Sea

...............................................................................................................................................

............................................... ..................... ...................ν

..................................................................................................................................................................................................................................................................

βs

Figure 3: Earth-Fixed Coordinate System for Time Domain Motions

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. Mean fluid level

←−−−−−−−−−−−−−−−−−−− wtank −−−−−−−−−−−−−−−−−−−→

↑|||

hfluid

|||↓

↑|||||

htank|||||↓

•..............................................................................................................y ...........................................................................................

...................zbl

↑||

ztankbl

||↓ Ship baseline

•...........................................................................................

...................zt

•...........................................................................................

...................

zfl

Figure 4: Tank Coordinate System for Sloshing

4 DRDC Atlantic ECR 2011-084

Page 17: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

3 Equations of Ship Motion in the FrequencyDomain Including Sloshing in a Tank

The extension of ShipMo3D to include tank sloshing is based largely on the work ofMalenica et al. [4]. Similar work has been done by Newman [5] and Lee et al. [6].Unlike the U-tube tank implementation of Reference 3, the sloshing tank analysisdoes not introduce an extra degree of freedom to the ship motion analysis. Instead,the water sloshing inside a tank is treated similarly to the water outside of the ship,and can be modelled using added mass, damping, and stiffness terms influencing the6 rigid-body degrees of freedom for the ship. Consequently, the motions of the shipincluding sloshing can be expressed in the frequency domain as follows:(

[M ] + [A] + [Aslosh]){η} +

([B] + [Bslosh]

){η}

+([C] + [Cslosh]

){η} = {FI} + {FD} (1)

where [M ] is the ship inertia matrix, [A] is the ship added mass matrix due to waterexterior to the ship, [Aslosh] is the added mass matrix due to sloshing inside fluidtanks, {η} is the ship acceleration vector, [B] is the ship damping matrix due towater exterior to the ship, [Bslosh] is the damping matrix due to sloshing inside fluidtanks, {η} is the ship velocity vector, [C] is the ship hydrodynamic stiffness matrix,[Cslosh] is the sloshing matrix due to sloshing inside fluid tanks, {FI} is the incidentwave force vector, and {FD} is the diffracted wave force vector. For the presentdiscussion, appendages forces and hull viscous forces are not considered. The hullhydrodynamic force terms in Equation (1) are discussed in detail in References 7 and8.

For treatment of fluid within tanks for ShipMo3D, the mass of tank fluids withoutsloshing effects is included in the ship mass matrix [M ], and the terms [Aslosh], [Bslosh],and [Cslosh] account for the dynamic motion of fluid within tanks. This approachallows for ship displacement and trim to be considered in a conventional manner(i.e., the total ship displacement includes the influence of tank fluid masses withinthe ship).

DRDC Atlantic ECR 2011-084 5

Page 18: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

4 Evaluation of Tank Hydrodynamic Forcesin Frequency Domain for CoordinateSystem with Vertical Origin at Tank FluidLine

Evaluation of tank sloshing force terms is performed in two stages. During the firststage, total hydrodynamic forces arising from the tank fluid are evaluated in a co-ordinate system relative to the tank fluid line (see Figure 4). During the secondstage, the tank hydrodynamic forces are converted to the coordinate system withits origin at the ship centre of gravity. Furthermore, the hydrodynamic force termsevaluated during the second stage subtract the static mass of the fluid, leaving onlythe incremental effect of sloshing. This two stage approach allows for the tank tobe moved to different locations on the ship without requiring full re-computation oftank hydrodynamic forces.

The evaluation of tank sloshing forces is very similar to the evaluation of hydrody-namic forces on the exterior of the hull described in Reference 7. The oscillatoryship motions in the time domain are related to the oscillatory ship motions in thefrequency domain as follows:

ηTDj (t) = ηj ei ωe t for j = 1− 6 (2)

where ηTDj is ship displacement in the time domain for mode j, ηj is complex shipmotion amplitude in the frequency domain, ωe is ship motion frequency (equal to waveencounter frequency), and t is time. The velocity potential describing the sloshingflow within the tank is expressed as:

Φ(~x, t) = Real

{[6∑j=1

ηj φj(~x)

]ei ωe t

}(3)

where Φ is the total velocity potential in the time domain, ~x is the location withinthe fluid domain, and φj is the velocity potential in the frequency domain for unitamplitude ship motions in mode j. The complex dynamic pressure within the tankfluid is given by the following in the frequency domain based on Bernoulli’s equation:

p = −ρtank i ωe

[6∑j=1

ηj φj(~x)

](4)

where ρtank is the tank fluid density. Using the above pressure, added mass anddamping terms describing the fluid forces acting on the tank walls are:

Atank−fljk = −ρtankωe

∫St

Imag (φk) nflj dS (5)

6 DRDC Atlantic ECR 2011-084

Page 19: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

Btank−fljk = −ρtank

∫St

Imag (φk) nflj dS (6)

where St is the surface of the tank, and nflj is the normal vector for each mode

j based on the vertical origin at the fluid line. Note that the terms Atank−fl andBtank−fl include the total forces required to move the fluid within the tank (includingall inertia forces in the absence of sloshing), and that these terms are evaluated formotions about a vertical axis with origin at the tank fluid level rather than the shipcentre of gravity. The normals for each motion mode k are given by:

nfl1 = nx (7)

nfl2 = ny (8)

nfl3 = nz (9)

nfl4 = y nz − zfl ny (10)

nfl5 = zfl nx − x nz (11)

nfl6 = x ny − y nx (12)

where nx, ny, and nz are the directional cosines for the unit normal pointing into thetank fluid. Recall that zfl is the elevation relative to the tank fluid level.

The solutions of the tank fluid velocity potentials φk must satisfy the continuityequation within the fluid domain and boundary conditions on the tank free surfaceand tank walls. When solving for potential flow inside a tank, the following boundarycan be used used for describing the requirement of zero flow going through tank walls:

∂φj∂n

= i ωe nflj on St for j = 1− 6 (13)

The radiated fluid flow for each mode j can be represented by distributing sources ofstrength σj on the inside wetted surface of the tank, with the flow in the fluid domainbeing expressed by:

φj(~x) =1

∫St

G(~x, ~xs) σj(~xs) dS (14)

where ~x is the location in the fluid domain, St is the wetted surface of the tank,and G is the Green function of flow at ~x arising from a source located at ~xs. Thedistribution of source strengths σj on the wetted surface of the tank are determinedby satisfying the flow boundary condition of Equation (13) using the following:

− 1

2σj(~x) +

1

∫St

∂G(~x, ~xs)

∂n~xσj(~xs) dS = i ωe n

flj (~x) on St (15)

The Green function used in the above equation is the frequency domain Green forzero ship forward speed and water of infinite depth described in Reference 7.

DRDC Atlantic ECR 2011-084 7

Page 20: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

The solution presented thus far is based on potential flow, and ignores viscous effects.Malenica et al. [4] present a very useful approach for approximating viscous effectswithin a sloshing tank. The boundary condition of Equation (13) is modified toinclude an empirical damping factor εtank as follows:

∂φj∂n

= i ωe nflj +

i εtank3√Vfluid

φj on St for j = 1− 6 (16)

The present damping factor is different from that used by Malenica et al., with thefluid volume V

1/3fluid being used here for non-dimensionalizing the damping. Selection

of 3√Vfluid as a parameter to be used in Equation (16) was based on numerical in-

vestigations for various tanks. By using 3√Vfluid in Equation (16), a given value for

the damping factor εtank will produce similar results for tanks having varying sizesand geometries. Accounting for the damping factor εtank, Equation (15) for solutionof source strengths is modified to the following:

− 1

2σj(~x) +

1

∫St

(∂G(~x, ~xs)

∂n~x− i εtank

3√Vfluid

G(~x, ~xs)

)σj(~xs) dS

= i ωe nflj (~x) on St (17)

It has been found that good results are obtained when the damping factor εtankis in the range from 0.01 to 0.05. More detailed examination of a suitable dampingfactor could be performed using physical model tests or computational fluid dynamics(CFD). Within real fluid flow, damping effects are often limited at low and highfrequencies, and the following is used to model variation of the damping factor εtankwith encounter frequency in the present work:

εtank(ωe) =

(ωe

ωεlower

)2

εtank for ωlower < ωεlower (18)

εtank(ωe) =

(ωεupperωe

)2

εtank for ωupper > ωεupper (19)

where εtank is the peak value of the damping factor, which is applicable at frequenciesranging from ωεlower to ωεupper. It is suggested that ωεlower and ωεupper be selected suchthat they encompass the main sloshing frequencies of the tank, which can be deter-mined by examining the variation of added mass with frequency. For sloshing causedby sway motion acting on a box-shaped tank of width wtank, the natural sloshingfrequencies are given by [9]:

ω2n = g λn tanh(λn hfluid) for n = 1, 2, . . . (20)

λn =n π

wtank(21)

8 DRDC Atlantic ECR 2011-084

Page 21: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

where n is the sloshing mode number.

