module 8 non equilibrium thermodynamics. lecture 8.1 basic postulates

43
Module 8 Non equilibrium Thermodynamic s

Upload: robert-bradley

Post on 27-Mar-2015

222 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

Module 8

Non equilibrium Thermodynamics

Page 2: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

Lecture 8.1

Basic Postulates

Page 3: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

NON-EQUILIRIBIUM THERMODYNAMICS

Steady State processes. (Stationary)

Concept of Local thermodynamic eqlbm

Heat conducting bar

define propertiesSpecific property

Extensive property

z

m

Zm 0lim

Page 4: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

NON-EQLBM THERMODYNAMICS

Postulate I

Although system as a whole is not in eqlbm., arbitrary small elements of it are in local thermodynamic eqlbm & have state fns. which depend on state parameters through the same relationships as in the case of eqlbm states in classical eqlbm thermodynamics.

Page 5: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

NON-EQLBM THERMODYNAMICS

Postulate II

JFS Entropy gen rate

affinities fluxes

Page 6: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

NON-EQLBM THERMODYNAMICS

Purely “resistive” systems

Flux is dependent only on affinityat any instant

at that instant

System has no “memory”-

Page 7: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

NON-EQLBM THERMODYNAMICS

Coupled Phenomenon

.;,,, 210 propextensiveFFFJJ

Since Jk is 0 when affinities are zero,

jiijkji

jj

jkk FFLFLJ!2

1

Page 8: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

NON-EQLBM THERMODYNAMICS

where0

2

0

;

ji

ijj

j FF

JL

F

JL

kinetic Coeff ,, 10 FFLL jkjk

Postulate IIIRelationship between affinity & flux from ‘other’ sciences

Page 9: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

NON-EQLBM THERMODYNAMICS

Heat Flux :

Momentum :

Mass :

Electricity :

y

TC

y

TkJQ

y

u

y

uJM

y

cDJm

y

EJ e

Page 10: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

NON-EQLBM THERMODYNAMICS

Postulate IV

Onsager theorem {in the absence of magnetic fields}

kjjk LL

Page 11: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

NON-EQLBM THERMODYNAMICS

Entropy production in systems involving heat Flow

T1 T2x

dx

A

Page 12: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

NON-EQLBM THERMODYNAMICS

x

T

T

k

T

JJ Qs

A

Q

x

TkJQ

Entropy gen. per unit volume

dx

JJ xss dxx ,

Page 13: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

NON-EQLBM THERMODYNAMICS

dx

TTJ

xdxxQ

11

dx

dT

T

J

Tdx

dJ QQ

2

1

dx

dT

T

JS QQ

2

Page 14: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

NON-EQLBM THERMODYNAMICS

Entropy generation due to current flow :

Idx

A

IJ e

dx

dE

A

IJ e

Heat transfer in element length

dxdx

dEIQ

Page 15: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

NON-EQLBM THERMODYNAMICS

Resulting entropy production per unit volume

dx

dE

T

J

dxAT

QS ee

.

Page 16: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

NON-EQLBM THERMODYNAMICS

Total entropy prod / unit vol. with both electric & thermal gradients

dx

dE

T

Je

dx

dT

T

JSSS QeQ

2

eeQQ FJFJ .

affinity affinity

Page 17: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

NON-EQLBM THERMODYNAMICS

dx

dT

TFQ 2

1

dx

dE

TFe

1

Page 18: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

Analysis of thermo-electric circuits

Addl. Assumption : Thermo electric phenomena can be taken as LINEAR RESISTIVE SYSTEMS

J

jjKK FLJ {higher order terms negligible}

Here K = 1,2 corresp to heat flux “Q”, elec flux “e”

Page 19: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

Analysis of thermo-electric circuits

Above equations can be written as

eQeQQQQ FLFLJ

eeeQeQe FLFLJ

Substituting for affinities, the expressions derived earlier, we get

dX

dE

TL

dX

dT

T

LJ Qe

QQQ

12

dX

dE

TL

dX

dT

T

LJ ee

eQe

12

Page 20: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

Analysis of thermo-electric circuits

We need to find values of the kinetic coeffs. from exptly obtainable data.

Defining electrical conductivity as the elec. flux per unit pot. gradient under isothermal conditions we get from above

dX

dE

dX

dE

T

LJ eee

TLee

Page 21: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

End of Lecture

Page 22: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

Lecture 8.2

Thermoelectric phenomena

Page 23: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

Analysis of thermo-electric circuits

The basic equations can be written as

eQeQQQQ FLFLJ

eeeQeQe FLFLJ

Substituting for affinities, the expressions derived earlier, we get

dX

dE

TL

dX

dT

T

LJ Qe

QQQ

12

dX

dE

TL

dX

dT

T

LJ ee

eQe

12

Page 24: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

Analysis of thermo-electric circuits

We need to find values of the kinetic coeffs. from exptly obtainable data.

