m'pendix do mati.u1b m·fileswiredspace.wits.ac.za/jspui/bitstream/10539/20553/3/abbot... · 2016....

59
M'PENDIX Do MATI.u1B M·FILES % This io called internally bv make_opsom % function [D]=d_oper(n,etahat,muhat): k=n+4: etahat=otahat(l:k,l:k): muhat=muhat(l:lt,l:k) : D=etahat*(etahat*muhat-eye(k,k»*muhat~2: 0=0(1 :n,l :n) : D.5.6 makeus om % % makeuo conotructs the polynomjoal ohift matricoo :for U and U 0 L % % [poly.•U,poly_T.u]"makeuo(n,U,Ll) j % % The l'eoulto of thio function lre panccd 0.0 argumonno to ooxl.m % function [poly_U,poly_LU]=makouo(n,U,L1)j k"nj [x,y]=oizt3(U): U(k)=O: poly_U=polyr(k,U): poly_LU=polyr(k,U*Ll): D.u.7 bc .n % Y. function (bc_o] =bc (n , eto.hat) '/. function [a]=bc(n,otahnt) amzoroo(n,n); otahat u otahnt(1:n,1:n)i ~l~chobvoc(l,n); vO=chebv9c(O,n): bi"vO; b'2"'vl i b3.:s (otnhat) *vO; b4'" (otnhat) *vl; bS-(otnho.t .~:) *vO: 0.(: ,l) tJ b2 i n.(:,2)cb4j % phi(O)"'O % phi(l)cO % 0 phi(O)=O % D phi (1)<20

Upload: others

Post on 11-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • M'PENDIX Do MATI.u1B M·FILES

    % This io called internally bv make_opsom%function [D]=d_oper(n,etahat,muhat):k=n+4:etahat=otahat(l:k,l:k):muhat=muhat(l:lt,l:k) :D=etahat*(etahat*muhat-eye(k,k»*muhat~2:0=0(1 :n,l :n) :

    D.5.6 makeus om

    %% makeuo conotructs the polynomjoal ohift matricoo :forU and U 0 L%% [poly .•U,poly_T.u]"makeuo(n,U,Ll) j%% The l'eoulto of thio function lre panccd 0.0 argumonno to ooxl.m%function [poly_U,poly_LU]=makouo(n,U,L1)jk"nj[x,y]=oizt3(U):U(k)=O:poly_U=polyr(k,U):poly_LU=polyr(k,U*Ll):

    D.u.7 bc .n

    %Y. function (bc_o]=bc (n , eto.hat)'/.function [a]=bc(n,otahnt)amzoroo(n,n);otahatuotahnt(1:n,1:n)i~l~chobvoc(l,n);vO=chebv9c(O,n):bi"vO;b'2"'vlib3.:s(otnhat) *vO;b4'" (otnhat) *vl;bS-(otnho.t.~:)*vO:0.(: ,l)tJb2 in.(:,2)cb4j

    % phi(O)"'O% phi(l)cO% 0 phi(O)=O% D phi (1)

  • i\PPBNDIX D, MNl'LAlJ ,'I-FILES

    D.5.3 lLoper .m

    %% Ll_OPER calculates the oporator L=D~2-1/r,D for the Sexl% equation, ill the transforrr,ad domain,%% This function is called internally by make_ops,m%'/.[L1J=l1_opor(n, otahat ,muhat) ;'/.function [Ll]cll_oper(n.etahat,muhat);k==n+4jotahat"'etaltat(1:k.l: k) jmuht'.t=muhat(1: It, 1:k) ;Ll"'otaha'~*(otahat*muhat+3*oye (k, It)) , , ,

    *muhat"2jLl=Ll(l:n,l:n);

    D.5.4 12_opor,m

    '/.'/.L2_0PER calcul~cos the operator L"2=(D"2-1/r,D)"2 for the Sexl% oqul).tion,in tl10 transformed domain,%'/,Thio function is called internally by make_opo,m%'/.[L2]=12_opor(n,etahat,muhat)i'/.function CL2]=12_opor(n,otahat,muhat)jk"'I1+4jetaho:t:..otahat (1:k ,1:k) imuhat=muhat(1:1t.l:k) j