Computations have been performed for a box with length of 4 m, width of 4 m, andfluid height of 2 m. Table 1 show the sloshing natural frequencies for sway based onEquation (20). Figures 5 and 6 show sway added mass and damping coefficients forpeak damping coefficient values of 0.0 and 0.05. The sway added mass and dampingcoefficients show pronounced variations with encounter frequency in the vicinity ofthe odd numbered sloshing frequencies. The roll added mass and damping coefficientsin Figures 7 and 8 show similar behaviour. For the case with zero fluid flow dampingεtank = 0, the sway and roll added mass coefficients have large ranges of values. Forthe case with a fluid flow damping value εtank = 0.05, the frequency range of maximumdamping has been set from a lower frequency ωεlower of 2 rad/s to an upper frequencyωεupper of 8 rad/s. The hydrodynamic coefficients computed with εtank = 0.05 are likelymore realistic than values computed using no fluid flow damping. At the low andhigh frequency limits, the influence of the fluid flow damping coefficients is negligible.

Table 1: Sloshing Natural Frequencies for 4 m by 4 m by 2 m Tank Sway Motion

Mode Frequency (rad/s)

1 2.658

2 3.917

3 4.806

4 5.550

5 6.205

For surge, sway, and heave motions, the added mass of the tank at zero frequency isequal to the mass of the fluid in the tank because no sloshing occurs. The results inFigure 5 reflect this phenomenon, suggesting that the computations are correct. Asdiscussed by Malenica et al. the added mass in heave at all frequencies is equal to thefluid mass because of the absence of sloshing. As the frequency of the tank motionincreases from the zero frequency limit, more complex fluid motion occurs, with theadded mass and damping varying with frequency. For the present case of a box withequal length and width, the computed surge coefficients are equal to the computedsway coefficients presented here. For roll, pitch, and yaw motions, the added mass atzero frequency does not typically equal the fluid mass because the acceleration withinthe fluid can differ from that of a solid mass.

Evaluation of the static mass properties of the fluid in the tank is useful for checkingcomputation, and also for non-dimensionalizing computed added mass and damping

DRDC Atlantic ECR 2011-084 9

Page 22: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

0 2 4 6 8 10

Encounter frequency ωe

-20

-10

0

10

20

30Atank−fl

22

/mtank

............. ............. ............. ............. ............. ............. ............. ............. ................................................................................................................................................................................................................................................................................................................................................................................................................................

............. ............. ............. ............. ............. ............. ....................................... ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. .................................................................................................................................................................................................................................................................................................................................................................................................................................................

........................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

......................................................... Peak fluid damping εtank = 0.05

............. ............. ....... Peak fluid damping εtank = 0.00

Figure 5: Sway Added Mass for 4 m by 4 m by 2 m Tank

0 2 4 6 8 10

Encounter frequency ωe

0

5

10

15

Btank−fl

22

/(ωemtank)

............. ............. ............. ............. ............. ............. ............. ............. ............. .................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ............. ............. ............. ............. ............. ..............

................................................................ ............. ............. ............. .......................... ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ...........................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...............

...............

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

......................................................... Peak fluid damping εtank = 0.05

............. ............. ....... Peak fluid damping εtank = 0.00

Figure 6: Sway Damping for 4 m by 4 m by 2 m Tank

10 DRDC Atlantic ECR 2011-084

Page 23: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

0 2 4 6 8 10

Encounter frequency ωe

-0.5

0.0

0.5

1.0Atank−fl

44

/Mtank−fl

44

............. ............. ............. ............. ............. ............. ............. ............. .......................................................................................................................................................................................................................................................................................................................................................................................................................................................... ............. ............. ............. ............. ............. ...............

............................................................... ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. .......................................................................................................................................................................................................................................................

..................................................................................................................................................................................................

..................................................................................................................

...........................................................................................................................................................................................

..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

......................................................... Peak fluid damping εtank = 0.05

............. ............. ....... Peak fluid damping εtank = 0.00

Figure 7: Roll Added Mass for 4 m by 4 m by 2 m Tank

0 2 4 6 8 10

Encounter frequency ωe

0.0

0.5

Btank−fl

44

/(ωeM

tank−fl

44

)

............. ............. ............. ............. ............. ............. ............. ............. ............. .......................................................................................................................................................................................................................................................................................................................................................................................................................................................... ............. ............. ............. ............. ............. ............. .....

........

.............

.............

.............

.............................................................................. ............. ............. ............. .......................... ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. .........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...............

...............

...............

...............

...............

...............

..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

......................................................... Peak fluid damping εtank = 0.05

............. ............. ....... Peak fluid damping εtank = 0.00

Figure 8: Roll Damping for 4 m by 4 m by 2 m Tank

DRDC Atlantic ECR 2011-084 11

Page 24: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

terms. The tank fluid mass matrix[M tank−fl] is introduced to represent the mass

properties of the static fluid in the tank based on the vertical origin at the tank fluidline. The mass of the fluid in the tank is given by:

mtank = −ρtank∫St

zfl nz dS (22)

The vertical location of the centroid of mass relative to the fluid line is given by:

ztankfl = − 1

mtank

ρtank

∫St

zfl y ny dS (23)

Other required terms can be computed similarly, including the following terms basedon xt and yt being local tank horizontal coordinates and zfl being elevation relativeto the tank fluid line:

M tank−fl15 = −1

2ρtank

∫St

zfl y ny dS (24)

M tank−fl24 = ρtank

∫St

zfl x nx dS (25)

M tank−fl26 = − ρtank

∫St

xt zfl nz dS (26)

M tank−fl42 = M tank−fl

24 (27)

M tank−fl44 = −ρtank

∫St

(y2t + z2fl

)xt nx dS (28)

M tank−fl46 = ρtank

∫St

xt zt yt ny dS (29)

M tank−fl51 = M tank−fl

15 (30)

M tank−fl55 = −ρtank

∫St

(x2t + z2fl

)yt ny dS (31)

M tank−fl66 = −ρtank

∫St

(x2t + y2t

)zfl nz dS (32)

For heave motions, Malenica et al. indicate that no sloshing occurs in the tank.Consequently, the tank heave added mass Atank−fl33 is equal to the fluid tank massmtank−fl.

Static displacement of a sloshing tank causes roll and pitch moments that are reflectedin the matrix

[Cslosh

]in Equation (1). Within the current analysis, the sloshing tank

is restricted to being symmetrical and located on the ship centreline. The sloshingtank stiffness matrix is independent of the longitudinal and vertical location onboard

12 DRDC Atlantic ECR 2011-084

Page 25: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

ship, and has 2 non-zero terms:

Cslosh44 = −ρtank g

∫St

y2t nz dS (33)

Cslosh55 = −ρtank g

∫St

(xt − xfpt

)2nz dS (34)

where xfpt is the xt coordinate of the fluid plane centroid, which is given by:

xfpt =

∫Stnz xt dS∫

Stnz dS

(35)

DRDC Atlantic ECR 2011-084 13

Page 26: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

5 Evaluation of Dynamic Tank SloshingForces to be Included in FrequencyDomain Ship Motion Computations

As mentioned previously, the sloshing force terms included in ship motion computa-tions do not consider the mass of the tank fluid in a static condition, which is alreadyincluded in the ship inertial properties. Instead, the sloshing force terms consider theincremental influence of sloshing relative to the fluid being a fixed mass within theship.

