morex’ray%fluorescence%analysisnotes% - …phys352/more_xrf.pdf ·  · 2011-03-06microsoft word...

3
More XRay Fluorescence Analysis Notes M.C. Chen PHYS 352 Queen’s University Physics The Amptek ECLIPSEIII xray generator used in the lab allows you to set the high voltage used to accelerate electrons in the xray tube that strike a silver target. The energy of those electrons determines the energy spectrum of xrays emitted by the tube. When 30 kV is used, the spectrum that is emitted is shown in Figure 1 below (from the ECLIPSEIII manual). Figure 1. Xray spectrum from the ECLIPSEIII generator when 30 kV is used to accelerate the electrons inside the tube. As expected, the xray tube emits bremsstrahlung xrays (the broad continuum that peaks around 8 keV) and can also emit the characteristic xrays from the target silver atoms. The older supplementary notes for this lab mention a radioactive source that was used previously to produce the xrays for this lab. Those notes (still useful and completely relevant to the analysis apart from the different source of xrays) discuss the photoelectric cross section for xrays to excite Cu and Zn; but the values given are for the xray energy from the previous source. To complete your xray fluorescence lab analysis properly, you will need to know the cross section for xrays to excite Cu and Zn, for xray energies emitted by the tube. This depends on the high voltage used because that determines the energy of the electrons that bombard the Ag target inside the xray tube and the resultant energy spectrum of the xrays from the tube.

Upload: vantruc

Post on 18-Mar-2018

220 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: MoreX’Ray%Fluorescence%AnalysisNotes% - …phys352/more_xrf.pdf ·  · 2011-03-06Microsoft Word - More XRF.docx Author: Mark Chen Created Date: 3/6/2011 9:58:23 PM

More  X-­Ray  Fluorescence  Analysis  Notes    M.C.  Chen  PHYS  352  Queen’s  University  Physics    The  Amptek  ECLIPSE-­‐III  x-­‐ray  generator  used  in  the  lab  allows  you  to  set  the  high  voltage  used  to  accelerate  electrons  in  the  x-­‐ray  tube  that  strike  a  silver  target.    The  energy  of  those  electrons  determines  the  energy  spectrum  of  x-­‐rays  emitted  by  the  tube.    When  30  kV  is  used,  the  spectrum  that  is  emitted  is  shown  in  Figure  1  below  (from  the  ECLIPSE-­‐III  manual).    

 Figure  1.  X-­‐ray  spectrum  from  the  ECLIPSE-­‐III  generator  when  30  kV  is  used  to    accelerate  the  electrons  inside  the  tube.  

 As  expected,  the  x-­‐ray  tube  emits  bremsstrahlung  x-­‐rays  (the  broad  continuum  that  peaks  around  8  keV)  and  can  also  emit  the  characteristic  x-­‐rays  from  the  target  silver  atoms.    The  older  supplementary  notes  for  this  lab  mention  a  radioactive  source  that  was  used  previously  to  produce  the  x-­‐rays  for  this  lab.    Those  notes  (still  useful  and  completely  relevant  to  the  analysis  apart  from  the  different  source  of  x-­‐rays)  discuss  the  photoelectric  cross  section  for  x-­‐rays  to  excite  Cu  and  Zn;  but  the  values  given  are  for  the  x-­‐ray  energy  from  the  previous  source.    To  complete  your  x-­‐ray  fluorescence  lab  analysis  properly,  you  will  need  to  know  the  cross  section  for  x-­‐rays  to  excite  Cu  and  Zn,  for  x-­‐ray  energies  emitted  by  the  tube.    This  depends  on  the  high  voltage  used  because  that  determines  the  energy  of  the  electrons  that  bombard  the  Ag  target  inside  the  x-­‐ray  tube  and  the  resultant  energy  spectrum  of  the  x-­‐rays  from  the  tube.        

! "

!!