    L2~otahat*( etnhnt"3*muhat"3+6*otahat "2*muhat "2+3>t

  • APl'BNDIX D. MATLMJ !lI·PILES

    % shift right 2 places%%%%%%%%%%%'1.'1.'1.%%%%%%'1.%'1.%'1.'1.%%%%%%%%%%'1.%%%%%% preform eigenvalue calculation %%%'I.%'I.'I.%%'I.%%%'I.%'I.%%%%%%'I.%%%%'I.%%%~%%%%%%%%%%%

    CAA,BB,Q,Z,VJ=qz(A,13)jAA=diag(AA)jBB=diag(BB) jI::::find(BB"=O)jAA=AA(I)iBB=BB(I)jV=V(J, :) iC;::,M./BBj[Y •IJ "'flort(imag(C)) j[r.,y]=size(I) ;J:"'I(l:x-j,,:)jeigval=C(I)jeigvoc"'V(:,J.)j

    D.5.2 ma.ltG.ops.1n

    'I.% mako_ops constructs tho oporo.tors L, L~2,mu,ota,lnu"3,p%% [Ll,L2,muhat,otahat,M,D]=mako_ops(n)j%'I. Thoso oporators are passod as arguments to sexl.m%:function [L1,L2,muhat,otahat,M,DJ=mako_ops(n)jIt"'n+20jmuhat=makomuhat (k) jetaho.t..makeetaho.t (It) jM-muho,t'"3 jL1",ll_opel'(n,etahat,muhat) jL2=12_opor (n ,otahat ,muhat) jnlt'ld_oper(n,otahat,muhat) jj'Jl",r.l(l:n,l:n)jL2=L2 (1m, 1:n) jn"'n(1 :n ,1 :n) jM=M(l:n,l:n)j

    551

  • Al'I'BNDIX D, MAT1.AIJ M·FII.BS Gl'jO

    rvur=poly2d(V,rur.C.Cinv)iend;N~ruux(: .1:n)*Ipluoint+rvur(: .1m) i

    D.5 The Sox! stability equation

    'l'lWH(1 1\1'(' t11('Matlah Iuuctlous and H('l'iptH l1H(I(1 t () caleulato t lJ(l Ht ahil! ty p1'Op·(lrtll'14of pipe wlodty profiles. Tho muin Iunctlou is ooxl, m, which «vnluntos (hI'Hll\hility of It HllJlllJi!'(1 wlol'ity prufllo, B!'f!ll'(' ('ulliug thiH function tIll' Iuncrtousmake.cpu .m nud makoua .m Ill\lst l){' invoked to Hllpply tlH' ('Ol'l'P('t lll'glllllPutH (0ooxl.tn,Two higJt('1' I(lwh; of Iunctiou wldc'lt Ilfoi(' ocxl .m art' HII[lpli('d, uumclv findro .mand gotnooo, m: Tho Iormor linds, fhr II parti0.m1111(1makeus .m. Th« Iunerloumukcuu.m tHill'lLill turn \)(1 HUJlpli(I(1 with It v(liol'ity prolll«, giwll H:-la row \'(I('lorof CIH'hYI11H'v ('()(IIIit

  • ml=makomuhat(n+2);cml"'ohml;c:l"collder(m)i% cl=ding(onoo(n-l,l) ,l)-diag(onoo(n-l,l) ,-1);% c1=c1/(~*(n-l»);Iint=oyc(n~2,n+2)-4 .*intmat(n+2)*vec*ml;ol"'ol(l:n,l:n)jo2r::e:G(1:n,l:n):ml;.;m1(1:n,l:n);eml=em1(1:n,l:n);rint=Iin~(l:n,"n)j

    D.4.7 nonlini. m

    1.1. nonlini c:o.lculo.teothe valueo of the non-linear tcrmo% for the integral fo~mulation.%Yo [N]=nonlini(n,U,V,otal,muOl,ctalmul,coll,Ipluoint{,C,Cinv})jYo