The non-zero terms of the sloshing added mass matrix are:

Aslosh11 = Atank−fl11 − mtank (36)

Aslosh15 = Atank−fl15 − M tank−fl15 + ztank−fl Aslosh11 (37)

Aslosh22 = Atank−fl22 − mtank (38)

Aslosh24 = Atank−fl24 − M tank−fl24 − ztank−fl Aslosh22 (39)

Aslosh26 = Atank−fl26 − M tank−fl26 + xtank Aslosh22 (40)

Aslosh42 = Atank−fl42 − M tank−fl42 − ztank−fl Aslosh22 (41)

Aslosh44 = Atank−fl44 − M tank−fl44 − ztank−fl Aslosh42 (42)

Aslosh46 = Atank−fl46 − M tank−fl46 + xtank Aslosh42 (43)

Aslosh51 = Atank−fl51 − M tank−fl51 + ztank−fl Aslosh11 (44)

Aslosh55 = Atank−fl55 − M tank−fl55 + ztank−fl Aslosh51 (45)

Aslosh62 = Atank−fl62 − M tank−fl62 + xtank A

slosh22 (46)

Aslosh64 = Atank−fl64 − M tank−fl64 − ztank−fl Aslosh62 (47)

Aslosh66 = Atank−fl66 − M tank−fl66 + xtank Aslosh62 (48)

where xtank is the longitudinal location of the tank relative to the ship centre ofgravity and ztank−fl is the vertical location of the tank fluid line relative to the shipcentre of gravity. The sloshing damping terms are evaluated in a similar manner, butare somewhat simpler because the fluid induces zero damping force on the ship whenthere is no sloshing. The non-zero damping terms are as follows:

Bslosh11 = Btank−fl

11 (49)

Bslosh15 = Btank−fl

15 + ztank−fl Bslosh11 (50)

Bslosh22 = Btank−fl

22 (51)

Bslosh24 = Btank−fl

24 − ztank−fl Bslosh22 (52)

Bslosh26 = Btank−fl

26 + xtank Aslosh22 (53)

Bslosh42 = Btank−fl

42 − ztank−fl Bslosh22 (54)

14 DRDC Atlantic ECR 2011-084

Page 27: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

Bslosh44 = Btank−fl

44 − ztank−fl Bslosh42 (55)

Bslosh46 = Btank−fl

46 + xtank Bslosh42 (56)

Bslosh51 = Btank−fl

51 + ztank−fl Bslosh11 (57)

Bslosh55 = Btank−fl

55 + ztank−fl Bslosh51 (58)

Bslosh62 = Btank−fl

62 + xtank Bslosh22 (59)

Bslosh64 = Btank−fl

64 − ztank−fl Bslosh62 (60)

Bslosh66 = Btank−fl

66 + xtank Bslosh62 (61)

The influence of the tank fluid on ship motion stiffness is given in Equations (33) and(34).

DRDC Atlantic ECR 2011-084 15

Page 28: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

6 Evaluation of Dynamic Tank SloshingForces to be Included in Time Domain ShipMotion Computations

A new method has been developed for evaluating tank sloshing forces to be usedwith time domain ship motion computations. The approach is similar to that usedfor computing ship hydrodynamic forces in the time domain in Reference 8. Theequations of motion in the time domain are expressed as:(

[M ] + [A(ωe =∞)] + [Aslosh(ωe =∞)]){η(t)}

+ [b(U)] {η(t)} +

∫ τmax

0

[K(τ)] {η(t− τ} dτ

+

∫ τmax

0

[Kslosh(τ)] {η(t− τ} dτ

+([C] + [c(U)] + [Cslosh]

){η(t)} = {FI(t)} + {FD(t)} (62)

where [b(U)] is the speed dependent hull damping matrix, [K(τ)] is the hull retarda-tion function matrix for delay time τ , τmax is the maximum considered delay time,[Kslosh(τ)] is the sloshing retardation function matrix for delay time τ , and [c(U)] isthe speed dependent hull stiffness matrix. The presence of retardation functions inEquation (62) is due to forces acting on the ship being dependent on the previousmotions of the ship. The retardation functions decay to zero for large τ , and theintegration limit τmax should be selected accordingly.

The sloshing retardation functions can be computed using either of the following twoequations adapted from computations for ship hulls in Reference 8:

Ksloshjk (τ) = − 2

π

∫ ∞0

(Asloshjk (ωe) − Asloshjk (∞)

)ωe sin(ωe τ) dωe (63)

Ksloshjk (τ) =

2

π

∫ ∞0

Bsloshjk (ωe) cos(ωe τ) dωe (64)

When evaluating the above integrals for tank sloshing, care must be taken due to thegreat variation of added mass and damping coefficients with encounter frequency, asdemonstrated in Figures 5 and 6.

When evaluating and using the sloshing retardation functions, a primary requirementis to be able to model the dependence of sloshing phenomena on frequency of motion.Fortunately, the added mass can be re-evaluated using the retardation functions,which offers a method for verifying the fidelity of the computed retardation functions:

Asloshjk (ωe) = Asloshjk (∞) − 1

ωe

∫ ∞0

Ksloshjk (τ) sin(ωe τ) dτ (65)

16 DRDC Atlantic ECR 2011-084

Page 29: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

Correct modelling of the low frequency behaviour in the time domain requires thatthe retardation functions satisfy the following based on Equation (65) at the limit ofωe → 0:

Asloshjk (0) − Asloshjk (∞) = − 1

ωe

∫ ∞0

Ksloshjk (τ) τ dωe (66)

The above equation indicates that correct modelling of low frequency behaviour isvery dependent on the retardation functions at large values of delay time τ . In prac-tice, a finite limit τmax must be set for evaluation of non-zero retardation functions.Initial computation indicated poor modelling of time domain hydrodynamic forcesat very low frequencies when using retardation functions evaluated to finite values ofτmax. Fortunately, it has been found that the following modified retardation functionscan be used to give very good time domain results across the entire frequency range:

Ksloshjk (τ) =

(1 − τ

τmax

)2

π

∫ ∞0

Bsloshjk (ωe) cos(ωe τ) dτ (67)

Note that τmax must be large enough to capture the behaviour of the retardationfunction.

When evaluating retardation functions using Equations (64) and (67), damping coeffi-cients within the integrals are only available to a finite maximum encounter frequency,denoted here as ω∗e . To account for damping at frequencies beyond the range of com-putation, an approach similar similar to that presented by Nam et al. [10] is used,with damping at high encounter frequencies being approximated by:

Bsloshjk (ωe) = Bslosh

jk (ω∗e)

(ω∗eωe

)2

for ωe > ω∗e (68)

Equation (64) can then be evaluated as follows:

Ksloshjk (τ) =

2

π

∫ ω∗e

0

Bsloshjk (ωe) cos(ωe τ) dωe

+2

πBsloshjk (ω∗e) ω

∗e [cos (ω∗e τ) + ω∗e τ si(ω∗e)] (69)

where si(x) is the sine integral function defined by:

si(x) = −∫ ∞x

sin t

tdt (70)

Similarly, Equation (67) including the time-dependent correction to the retardationfunction can be evaluated by:

Ksloshjk (τ) =

(1 − τ

τmax

) (2

π

∫ ω∗e

0

Bsloshjk (ωe) cos(ωe τ) dωe

+2

πBsloshjk (ω∗e) ω

∗e [cos (ω∗e τ) + ω∗e τ si(ω∗e)]

)(71)

DRDC Atlantic ECR 2011-084 17

Page 30: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

Example time domain computations have been performed for the 4 m by 4 m by 2 mtank introduced in Section 4. For the present computations, the tank fluid line islocated at the ship centre of gravity. Figure 9 shows the sway retardation functionscomputed with and without a correction for the maximum time delay τmax applied(i.e. using Equations (71) and (69) respectively). The retardation functions werecomputed using an encounter frequency increment of 0.05 rad/s. Figure 9 shows thedecay of the retardation functions with time, and suggests that the oscillation of theuncorrected function at large τ might be due to numerical approximations rather thatactual physical behaviour.