!!#$%&'!()'!*)+(+%!'%,*+$%(!-+..+/0!()'!'.'&(1+%!'%'1234!-.5+1'0&'%&'!&6%!7'!1'0(1$&(',!(+!6!16%2'!+-!6(+8$&!%587'10!73!&)++0$%2!()'!6&&'.'16($%2!9+.(62'!/$()!96.5'!$%!:$.+9+.(0!()6(!';&'',0!()'!';&$(6($+%!'%'123!+-!()'!'.'&(1+%!0)'..4!/)'1'!()'!96&6%&3!0)+5.,!7'!*1+,5&',4!$%!:$.+'.'&(1+%9+.(0<!=+1!';68*.'4!()'!9+.(62'!+-!>?!:@!&6%!';&$('!()'!AB0'1$'0!+-!6(+80!+-!*6..6,$58!CD!E!FGH!/$()!()'!';&$(6($+%!'%'123!+-!()'!AB0)'..!>F<F!:'@4!75(!/+5.,!7'!50'.'00!(+!*1+,5&'!()'!AB0'1$'0!+-!0$.9'1!CD!E!FIH!/$()!()'!';&$(6($+%!'%'123!+-!()'!AB0)'..!>?<G!:'@<!! II.3. Sample Holder J!068*.'!)+.,'1!$0!6!&$1&5.61!-168'!/$()!()1''!0&1'/0!(+!*+0$($+%!()'!(612'(!$%!()'!9'1($&6.!*.6%'!*'1*'%,$&5.61!(+!()'!*.6%'!/$()!()'!;B163!7'68!-1+8!()'!;B163!(57'!6%,!()'!,$1'&($+%!-1+8!()'!(612'(!(+!6!,'('&(+1<!J..!0(6%,61,!068*.'0!61'!'$()'1!*1+,5&',!$%!6!0)6*'!+-!6!()$%!&3.$%,'1!+1!6!&$1&5.61!*.6('!!0(5&:!(+!6!*.60($&!1$%2<!K)'1'!$0!6!*1+(16&(+1!0&6.'!5%,'1!()'!)+.,'1!(+!&)6%2'!()'!+1$'%(6($+%!+-!()'!(612'(!*.6%'!/$()!1'0*'&(!(+!()'!$%&$,'%(!7'68<!!II.4. Detector and Processor!K)'!J8*(':!L%&<!MB163!,'('&(+10!MNBOPPQN!61'!50$%2!#$BRLS!,$+,'0!600'87.',!60!0)+/%!$%!=$2<I<!Some specifications of XR-100CR >B0(62'!&++.'1!OT!88>!U!TPP! 8!O<P!8$.!C>?! 8H!V'!!>PP!B!>>P!'@!C6&&+1,$%2!(+!()'!W6%5-6&(51'1H!RUV!N6($+X!??PUO!CFPPPUO!/$()!';('1%6.!&+..$86(+1H!YK)'!R'6:!(+!V6&:21+5%,!CRUVH!N6($+!$0!()'!16($+!!+-!()'!&+5%(0!6(!()'!?<"!:'@!*'6:!(+!()'!&+5%(0!!6(!67+5(!>!:'@Z<!!

!

!

=L[<GX!C6H!MB163!(57'!6%,!)$2)B9+.(62'!*+/'1!05**.3!/$()!()'!&+%(1+..'1!7+;<!!!!!!!!!!!!C7H!MB163!0*'&(158!*1+,5&',!73!()'!;B163!0+51&'!/$()!TP:@!9+.(62'!6%,!OPP J!&511'%(!

=L[<IX!J!5%$(!&+%(6$%$%2!()'!#$!RLS!,$+,'!6%,!6!R'.($'1!&++.'1!'96&56(',!6%,!*1+('&(',!/$()!6!V'13..$58!/$%,+/!

Page 2: MoreX’Ray%Fluorescence%AnalysisNotes% - …phys352/more_xrf.pdf ·  · 2011-03-06Microsoft Word - More XRF.docx Author: Mark Chen Created Date: 3/6/2011 9:58:23 PM

