motility in living matter julia yeomans university of oxford · 2013. 9. 24. · dmitri (mitya)...

51
Motility in Living Matter Julia Yeomans University of Oxford

Upload: others

Post on 10-Aug-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Motility in Living Matter

Julia Yeomans University of Oxford

Page 2: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Active matter

active systems operate out of thermodynamic equilibrium

molecular motors, cells bacteria, self-propelled colloids

birds, fish

Page 3: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Why is active matter interesting? 1. Statistical physics beyond

Boltzmann

2. Engineering applications

3. Medical applications

Active matter

Page 5: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Why is active matter interesting? 1. Statistical physics beyond

Boltzmann

2. Engineering applications

3. Medical applications

Why is it interesting now? 1. Better microscopy

2. Nanotechnology

3. Faster computers

Active matter

Page 6: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Swimmers

http://mcb.harvard.edu/Faculty/Berg.html

Page 7: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

inertial terms viscous terms

Page 8: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

inertial terms viscous terms

10-6

10-6

106

Page 9: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Stokes equations

Page 10: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Purcell’s Scallop Theorem

No time dependence implies the Scallop Theorem

A swimming stroke must not be invariant under time reversal

Page 11: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Purcell’s Scallop Theorem

A swimmer strokes must be non-invariant under time reversal

Page 12: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Model swimmers

three sphere swimmer Najafi and Golestanian,

Snake swimmer

Page 13: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

a generalised three sphere swimmer

Page 14: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

dipolar swimmer Green function of the Stokes equation

Maciej Lisicki http://www.fuw.edu.pl/~mklis/publications/Hydro/oseen.pdf

Stokeslet

Page 15: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

dipolar swimmer Green function of the Stokes equation

F

Page 16: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

z

r r1

r2

ϑ

Dipolar far flow field

F F

Page 17: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Far flow field of a swimmer

Swimmers have dipolar far flow fields because they have no net force acting on them

Page 18: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Swimmer and colloidal flow fields

Page 19: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Dipolar flow field

puller (contractile) pusher (extensile)

Page 20: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

E-coli

Chlamydomonas

Goldstein group, University of Cambridge

Page 21: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Dresher et al, PRL 105 (2010) PNAS 108 (2011)

Volvox

Page 22: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Volvox Goldstein group, Cambridge

Page 23: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Do small swimmers mix the ocean? K. Katija, J.O. Dabiri, G. Subramanian,

A.M. Leshansky, L.M. Pismen, A.W. Visser

Page 24: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:
Page 25: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:
Page 26: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Dipole flow field

Multipole flow fields

Page 27: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Dipole flow field

Multipole flow fields

dipole loop

Page 28: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Dipole flow field

Multipole flow fields

dipole loop

quadrupole loop

Page 29: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Guasto website

Page 30: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Bacteria

Page 31: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Bacteria

vorticity

Wensink, Dunkel, Heidenreich, Dresher, Goldstein, Lowen, Yeomans, PNAS 2012

Page 32: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Discrete simulations

Wensink, Dunkel, Heidenreich, Dresher, Goldstein, Lowen, Yeomans, PNAS 2012

Page 33: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Driven grains

V Narayan, S Ramaswamy, N Menon - Science, 2007

Page 34: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Fish?

Page 35: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Molecular motors

Inner life of a cell You tube

Page 36: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Molecular motors

Sanchez, Chen, DeCamp, Heymann, Dogic, Nature 2012

Page 37: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Velocity increases with activity Length scale controlling decay of <vv> independent of activity

Molecular motors

Sanchez, Chen, DeCamp, Heymann, Dogic, Nature 2012

Page 38: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Liquid crystals

Page 39: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

cholesterics

Topological defects

Page 40: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Continuum equations of active nematics

Liquid crystal equations of motion + additional term in the stress tensor

Hatwalne, Ramaswamy, Rao, Simha, PRL 2003

Consequence of a dipolar source term

Page 41: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Continuum equations of active nematics

Liquid crystal equations of motion + additional term in the stress tensor

Hatwalne, Ramaswamy, Rao, Simha, PRL 2003

Gradients in the order parameter field induce a flow

Nematic state is unstable

Page 42: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Active turbulence in extensile suspensions

Page 43: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Velocity increases with activity Length scale controlling decay of <vv> independent of activity

Molecular motors

Sanchez, Chen, DeCamp, Heymann, Dogic, Nature 2012

Page 44: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

<vv>: simulations

Page 45: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

microtubule bundles driven by molecular motors

Topological defects in active systems

L. Giomi, M.J. Bowick, Ma Xu, M.C. Marchetti, PRL 110, 228101 Sanchez, Chen, DeCamp, Heymann, Dogic, Nature 2012

Page 46: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:
Page 47: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Defect dynamics: steady state

independent of activity

Page 48: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Active nematics

Experimental and simulation evidence that defects control active turbulence

Predicting the rate of defect formation? Predicting the cross section for annihilation? Varying concentration? How generic is this picture?

Page 49: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

liquid crystals

cosmic strings in the early universe

crystal dislocations

magnetic monopoles in spin ice topological insulators quantum vortex in a superfluid

Page 50: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Active matter

active systems operate out of thermodynamic equilibrium

molecular motors, cells bacteria, self-propelled colloids

birds, fish

Page 51: Motility in Living Matter Julia Yeomans University of Oxford · 2013. 9. 24. · Dmitri (Mitya) Pushkin University of Oxford Jorn Dunkel MIT Henry Shum University of Pittsburgh Funding:

Dmitri (Mitya) Pushkin University of Oxford

Jorn Dunkel MIT

Henry Shum University of Pittsburgh

Funding: ERC Advanced Grant

Sumesh Thampi University of Oxford

Ramin Golestanian University of Oxford

Pushkin, Shum, Yeomans, J. Fluid Mechanics 726 (2013) 5 Pushkin, Yeomans, arXiv:1307.6025 Thampi, Golestanian, Yeomans Phys. Rev. Lett. Sept 13