Figure 10 shows sway added mass computed directly in the frequency domain andcomputed indirectly using Equation (65) based on the retardation with the correctionthe maximum time delay τmax applied. The added mass computed from the retar-dation function gives excellent agreement with the directly computed added mass atthe low and high frequency limits. There is some difference between the two formsat intermediate frequencies; however, the difference is minor relative to uncertaintiesrelated to fluid damping.

18 DRDC Atlantic ECR 2011-084

Page 31: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

0 10 20 30 40 50

Delay time τ

-0.5

0.0

0.5

1.0

Kslosh

22

/(m

tankg/h

fluid

)

..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...............

................

...............

................

...............

...............

................

...............

................

...............

...............

................

...............

................

................

...............

................

...........................................................................................................................................................................................................................................................................................................................................................................

................

................

...............

................

...............

................

...............

................

...............

...............

................

...............

................

...............

...............

................

................

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................

................

...............

................

................

...............

................

...............

................

................

...............

.....................................................................................................................................................................................................................................

........................................................................................................................................................................................................................................................................................................................................................

....................................................................................................................................................................................................................................................................................

................

...............

................

................

.......................................................................................................................................................................................

.................................................................................................................................................................................................................................

................................................................................................................................................................................

....................................................................................................................................................

......................................................................................................................................

............................................................................................................

..................................................................................................

........................................................................................................................................................................

......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.............

.............

.............

.............

.............

.............

.............

.............

.............

...........................................................................................................................................................................................................................................

....................................................................................................................................................................................................................................................................................................................................

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.........................................................................................................................................................................

...........................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................

..............................................................................................................................................................................................................

...

............

.............

.............

.............

..................................................................................................................................

......................................................................................................................................................................................

............................................................................................................................................................

................................................................................................................................................

.........................................................................................................................................

.....

.............................................................................................................

...........................................................................................................

................................................................................................

...........................................................................................

...........................................................................................

.......................... .......................................

.................................................... ..........................

....................................................

....................................................

......................................................... Corrected for τmax

............. ............. ....... Not corrected for τmax

Figure 9: Sway Sloshing Retardation Function for 4 m by 4 m by 2 m Tank, PeakFluid Damping Coefficient εtank = 0.05

0 2 4 6 8 10

Encounter frequency ωe

-8

-6

-4

-2

0

2

4

6

Aslosh

22

/mfluid

...........................................................................................................................................................................................................................

.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......................................................................................................................................

................................................................................................................................................................

..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

............. ............. ............. ............. ............. ............. ............. ............. ...........................................................................................................................................................................................................................

......................................................

............. ............. ............. ............. ............. ....................................... ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. .........

......................................................... Computed directly

............. ............. ....... Computed from retardation function

Figure 10: Sway Sloshing Added Mass from Direct Frequency Domain Computationand from Retardation Function for 4 m by 4 m by 2 m Tank, Peak Fluid DampingCoefficient εtank = 0.05

DRDC Atlantic ECR 2011-084 19

Page 32: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

7 Parametric Studies of SloshingComputations

Parametric studies have been performed to ensure that the implemented sloshingmethod is providing consistent results. The parametric studies also demonstrate con-vergence of results with refinements to the geometric mesh and number of encounterfrequencies used for computation.

7.1 Sloshing Coefficients for a 1 m by 1 m by 0.5 mTank

Sloshing coefficients have been computed for a 1 m by 1 m by 0.5 m tank, withdimensions half of those used for the tank computations in Section 4. The peak fluiddamping factor for the smaller tank εtank has a value of 0.05, the same as the valuefor the larger tank. Applying Froude scaling when modelling the smaller tank, thelower frequency for maximum damping ωεlower has been set to 4 rad/s and the upperfrequency for maximum damping ωεlower has been set to 16 rad/s.

Figure 11 shows added mass and damping coefficients for the 1 m by 1 m by 0.5 mtank. Taking into account that frequencies for the smaller tank are twice as large asthose for the larger tank due to Froude scaling, the computed results for the smallertank shown in Figure 11 are identical to the results for the larger tank shown inFigures 5 and 6.

7.2 Sloshing Coefficients for a 4 m by 4 m by 0.5 mTank

To examine the influence of water depth on sloshing behaviour, sloshing coefficientshave been computed for the tank with horizonal dimensions of 4 m by 4 m tank usedin Section 4 but with the water height reduced from 2 m to 0.5 m. Sway and rollsloshing coefficients for the tank with 0.5 m fluid height are shown in Figures 12 and13, and can be compared with coefficients for the tank with 2 m fluid height shown inFigure 5 to Figure 8. For both fluid heights, the sway added mass at low frequencyis equal to the mass of the fluid. This behaviour occurs for both surge and swaybecause the fluid simply translates with the motions of the tank at low frequency.The roll added mass coefficient increases significantly as the fluid depth decreases.This behaviour likely occurs because the fluid depth is small relative to the width ofthe tank, causing the fluid flow to be highly dependent on water depth as discussedby Newman [5]. It should be noted that nonlinear geometric effects will be significantwhen fluid depth is small relative to tank width.

20 DRDC Atlantic ECR 2011-084

Page 33: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

0 5 10 15 20

Encounter frequency ωe

-5

0

5

10

Atank−fl

22

/mtank,B

tank−fl

22

/(ωemtank)

..............................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...............

...............

................

..................................................................................................................................

.....................................................................................................................................

........................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................................................................................................................................................. ............. ............. ............. ............. ............. ............. ............. ............................................................................................................................................................................................................................................................................................................................................................... ............. ............. ............. ............. ............. ............. .............

....................................... ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ......

......................................................... Added mass, εtank = 0.05

............. ............. ....... Damping, εtank = 0.05

Figure 11: Sway Added Mass and Damping for 1 m by 1 m by 0.5 m Tank, PeakFluid Damping Coefficient εtank = 0.05

7.3 Dependency of Sloshing Coefficients on Mesh fora 4 m by 4 m by 2 m Tank

Computations have been performed to examine the dependency of sloshing coefficientson mesh size for a 4 m by 4 m by 2 m tank. Figures 14 and 15 show results usingthe base mesh used for previous computations and using meshes that are coarser andfiner. The computed coefficients show only small variation with the number of panels,indicating satisfactory convergence of results with mesh size.

7.4 Dependency of Sloshing Coefficients onEncounter Frequency Increment for a 4 m by 4 mby 2 m Tank

Computations in the frequency domain and sloshing retardation functions are depen-dent on the encounter frequency increment. The encounter frequency increment mustbe sufficiently small to capture the variation of sloshing coefficients with encounterfrequency. Figures 16 and 17 show sway added mass and damping coefficients for dif-ferent encounter frequency increments. Figure 18 shows sway retardation functionscomputed using the different encounter frequency increments. The computed resultsshow good convergence of results for the two smaller encounter frequency increments.

DRDC Atlantic ECR 2011-084 21

Page 34: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

0 2 4 6 8 10

Encounter frequency ωe

-5

0

5

10Atank−fl

22

/mtank,B

tank−fl

22

/(ωemtank)

.............................................................................................................................................

..............................................................................................................................................................................................................................................

..............................................................

...............................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................

............................................................................................................................................

.......................................................................................................................................................................................

