motivationmotivation search for permanent electric dipole moments of atoms (fr) parity...

18
Stark Effect Motivation Search for permanent electric dipole moments of atoms (Fr) Parity nonconservation (Cs forbiden transition) Tests of Standard Model Stark Effect Interaction between electric field and atoms Spectroscopic data of polarizability Particularly for alkali atoms needed

Upload: others

Post on 27-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Stark Effect Motivation

    Search for permanent electric dipole moments of atoms (Fr) Parity nonconservation (Cs forbiden transition)

    Tests of Standard Model

    Stark EffectInteraction between electric field and atoms

    Spectroscopic data of polarizabilityParticularly for alkali atoms

    needed

  • MotivationAlkali atoms: simple atomic structure Precise theoretical calculation possible

    Systematic studyRelativistic effectCore contribution

    Precise polarizability data : needed For tests of calculation

  • MotivationStark effect: strong electric field

    Difficult to produce strong field

    Less study for Stark effectEven for alkali atoms

    Toho university:Systematic study of Stark effect for alkali atoms

    Li, K, Rb, CsBy high-resolution spectroscopy

  • TheoryStark Effect

    EpHrr

    ⋅−= ∑−=j

    jreprr P: electric dipole

    momentE: electric field

    ( )mFJ ,,γ

    αs : scalar polarizabilityαt : tensor polarizability

    ( ) 221 EW ts γαα +−=Δ

    2EW ∝Δ

    ←2nd-order perturbation

    Energy Shift

    ∑ −=Δ j jiji

    EE

    HW

    2φφ

    Wave function

  • TheoryStark shift < HFS

    ( ) ( )[ ] ( ) ( ) ( )[ ]( )( ) ( ) ( )121222321141313,,

    2

    −−++++−−+−

    =JJFFFF

    JJFFXXFFmmFJ Fγ

    ( ) ( ) ( )111 +−+++= IIJJFFX

    J=1/2 αt =0

    J: electronic angular momentF: total angular moment of atomI: nuclear spinmF : magnetic quantum number

    J≧1 αt , αs

    shift

    Shift+split

    (J,F)(J,F’)

    (J,F’,|mF |)(J,F)

  • Experimental Setup

    Atomic Beam SourceBaffle Baffle

    Laser BeamPhotomultiplier

    Electrode2~3mm

    AtomicBeam

    Lens

    Mirror

    SphericalMirror

    Filter

    Wavemeter

    Lens

    MirrorBeamSplitter

    BeamSplitter

    Semiconductor Laser

    Photodiode

    Fabry-PerotInterferometer

    Φ6mm 1.5m

    Strong Field

    High Resolution

  • Separated Electrode System

    2.0㎜Atomic beam

    Laser

    ・Two Electrodes: Separated

    Less electric dischargeStronger field

    ・Hard to measure distance

  • Compact Electrode System

    distance between electrodes: stable

    Stable & uniform field

    Independent of flangeEasy to set

    Atomic beam

    Laser

  • Internal Focus System

    Interaction region~

  • Transitions Measured for Rb

    D1 D2

    5s

    5p 2P1/2

    2P3/2

    2S1/2

    5s 2S1/2

    →5p 2P1/2 (794.8nm)

    D1

    5s 2S1/2

    →5p 2P3/2 (780.0nm)

    D2

  • Rel

    ativ

    e In

    tens

    ity [a

    rb.u

    nits

    ]

    Relative Frequency [GHz]0.0 2.0 4.0 6.0 8.0

    5s

    5p

    2P1/2

    2S1/2

    3

    2

    3

    2

    F

    3 4

    5 6

    85Rb I=5/2

    794.8 nm

    5s

    5p

    2P1/2

    2S1/2

    2

    1

    2

    1

    F

    1 2

    7 8

    87Rb I=3/2

    794.8 nm

    1

    34 6

    5

    782

    15MHz

    HFS Spectrum of Rb D1 Transition

  • 0 0.3 0.6 0.9 1.2 1.5 1.8

    0kV/cm

    81.5kV/cm

    Relative Frequency [GHz]

    Rel

    ativ

    e In

    tens

    ity [a

    rb.u

    nits

    ]