Defining electrical conductivity as the elec. flux per unit pot. gradient under isothermal conditions we get from above

dX

dE

dX

dE

T

LJ eee

TLee

Page 25: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

Analysis of thermo-electric circuits

Consider the situation, under coupled flow conditions, when there is no current in the material, i.e. Je=0. Using the above expression for Je we get

dX

dE

T

L

dX

dT

T

LeeeQ

20

ee

eQ

JLT

L

dXdT

dXdE

e

0

Seebeck effect

Page 26: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

Analysis of thermo-electric circuits

or

ee

eQ

J LT

L

dT

dE

e

0

0eJdT

dESeebeck coeff.

2TLTL eeeQ

Using Onsager theorem2TLL eQQe

Page 27: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

Analysis of thermo-electric circuits

Further from the basic eqs for Je & JQ, for Je = 0

we get

dX

dT

LT

L

T

L

dX

dT

T

LJ

ee

eQQeQQQ 2

dX

dT

TL

LLLL

ee

QeeQQQee

2

Page 28: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

Analysis of thermo-electric circuits

For coupled systems, we define thermal conductivity as

0

eJ

Q

dXdT

Jk

This gives

2TL

LLLLk

ee

eQQeQQee

Page 29: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

Analysis of thermo-electric circuits

Substituting values of coeff. Lee, LQe, LeQ

calculated above, we get

22 TTkTLQQ

TkT 22

Page 30: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

Analysis of thermo-electric circuits

Using these expressions for various kinetic coeff in the basic eqs for fluxes we can write these as :

dX

dET

dX

dTTkJQ 2

dX

dE

dX

dTJe

Page 31: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

Analysis of thermo-electric circuits

We can also rewrite these with fluxes expressed as fns of corresponding affinities alone :

eQ JTdX

TkJ

Qe JTkdX

dE

Tk

kJ

22

Using these eqs. we can analyze the effect of coupling on the primary flows

Page 32: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

PETLIER EFFECT

Under Isothermal Conditions

a b

JQ, ab

JedX

dEJ e

Heat flux

ebQbeaQa JTJJTJ ;

Page 33: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

PETLIER EFFECT

Heat interaction with surroundings

ebabQaQbaQ JTJJJ

eab JeffPeltier .

baab T

Peltier coeff.

Kelvin Relation

Page 34: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

PETLIER REFRIGERATORFebCua ::

KVeu FC

07.13

KTAmpJ baQ 270~.20?

WAmpKK

V074.202707.13

Kv

PNTeBi

ba 423

:32

conductorsSemi

Page 35: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

THOMSON EFFECT

Total energy flux thro′ conductor is

EJJJ eQE JQ, surr

Je

JQ

Je

JQdx

Using the basic eq. for coupled flows

EJJTx

TkJ eeE

eJETx

Tk

Page 36: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

THOMSON EFFECT

The heat interaction with the surroundings due to gradient in JE

is

dxdx

JdJJJd EEEsurrQ xdxx

,

dxJETx

Tk

dx

de

Page 37: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

THOMSON EFFECT

Since Je is constant thro′ the conductor

dx

dT

dx

dk

x

Tk

dx

Jd surrQ

2

2,

dx

dE

dx

dT

dx

dTJe

Page 38: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

THOMSON EFFECT

Using the basic eq. for coupled flows, viz.

dx

dE

dx

dTJ e

above eq. becomes (for homogeneous material, ..; const

dx

dTconstk

2

, ee

surrQ J

dx

dJT

dx

dJ

Thomson heat Joulean heat

Page 39: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

THOMSON EFFECT

dx

dJT e

reversible heating or cooling experienced due to current flowing thro′ a temp gradient

dx

dTJJ eTQ ,

dT

dT

Thomson coeff

Comparing we get

Page 40: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

THOMSON EFFECT

We can also get a relationship between Peltier, Seebeck & Thomson coeff. by differentiating the exp. for ab derived earlier, viz.

Tbaab

dT

d

dT

dT

dT

d baba

ab

baba

Page 41: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

End of Lecture

Page 42: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

Analysis of thermo-electric circuits

Above equations can be written as

eQeQQQQ FLFLJ

eeeQeQe FLFLJ

Substituting for affinities, the expressions derived earlier, we get

dX

dE

TL

dX

dT

T

LJ Qe

QQQ

12

dX

dE

TL

dX

dT

T

LJ ee

eQe

12

Page 43: Module 8 Non equilibrium Thermodynamics. Lecture 8.1 Basic Postulates

Analysis of thermo-electric circuits

We need to find values of the kinetic coeffs. from exptly obtainable data.

Defining electrical conductivity as the elec. flux per unit pot. gradient under isothermal conditions we get from above

dX

dE

dX

dE

T

LJ eee

TLee