................................................................................................................................................................................................

............................................................................................................. ............. ............. ............. ............. ......................................................................................................................................................................... ............. ............. ............. ............. ............. ............. ............. .............

............................................................................................................................................... ............. ............. ............. ............. .............

.............

.............

.............

................................................................. ............. ............. ............. .......................... ............. ............. ............. ............. ............. .......................... ............. .............

......................................................... Added mass, εtank = 0.05

............. ............. ....... Damping, εtank = 0.05

Figure 12: Sway Added Mass and Damping for 4 m by 4 m by 0.5 m Tank, PeakFluid Damping Coefficient εtank = 0.05

0 2 4 6 8 10

Encounter frequency ωe

-20

0

20

40

Atank−fl

44

/mtank

44

,Btank−fl

44

/(ωemtank

44

)

...............................................................................................................................

............................................................................................................................................................................................................................................................................................................................................................................

..................................................................................................................

......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ............. ............. ............. ............. .

................................................................................................................................................................................................................................................................... ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. .

......................................................... Added mass, εtank = 0.05

............. ............. ....... Damping, εtank = 0.05

Figure 13: Roll Added Mass and Damping for 4 m by 4 m by 0.5 m Tank, Peak FluidDamping Coefficient εtank = 0.05

22 DRDC Atlantic ECR 2011-084

Page 35: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

0 2 4 6 8 10

Encounter frequency ωe

-5

0

5

10Atank−fl

22

/mtank

............. ............. ............. ............. ............. ............. ............. ............. ...........................................................................................................................................................................................................................................................................

......

.................................................................

............. ............. ............. ............. ............. ....................................................

............. ............. ............. ............. .......................... ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ..............................................................................................................................................................................................

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..........................................................................................................................................

........................................................................................................................................................................

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. . . . . . . . . . .....

.................................................................

...... .. ....

............... . . . . ..

.... . . . . . ... . . . . ... . . . . .. . . . .

............. ............. ....... Coarse mesh with 272 panels

......................................................... Base mesh with 520 panels

. . . . . Fine mesh with 984 panels

Figure 14: Sway Added Mass for 4 m by 4 m by 2 m Tank with Different GeometryMeshes

0 2 4 6 8 10

Encounter frequency ωe

0

5

10

15

Btank−fl

22

/(ωemtank)

............. ............. ............. ............. ............. ............. ............. ............. .................................................................................................................................................................................................................................................................................................................................................. ............. ............. ............. ............. ............. ............. .......

................................ ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ...........................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...............

...............

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. . . . . . . . . . . . . . . .................................................................. . . . . . . . . . . ...

..

......... . . . . . . ..... . . . . . .... . . . . ... . . . ... . . . .

............. ............. ....... Coarse mesh with 272 panels

......................................................... Base mesh with 520 panels

. . . . . Fine mesh with 984 panels

Figure 15: Sway Damping for 4 m by 4 m by 2 m Tank with Different GeometryMeshes

DRDC Atlantic ECR 2011-084 23

Page 36: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

0 2 4 6 8 10

Encounter frequency ωe

-5

0

5

10Atank−fl

22

/mtank

............. ............. ............. ............. ............. ............. ............. ............. .........................................................................................................................................................................................................................................................................................................................................................................................

............. ............. ............. ............. ............. ................................................................. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. .............

..............................................................................................................................................................................................................................

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..........................................................................................................................................

........................................................................................................................................................................

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. . . . . . . . . . . ....

..................................................................

.... . ................. . . . . . ..... . . . . .... . . . . .. . . . . .. . . . . .

............. ............. ....... Large increment, ∆ωe = 0.1 rad/s

......................................................... Base case, ∆ωe = 0.05 rad/s

. . . . . Small increment, ∆ωe = 0.02 rad/s

Figure 16: Sway Added Mass for 4 m by 4 m by 2 m Tank with Different EncounterFrequency Increments

0 2 4 6 8 10

Encounter frequency ωe

-5

0

5

10

Btank−fl

22

/(ωemtank)

............. ............. ............. ............. ............. ............. ............. ............. ........................................................................................................................................................................................................................................................................................................... ............. ............. ............. ............. ............. ...............

............................................................... ............. ............. ............. .......................... ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ..................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...............

...............

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. . . . . . . . . . . . . . . .................................................................... . . . . . . . . . . ...

..

........ . . . . . . . .... . . . . . . ... . . . . .. . . . . . . . . . . .

............. ............. ....... Large increment, ∆ωe = 0.1 rad/s

......................................................... Base case, ∆ωe = 0.05 rad/s

. . . . . Small increment, ∆ωe = 0.02 rad/s

Figure 17: Sway Damping for 4 m by 4 m by 2 m Tank with Different EncounterFrequency Increments

24 DRDC Atlantic ECR 2011-084

Page 37: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

0 10 20 30 40 50

Delay time τ

-0.5

0.0

0.5

1.0

1.5

Kslosh

22

/(m

tankg/h

fluid

) ..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................

...............

................

...............

................

...............

................

...............

................

................

................

..............................................................................................................................................................................................................................................................................................................

..............

................

................

................

...............

................

...............

................

...............

................

...............

................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................

.......................................................................................................................................................................................................................................................................

......................................................................................................................................................................................................................

.............................................................................................................................................................................................

...........................................................................................................................................................................

.............................................................................................................................................

....................................................................................................................

...........................................................................................................

.............................................................................................

.......................................................................................

............................................................................................................................................................................................................................................................................................................................................................

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................

.....

...................................................................................................................................................................................................

.............................................................................................................................................................................................

.....................................................................................................................................................

...................................................................................................................................

.......................................................................................................

...........................................................................................

...........................................................................................

.................................................................

.................................................................

.......................... ..........................

...............................................................................................

......... .................................................... ...................

.................... ....................................... ............. ............. ............. ............. ............. .............

................................................................................

..

..

..

..

..

..

.........................

..

..

..

..

..

..

..

................................................

..

..

..

.................

.....................

................

..............

..............

..........

.........

..............

................... ..... ... . . .

............. ............. ....... Large increment, ∆ωe = 0.1 rad/s

......................................................... Base case, ∆ωe = 0.05 rad/s

. . . . . Small increment, ∆ωe = 0.02 rad/s

Figure 18: Sway Retardation Functions for 4 m by 4 m by 2 m Tank with DifferentEncounter Frequency Increments

DRDC Atlantic ECR 2011-084 25

Page 38: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

8 Validation of Roll Motions for a BargeModel with Two Sloshing Tanks

Roll motion predictions have been validated using experimental data for a bargemodel tested by Molin et al. [9]. Table 2 gives the dimensions of the barge. Twosloshing tanks were placed on the deck of the barge, and Figure 3 gives the dimen-sions for each tank. The tank dimensions in Table 3 are given using the ShipMo3Dconventions for length and width, with tank length being along the ship longitudinalaxis axis and tank width being along the ship lateral axis (Molin et al. use the op-posite convention for tank length and width). Table 4 gives the inertial properties ofthe barge, which are required as inputs to ShipMo3D.

Table 2: Barge Dimensions

Length, L 3.0 m

Beam, B 1.0 m

Total depth 0.267 m

Draft, T 0.108 m

Table 3: Barge Sloshing Tank Dimensions

Length, Ltank 0.25 m

Width, wtank 0.80 m

Total height, htank 0.267 m

Fluid height, hfluid 0.19 m

Height above baseline, ztankbl 0.30 m

Roll motion predictions are sensitive to the modelling of viscous forces. Molin et al.indicate that the following roll damping equation can be used to model the observedexperimental behaviour of the barge:

F hull−eddy4 = −1

2ρ Cd B

4 L |η4| η4 (72)

where F hull−eddy4 is the hull eddy damping force, Cd is the drag coefficient, and η4 is the

ship roll velocity. ShipMo3D uses a similar approach but with different dimensional

26 DRDC Atlantic ECR 2011-084

Page 39: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

Table 4: Inertial Properties of Barge with Two Sloshing Tanks with Fluid Height of0.19 m

Mass KG rxx (wrt own KG)

Barge 169 kg 0.240 m 0.414 m

Tanks 76 kg 0.395 m 0.237 m

Ballast masses 40 kg 0.280 m 0.35 m

Total 285 kg 0.287 m 0.372 m

terms as follows (see Reference 11):

F hull−eddy4 = −1

4ρ Chull

eddy

∫Shull

n24

√y2 + z2 dS |η4| η4 (73)

Molin et al. assign the drag coefficient Cd a value of 0.2 based on experimental ob-servations. Analysis of the hull geometry gives an associated value of 8.6 for theShipMo3D input coefficient Chull

eddy.