    5s

    5p

    2P1/2

    2S1/2

    794.8nm

    F

    3

    2

    3

    2

    3 4

    5 6

    8 5 R b I = 5 / 2

    3 4

    Stark Spectrum of Rb D1 transition

  • 0

    1 0 0

    2 0 0

    3 0 0

    4 0 0

    5 0 0

    0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0

    E2 〔(kV/cm)2〕

    -Sta

    rk S

    hift

    〔M

    Hz〕

    ( ) ( )[ ] 22/122/1221 ESPW ss αα −−=Δ

    Dependence of Stark shift on electric field D1 transition

  • HFS Spectrum of Rb D2 Transition R

    elat

    ive

    Inte

    nsity

    [arb

    .uni

    ts]

    Relative Frequency [GHz]2.01.0 3.0 4.00.0 5.0

    5p 2P3/2

    85Rb I=5/2

    5s 2S1/2

    780.0nm

    2

    2

    1

    3

    F

    3

    1

    2

    5

    6

    18MHz

    4

    3

    5p 2P3/2

    87Rb I=3/2

    5s 2S1/2

    780.0nm

    F

    2

    3

    23

    1

    4

    6.0

    89

    4 1210

    711

    85Rb

    87Rb

    87Rb

    85Rb

    321654

    987 10 11 12

  • 0.0kV/cm

    32.3kV/cm

    64.5kV/cm

    80.6kV/cm

    Relative Frequency [GHz]

    Rel

    ativ

    e In

    tens

    ity [a

    rb.u

    nits

    ]

    5s

    5p

    2P3/2

    2S1/2

    2

    1

    2

    1

    F

    780.0nm

    3

    0

    mF

    32

    10

    10

    3

    1

    2

    3

    0.2 0.4 1.21.00.80.6 1.40

    Stark Spectrum of Rb D2 Transition

  • E2 〔(kV/cm)2〕

    -Sta

    rk S

    hift

    〔M

    Hz〕

    0

    100

    200

    300

    400

    500

    600

    0 1000 2000 3000 4000 5000 6000 7000

    87Rb5s 2S1/2

    (F=2)→

    5p 2P3/2

    (F=3,|mF

    |)

    |mF

    |=0

    |mF

    |=1

    |mF

    |=2

    |mF

    |=3

    80.6kV/cm△

    Dependence of Stark Shift on Electric Field D2 Transition

    ( ) ( ) ( )[ ] 22/122/322/3221 ESPPW sts αγαα −+−=Δ

  • 110.6±0.9

    146±32

    -54.0±3.1

    -40±6

    Scalar & Tensor Polarizability Rb D1, D2 Transition

    α0 (2P3/2 ) – α0 (2S1/2 ) αt (2P3/2 )

    ⎥⎥⎦

    ⎢⎢⎣

    ⎡⎟⎠⎞

    ⎜⎝⎛

    2

    cmkVkHz

    ⎥⎥⎦

    ⎢⎢⎣

    ⎡⎟⎠⎞

    ⎜⎝⎛

    2

    cmkVkHz

    a: Richard Marrus, Douglas Mccolm and Joseph Yellen : Phys. Rev. 147, 55 (1966).b: Arthur Salop, Edword Pollack and Benjamin Bederson: Phys. Rev. 124, 1431 (1961).

    aa, b

    This Work

    Reference

    αs

    (2P1/2 ) – αs (

    2S1/2 )

    137.0±0.6

    121±18a

    D 1 D 2

    ⎥⎥⎦

    ⎢⎢⎣

    ⎡⎟⎠⎞

    ⎜⎝⎛

    2

    cmkVkHz

  • Summary

    1. High-resolution UV Laser SpectroscopyHFSSpecific mass shiftElectron densityElectronic configuration

    2. Stark EffectElectrode systemRb D1 and D2Stark shift and splittingScalar and tensor polarizability

    Stark Effect� MotivationMotivationMotivationTheory�Theory�Experimental SetupSeparated Electrode SystemCompact Electrode SystemInternal Focus SystemTransitions Measured for RbHFS Spectrum of Rb D1 Transition �Stark Spectrum of Rb D1 transitionDependence of Stark shift on electric field � D1 transition�HFS Spectrum of Rb D2 Transition Stark Spectrum of Rb D2 Transition�Dependence of Stark Shift on Electric Field � D2 TransitionScalar & Tensor Polarizability �Rb D1, D2 TransitionSummary