 It  is  recommended  that  you  operate  the  x-­‐ray  tube  at  20  kV  instead  of  the  30  kV  that  it  is  capable  of  (and  from  which  the  spectrum  in  Figure  1  was  produced).    Why  is  that?    Below  21  kV,  the  electrons  cannot  excite  the  Ag  atoms  (K  shell)  in  the  target.    The  only  energetic  x-­‐rays  emitted  from  the  silver  target  in  the  tube  will  be  from  bremsstrahlung.    The  bremsstrahlung  spectrum  has,  approximately,  the  functional  form:    N(E)  =  k  (Emax  –  E)  /  E    and  what  causes  the  turnover  at  low  energies  is  absorption  inside  the  x-­‐ray  tube  (in  the  target  itself,  through  the  window,  and  through  deliberate  “filters”  in  the  x-­‐ray  tube  designed  to  eliminate  the  not-­‐so-­‐useful  low-­‐energy  x-­‐rays).    Thus,  whether  a  voltage  of  20  kV  or  30  kV  is  used,  the  x-­‐ray  spectrum  from  the  ECLIPSE-­‐III  will  start  to  turnover  around  8  keV.    Now,  below  the  “K  edge”  in  Cu  and  Zn,  x-­‐rays  cannot  fluoresce  the  K  x-­‐rays  from  Cu  and  Zn,  so  we  don’t  need  to  know  the  precise  details  of  the  turnover  because  x-­‐rays  at  energies  lower  than  ~9  keV  aren’t  relevant.    Figure  2  shows  the  cross  section  for  Cu  (left)  and  Zn  (right)  as  a  function  of  energy  (x-­‐ray  cross  section  data  from  the  5th  floor  lab).    

 Figure  2.  X-­‐ray  cross  sections  on  Cu  (left)  and  Zn  (right)  versus  x-­‐ray  energy.  The  K  edge  is  clearly  visible  in  the  plots.    

Reading  values  off  the  plots  in  Figure  2,  one  finds  a  power  law  of  about  E–2.7  for  the  cross  section  between  10-­‐20  keV.    For  the  XRF  lab  analysis,  it  will  be  a  good  

Page 3: MoreX’Ray%Fluorescence%AnalysisNotes% - …phys352/more_xrf.pdf ·  · 2011-03-06Microsoft Word - More XRF.docx Author: Mark Chen Created Date: 3/6/2011 9:58:23 PM

approximation  to  find  the  average  cross  section  for  x-­‐rays  on  Cu  and  Zn  atoms,  integrated  over  the  bremsstrahlung  spectrum,  by  taking  the  integral  from  the  K  edge  up  to  20  keV.    Reading  values  off  the  table  and  doing  a  little  math:  

(20 − E)E

CE−2.7

Kedge

20

∫ dE

(20 − E)EKedge

20

∫ dE  

I  can  get  a  value  for  the  average  photoelectric  cross  section  on  Cu  and  on  Zn,  for  x-­‐ray  energies  originating  from  a  bremsstrahlung  spectrum  that  starts  from  the  appropriate  K  edge  value  for  Cu  and  Zn,  and  goes  to  20  keV.    The  calculated  average  cross  sections  (for  the  20  kV  bremsstrahlung  spectrum):  σCu  =  1.5945  x  104  barns  σZn  =  1.5926  x  104  barns    These  values  are  really  so  close  that  we  will  take  them  as  being  equal.    There  are  approximations  used  in  this  calculation  that  won’t  be  precise  out  to  the  third  decimal  place.    Thus,  in  the  XRF  lab  analysis,  take  σCu=σZn.    Note:  the  average  cross  section  values  over  a  spectrum  of  the  form  (Emax–E)/E  just  happened  to  be  equal  for  Cu  and  Zn,  when  Emax  =  20  keV.    But,  you  should  note  that  it  is  not  because  the  cross  sections  for  Cu  and  Zn  are  the  same.    For  example,  σCu  =  2.297  x  104  barns  at  10  keV  σZn  =  2.625  x  104  barns  at  10  keV  and  if  the  x-­‐ray  source  used  was,  instead,  a  monoenergetic  x-­‐ray  beam  of  10  keV,  you  would  need  to  account  for  the  different  photoelectric  cross  sections  on  Cu  and  Zn  in  the  analysis  (i.e.  the  probability  to  excite  a  Cu  atom  and  Zn  atom  could  differ,  and  hence  that  affects  the  intensity  of  the  fluorescence  x-­‐rays  from  Cu  and  Zn  that  is  observed).