Figure 19 compares predicted frequency domain and experimental roll RAOs for thebarge in a seaway modelled by a JONSWAP spectrum with significant wave heightHs of 0.066 m, peak wave period Tp of 1.6 s, and peak enhancement factor γ of 2.0.The experiments were conducted in finite water depth of 3 m, while the ShipMo3Dpredictions are in water of infinite depth; thus, the data comparison is given forencounter frequencies of 3 rad/s and greater, for which the assumption of deep wateris applicable (water depth/wavelength > 0.5). The numerical predictions comparefavourably with the experimental data. The water in the sloshing tanks is 27 percentof the total mass and is located high relative to the total centre of gravity; thus,sloshing likely has a large influence on the total roll motion.

Additional ShipMo3D predictions were made in regular waves of steepness H/λ =0.0165, which is based on the significant wave height of 0.066 m and the peak waveperiod of 1.6 s for the random wave experiments. Figure 20 shows that the ShipMo3Dtime domain predictions give very good agreement with the frequency domain pre-dictions, suggesting correct implementation in the time domain.

DRDC Atlantic ECR 2011-084 27

Page 40: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

3 4 5 6 7 8

Encounter frequency ωe

0

1

2

3

Rol

lRA

O|η

4|/

(ka)

2 2222

2

2222

2

222

2222

2222

222

2

2222

2222

2222

22222

............................................................

............................................

....................................................................................................................................

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

2 Experiments

......................................................... Frequency domain predictions

Figure 19: Barge Model Roll RAOs in Beam Seas with JONSWAP Spectrum, Hs =0.066 m, Tp = 1.6 s, γ = 2.0

3 4 5 6 7 8

Encounter frequency ωe

0

1

2

3

Rol

lRA

O|η

4|/

(ka)

.................................................................................

..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

............. ............. ............. ............. ............. ............. ............. ..................................................................................................................... ............. ............. ............. ............. ............. ............. ............. ............. ............. ..........................

.............................................................................. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ..

......................................................... Frequency domain predictions

............. ............. ....... Time domain predictions

Figure 20: Barge Model Roll RAOs in Regular Beam Seas, Wave Steepness H/λ =0.0165

28 DRDC Atlantic ECR 2011-084

Page 41: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

9 Example Case of Sloshing Tank for RollStabilization of a Generic Frigate

This section presents an example design of a sloshing tank for roll stabilization of ageneric frigate. Table 5 gives the properties of the generic frigate, which was used fora similar example for a U-tube tank in Reference 3.

Table 5: Generic Frigate Properties

Length between perpendiculars, Lpp 120.0 m

Draft at midships, Tmid 4.2 m

Trim by stern, tstern 0.0 m

Displacement, 4 3713 tonnes

Height of CG above baseline, KG 6.0 m

Metacentric height, GM 1.43 m

Natural roll frequency, ω4 0.704 rad/s

Breadth at midships 15.0 m

Hull depth at midships 9.4 m

9.1 Preliminary Design of a Box-Shaped TankA box-shaped tank was initially designed to stabilize the roll motions of the genericfrigate. To obtain roll stabilization, it was important for the tank to have a swaynatural frequency near the roll frequency of the frigate. Based on the ship geometry,the maximum width of the tank was specified as 12 m. Figure 21 shows sloshingfrequency versus fluid height for box-shaped tanks with widths of 8 m, 10 m, and12 m. To match the ship natural roll frequency, a tank with width of 12 m and fluidheight of 0.7 m was selected. The decision to select the maximum tank width wasbased on the benefit of maximizing the ratio of fluid height to tank width to minimizesaturation of the box-shaped tank (saturation occurs when the water piles up at oneside of the tank).

The box-shaped tank is filled with fresh water (ρtank = 1000 kg/m3) for ease of opera-tion and maintenance. Guidelines for design of U-tube tanks presented in Reference 3are useful for design of the flume tank. To maintain static stability, the allowable

DRDC Atlantic ECR 2011-084 29

Page 42: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

0.0 0.5 1.0 1.5 2.0

Fluid height hfluid

0.0

0.5

1.0

1.5

2.0

Sw

aysl

oshi

ngfre

quen

cy(r

ad/s

)

.............................................................

...............................................................................

......................................................................................................

.........................................................................................................................

...................................................................................................................................................

....................................................................................................................................................................................

.....................................................................................................................................................................................

............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. .............

......

........

.........

...........

...............

...................

....

......................................................... 12 m tank width

............. ............. ....... 10 m tank width

. . . . . 8 m tank width

Figure 21: Sway Sloshing Natural Frequency for Box Sloshing Tank

effective reduction in metacentric height is limited to 0.2 m. For the box-shapedflume tank, the effective change to the ship metacentric height is given by:

∆GM = −ρtank Ltank w3tank

12 4(74)

where Ltank is the length of the tank along the ship longitudinal axis, wtank is thewidth of the tank, and 4 is the ship mass displacement. A tank length of 5.0 m wasselected to keep the reduction in metacentric height less than 0.2 m. The resultingtank fluid mass is 1.3 percent of the ship mass, which is consistent with U-tube tankinstallations that are typically between 1 and 5 percent of ship mass.

9.2 Finalized Design of a Flume Tank with NarrowMiddle

The preliminary box-shaped tank was modified to obtain a flume tank with a narrowmiddle portion as shown in Figure 22. The flume tank with a narrow middle hasthe benefit of a higher fluid height for a given sway sloshing frequency, reducing theoccurrence of saturation as roll motions increase. The designed flume tank has a fluidheight of 1.2 m, significantly greater than the fluid height of 0.7 m for the box-shapedtank.

The flume tank was modelled with 892 panels on the wetted surface and a peak fluid

30 DRDC Atlantic ECR 2011-084

Page 43: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

Aft view

............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ ..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

←−−−−−−−−−−−−−−−−−− wtank = 12 m −−−−−−−−−−−−−−−−−−→←−−−−−−−−− wmiddle = 8 m −−−−−−−−−→

↑|

|↓hfluid

Top view

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.↑||||

Ltank = 5 m||||↓

↑|Lmiddle = 2.0 m

|↓

Figure 22: Flume Tank with Narrow Middle for Generic Frigate

DRDC Atlantic ECR 2011-084 31

Page 44: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

damping factor of 0.02 applied to encounter frequencies from 0.3 rad/s to 8.0 rad/s.Figures 23 and 24 show added mass and damping coefficients for sway and roll.Figure 23 shows that the selected frequency range captures several sway sloshingmodes. The most surprisingly result is the large magnitude of roll added mass anddamping coefficients for the tank. Due to the small ratio of fluid height to tankwidth, the roll forces acting on the tank are primarily influenced by the verticalmotion within the tank. As discussed by Newman, vertical forces of large magnitudecan arise within a tank, which are the likely cause of the large roll sloshing forces forthe present tank.

Figures 25 and 26 show the sway and roll sloshing retardation function for the genericfrigate roll tank. The maximum selected delay time of 50 s appears to capture thebehaviour of the retardation functions.

Seakeeping computations have been performed for the generic frigate with no flumetank, and with the flume tank bottom located 6 m and 8 m above the ship baseline.Sea state 5 is modelled with a Bretschneider spectrum with significant wave heightHs of 3.25 m and peak wave period Tp of 9.7 s. Figure 27 shows that the presence ofa flume tank reduces roll motions by approximately 25 percent. The vertical positionof the flume tank has little influence on the ship roll motions because the verticalforces acting on the flume tank are dominant. For a flume tank with a higher fluidheight to width ratio, horizontal forces would become more important, thus causingthe vertical location of the flume tank to become more important.

32 DRDC Atlantic ECR 2011-084

Page 45: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

0 1 2 3 4 5 6

Encounter frequency ωe

-5

0

5

10

Atank−fl

22

/mtank,B

tank−fl

22

/(ωemtank)

................................................................................................................................................................................................................................................................

.............................................................

................................................................................................................................................................................

...........................................................................................................................................

.......................................................................................................................................................

..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

................................................................................................................................................................................................................................................................................................. ............. ............. .............

........................................................................................................ ............. ............. ............. ............. ............. ............. ............. .............

.................................................... ............. ............. ............. ............. ............. ............. .............

........................................................................................................................................................................................................................................................................................................................ ............. ....

................................................................................................................................................................................................................................................... .......................... ............. ............. ............. ............. ............. ............. ............. ............. ............. ..

......................................................... Added mass

............. ............. ....... Damping

Figure 23: Sway Sloshing Added Mass and Damping for 5 m by 12 m by 1.2 m FlumeTank with Narrow Middle for Generic Frigate

0 1 2 3 4 5 6

Encounter frequency ωe

-100

-50

0

50

100

150

Atank−fl

44

/Mtank−fl

44

,Btank−fl

44

/(ωeM

tank−fl

44

)

..................................................................................................

..............................................................................................................................................................................................................................................................................

...........................................................................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ............. ............. .............

................................................................................................................................................................................................... ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. .............

......................................................... Added mass

............. ............. ....... Damping

Figure 24: Roll Sloshing Added Mass and Damping for 5 m by 12 m by 1.2 m FlumeTank with Narrow Middle for Generic Frigate

DRDC Atlantic ECR 2011-084 33

Page 46: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

0 10 20 30 40 50

Delay time τ

-0.4

-0.2

0.0

0.2

0.4Kslosh

22

/(m

tankg/h

fluid

).............................................................................................................................................................................................................................................................................................................................................................

..................

...................

..................

...................

..................

..................

...................

..................

..................

...................

..................

...................

..................

..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................

...................

..................

...................

...................

.............................................................................................................................................................................

................................................................................................................................................................................................................................................................................................................................

..................

...................

...................

..................

...................

...................

...................

......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...................

..................

...................

..................

...................

..................

...................

..................

...................

...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................

..................

...................

...................

......................................................................................................................................................

......................................................................................................................................................

.........................................................................................................................................................................................................................................................

..................

...................

...................

...................................................................................................................................................

..................

...................

..............................................................................................................................................................

..........................................................................................................................................................................................

..............................................................................................................................................

..................................................................................................

...................................................................................................................................................

.............................................................................................................................................................................

.......................................................................................................................................................................................................................................................................................................

Figure 25: Sway Sloshing Retardation Function for 5 m by 12 m by 1.2 m FlumeTank with Narrow Middle for Generic Frigate

0 10 20 30 40 50

Delay time τ

-1.0

-0.5

0.0

0.5

1.0

Kslosh

44

/(M

tank−fl

44

g/h

)

..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................

............................................................................................................................................................................................................................................................................................................................................................

Figure 26: Roll Sloshing Retardation Function for 5 m by 12 m by 1.2 m Flume Tankwith Narrow Middle for Generic Frigate

34 DRDC Atlantic ECR 2011-084

Page 47: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

0 30 60 90 120 150 180

Relative sea direction βs

0

2

4

6

8

RM

Sro

ll(d

eg)

..............................................

..............................................

..........................................

........................................

.............................................................................................................................................................................................................................................................................................................................................................................................................

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..........................

..........................

......................................................................................................................................................................... ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ................

......

.......................... . . . . .........................................................

......................................................... No flume tank

............. ............. ....... Flume tank 6 m above baseline

. . . . . Flume tank 8 m above baseline

Figure 27: RMS Roll for Generic Frigate in Sea State 5, Bretschneider Spectrum,Significant Wave Height Hs = 3.25 m, Peak Wave Period Tp = 9.7 s

DRDC Atlantic ECR 2011-084 35

Page 48: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

10 Discussion

The implemented method for predicting sloshing forces is robust and is giving promis-ing results. Computed sloshing forces give excellent convergence with refinement ofthe geometric mesh, and sloshing force coefficients for a tank can typically be com-puted with less than one hour of computation time.

Computed sway (and surge) sloshing forces behave as expected. Computed swayadded mass coefficients approach 1.0 at low frequencies when static fluid mass isincluded in the sway added mass, which is the case for the coefficient Atank−fl22 . For abox-shaped tank, computed sway natural frequencies agree with analytical values.

Computed roll (and pitch) non-dimensional sloshing force coefficients demonstratelarge dependence on water depth. The dependence of roll sloshing forces on waterdepth is likely due to the influence of the sensitivity of sloshing flow to vertical motion,as discussed by Newman [5]. Nonlinear geometric effects will also cause roll sloshingforce coefficients to vary with with water depth. Further investigation regarding thevariation of roll force coefficients with water depth would likely be worthwhile.

A non-dimensional peak damping coefficient εtank has been introduced to accountfor viscous forces within the tank. The computations appear to give realistic resultswhen the peak damping coefficient has a value in the range between 0.01 and 0.05.Future studies utilizing experiments or computational fluid dynamics would be usefulfor developing more specific guidelines regarding input peak damping.

36 DRDC Atlantic ECR 2011-084

Page 49: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

11 Conclusions

A potential flow method has been implemented for modelling the influence of tanksloshing on ship motions. The method is robust and computationally efficient. Com-puted results for translational modes (surge and sway) behave as expected, withadded mass approaching static fluid mass at low frequencies and predicted sloshingfrequencies agreeing with analytical solutions. Computed roll sloshing coefficientsshow large dependence on water depth when water depth is small relative to tankhorizontal dimensions, and it is recommended that this phenomenon be investigatedfurther. Predicted roll motions for a barge model with sloshing tanks show goodagreement with experimental values.

DRDC Atlantic ECR 2011-084 37

Page 50: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

References

[1] McTaggart, K. (2012), ShipMo3D Version 3.0 User Manual for Creating ShipModels, (DRDC Atlantic TM 2011-307) Defence Research and DevelopmentCanada – Atlantic.

[2] McTaggart, K. (2012), ShipMo3D Version 3.0 User Manual for Computing ShipMotions in the Time and Frequency Domains, (DRDC Atlantic TM 2011-308)Defence Research and Development Canada – Atlantic.

[3] McTaggart, K. (2012), Modelling of U-tube Tanks for ShipMo3D Ship MotionPredictions, (DRDC Atlantic ECR 2011-300) Defence Research andDevelopment Canada – Atlantic.

[4] Malenica, S., Zalar, M., and Chen, X. (2003), Dynamic Coupling of Seakeepingand Sloshing, In Thirteeth International Offshore and Polar EngineeringConference, Honolulu, Hawaii.

[5] Newman, J. (1989), Wave Effects on Vessels with Internal Tanks, In TwentiethInternational Workshop on Water Waves and Floating Bodies, pp. 201–204,Oystese, Norway.

[6] Lee, Y., Tan, M., and Temarel, P. (2008), Coupling between ship motion andsloshing using potential flow analysis, In Eighth International Conference onHydrodynamics, Nantes, France.

[7] McTaggart, K. (2002), Three Dimensional Ship Hydrodynamic CoefficientsUsing the Zero Forward Speed Green Function, (DRDC Atlantic TM 2002-059)Defence Research and Development Canada – Atlantic.

[8] McTaggart, K. (2003), Hydrodynamic Forces and Motions in the Time Domainfor an Unappended Ship Hull, (DRDC Atlantic TM 2003-104) DefenceResearch and Development Canada – Atlantic.

[9] Molin, B., Remy, F., Rigaud, S., and de Jouette, C. (2002), LNG-FPSO’s:Frequency Domain, Coupled Analysis of Support and Liquid Cargo Motions, InInternational Maritime Association of the Mediterranean Conference,Rethymnon, Greece.

[10] Nam, B.-W., Kim, Y., Kim, D.-W., and Kim, Y.-S. (2009), Experimental andNumerical Studies on Ship Motion Responses Coupled with Sloshing in Waves,Journal of Ship Research, 53(2), 68–82.

[11] McTaggart, K. (2004), Appendage and Viscous Forces for Ship Motions inWaves, (DRDC Atlantic TM 2004-227) Defence Research and DevelopmentCanada – Atlantic.

38 DRDC Atlantic ECR 2011-084

Page 51: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

Symbols and Abbreviations

[A] ship added mass matrix due to fluid external to ship

[Aslosh] ship added mass matrix due to tank sloshing

[Atank−fl] tank total fluid added mass matrix (vertical origin at fluid line)

a wave amplitude

B beam

[B] ship damping matrix due to fluid external to ship

[Bslosh] ship damping matrix due to tank sloshing

[Btank−fl] tank fluid damping matrix for vertical origin at fluid line

[b(U)] ship speed-dependent damping matrix

[C] ship stiffness matrix due to fluid external to ship

Cd hull roll drag coefficient

Chulleddy hull roll eddy drag coefficient

[Cslosh] ship stiffness matrix due to tank sloshing

CG centre of gravity

[c(U)] ship speed-dependent stiffness matrix

{FD} diffracted wave force vector

{FI} incident wave force vector

F hull−eddy4 hull eddy damping roll moment

GM ship metacentric height

G(~x, ~xs) Green function for fluid domain location at ~x and source at ~xs

g gravitational acceleration

Hs significant wave height

hfluid height of fluid in sloshing tank relative to tank bottom

htank total height of tank

[K] hull retardation function matrix

[Kslosh] sloshing retardation function matrix

k wavenumber

DRDC Atlantic ECR 2011-084 39

Page 52: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

L ship length between perpendiculars

Ltank longitudinal length of sloshing tank

[M ] ship mass matrix

[M tank−fl] tank fluid inertia matrix (vertical origin at tank fluid line)

mtank mass of fluid in sloshing tank

mtank44 roll inertia of fluid in sloshing tank

nflj normal component pointing into tank fluid for mode j

nx, ny, nz components of normal vector pointing into tank fluid

RAO response amplitude operator

St interior surface of sloshing tank

T draft

Tmid draft at midships

Tp peak wave period

t time

tstern ship trim by stern

U forward ship speed

Vfluid tank fluid volume

wtank tank width along ship lateral axis

~x location in fluid domain

~xs source location

x, y, z translating earth coordinates with origin at ship CG

xf , yf earth-fixed horizontal plane coordinates

xt, yt sloshing tank local horizontal plane coordinates

xfpt longitudinal centroid of sloshing tank waterplane

zbl elevation above ship baseline

ztankbl elevation of tank bottom above baseline

zfl elevation above tank fluid level

βs relative sea direction

40 DRDC Atlantic ECR 2011-084

Page 53: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

γ JONSWAP spectrum peak enhancement factor

εtank tank flow damping coefficient

εtank peak tank flow damping coefficient

ηj motion displacement for mode j in translating-earth coordinates

ηTDj motion displacement in time domain for mode j

η4 roll motion amplitude

λn wavelength for natural sloshing frequency ωn

ν wave heading (from)

ρtank density of fluid in sloshing tank

σj source strength for ship motion mode j

τ delay time for retardation function

τmax maximum delay time for retardation function

Φ flow velocity potential in time domain

φj frequency domain flow potential for mode j unit amplitude motion

χ ship heading (to)

ω4 ship roll natural frequency

ωe wave encounter frequency

ω∗e maximum encounter frequency for evaluation of retardation function

ωεlower lower frequency for peak fluid damping

ωn natural sloshing frequency for sloshing mode number n

ωεupper upper frequency for peak fluid damping

4 ship mass displacement

DRDC Atlantic ECR 2011-084 41

Page 54: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

This page intentionally left blank.

42 DRDC Atlantic ECR 2011-084

Page 55: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

DOCUMENT CONTROL DATA(Security markings for the title, abstract and indexing annotation must be entered when the document is Classified or Designated.)

1. ORIGINATOR (The name and address of the organization preparing thedocument. Organizations for whom the document was prepared, e.g. Centresponsoring a contractor’s report, or tasking agency, are entered in section 8.)

Defence Research and Development Canada –AtlanticPO Box 1012, Dartmouth NS B2Y 3Z7, Canada

2a. SECURITY MARKING (Overall securitymarking of the document, includingsupplemental markings if applicable.)

UNCLASSIFIED2b. CONTROLLED GOODS

(NON-CONTROLLEDGOODS)DMC AREVIEW: GCEC JUNE 2010

3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriateabbreviation (S, C or U) in parentheses after the title.)

Modelling of Sloshing in Free Surface Tanks for ShipMo3D Ship Motion Predictions

4. AUTHORS (Last name, followed by initials – ranks, titles, etc. not to be used.)

McTaggart, K.

5. DATE OF PUBLICATION (Month and year of publication ofdocument.)

January 2012

6a. NO. OF PAGES (Totalcontaining information.Include Annexes,Appendices, etc.)

56

6b. NO. OF REFS (Totalcited in document.)

11

7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enterthe type of report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period iscovered.)

External Client Report

8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development –include address.)

Canadian Coast Guard Major Crown Projects DirectorateOttawa

9a. PROJECT OR GRANT NO. (If appropriate, the applicableresearch and development project or grant number underwhich the document was written. Please specify whetherproject or grant.)

11ge01

9b. CONTRACT NO. (If appropriate, the applicable number underwhich the document was written.)

10a. ORIGINATOR’S DOCUMENT NUMBER (The officialdocument number by which the document is identified by theoriginating activity. This number must be unique to thisdocument.)

DRDC Atlantic ECR 2011-084

10b. OTHER DOCUMENT NO(s). (Any other numbers which maybe assigned this document either by the originator or by thesponsor.)

11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by securityclassification.)( X ) Unlimited distribution( ) Defence departments and defence contractors; further distribution only as approved( ) Defence departments and Canadian defence contractors; further distribution only as approved( ) Government departments and agencies; further distribution only as approved( ) Defence departments; further distribution only as approved( ) Other (please specify):

12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspondto the Document Availability (11). However, where further distribution (beyond the audience specified in (11)) is possible, a widerannouncement audience may be selected.)

Page 56: Modelling of Sloshing in Free Surface Tanks for ShipMo3D

13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highlydesirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of thesecurity classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), or (U). It isnot necessary to include here abstracts in both official languages unless the text is bilingual.)

Ship roll motions in waves can be significantly influenced by the presence of tanks containingliquids, which experience sloshing. Sloshing effects must be considered when transporting liquidcargo; however, sloshing can also be used to advantage. Many vessels have specially designedflume tanks to provide passive roll stabilization. This report describes the implementation ofa model of fluid sloshing in tanks for the ShipMo3D ship motion library. The sloshing modelis based on potential flow, giving a solution that is computationally efficient and robust. Thepotential flow model includes a simplified treatment of flow damping arising from viscous effects.The tank sloshing model has been implemented for computations in both the frequency and timedomains. Example computations for a generic frigate demonstrate the reduction of roll motionsusing a flume tank.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and couldbe helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such asequipment model designation, trade name, military project code name, geographic location may also be included. If possible keywordsshould be selected from a published thesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified.If it is not possible to select indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

frequency domainrollship motionssimulationsloshingtime domainwaves