    % n 10 tho crdor, and U,V are the matricoo of axial, radinl% velociUeo reopoctivcly. otal, o'tnlmul, coll, IpluointYo nro tho cencuane matricoo gonerated Ly tho £uncdo.\% mo.kcmatint.mYo

    :function (N]-nonlini(n,U,V,otal,muOl,ota1mul.voll,Ipluoint, ..•C,Cinv);

    %,; calculato tho te\'m r.u.u_x ..."1.ru..U*muOl;u_x-coll*Ujif (nargin=.8),

    ruuxnpoly2d(ru,u_x);01013,

    ruux=poly2d (ru,u_x, C.Cim') jcnd;%% Now tho term r.v.u_r ...Yorur",U*otn.1muliif (nnrginOQ8),

    rvurcpoly2d(V,rur)j0100,

  • Al'J>BNDIX]) AIATLAB AI-FIDES

    D.4.4 kopint.m

    %% kopint dotormines tho C011Gto.nt Inatrix% KcooInoga.r% for tho RHS of the equation%% (K]"'ltopint(m,n,omega);%function [K)okopinc(m,n,omegu);muOl"makomuho.t(n);Ke.:zzoroo(m,n);K(:,l)aonoo(m,l)*omoga/2jK(:,2)Qonoo(m.t)~omoga/2:

    D.4.5 linopiat.m

    '/.% linopint calculatoo tho linear oporator:% -omcga.r-S+D+rDft2%% function [L]=l:'1opint(n,omoga):%function [L]~linopint(n,omogo.);muOl·lnakolnuhat(n):otal·maltootnhat(n);It_O''zcroo(l,n):It_O(l,l)-2:S·onoo(n,l)*R_O;L= -omoga .*muOl -eto.hS*mu01 + oto.l + otnl"'2*muOl:

    D.4.0 makematd .m

    %% mo.ltomo.tigonora'coo tho c;onotant matricl)o otal, otn2, otalmul,% coll, and Ipluoin'h for uno by the ocl'ipt,%% [otul, ota.2,muOl, otalmul, coli, Iplusint] cmo.Jtomo.ti(n,m) j%function [ol,02,ml,oml,cl,Iint]omo.ltomatl(n,m):vocczoroo(l,n+2)jvot:(l).,l;olomukootahn~(n+2):02001"2;

  • APPENDIX D, Mr1TLAI hI·FILES

    diop(malt~milx(abn(diff (hulf+l :m, :»») ;urocoef2pto(u,C,Cinv);dr=coef2pto(diff,C,Cinv);ur=ur(:,1:6:3*n/2);dr=dr(:,1:6:3*n/2);Durf(Yplot,Xplot,dr,ur);view( (50,30J) ;drawnow;totartccputime;

    end;end;

    D.4.2 contint.m

    %% contint roturnD tho radial velocity, V, whon paDDed% the axial velocity, U. T.no mo.triceo RHS and coll arc% gonero.tod by tho function CONTMATI.M%% CV)-contint(U,RHS,co11)j%function [V]acontint(U,RHS,coll);V"-coll*U*RHSj

    D.4.3 contmati.m

    'I.% contmati gonorateD tho conoto.nt matricoo lleeded by contint%% [RHS]=contmati(n,m);%:function [HilS) "'con'tmo.ti(n,m) ;Inul"'makemuho.t(n) iotnl=makootahn:c (n);divioor"(ota1*muHeyo(n»*rnu(n)~2jdivioor(:,l)=chebvoc(l,n);divioor(:,2)cchebvoc(0,n)j[l,u]=lu(divioor);RHS=mul*mu(n)~2*inv(u)*inv(1);

  • APPENDIX D. AlflTI,AB AI·FILBS

    u(: ,1:n)=R*inv._N;if (tN",1) ,

    u(l,:)cu_p(l,:); % the inlet Beond;v(:.l:n)=contint(u,RHS,coll)iv(l,:)=zeros(l,n);if (dt(dtmark.l)dtmarlt),

    diap('changing discretisation');dtmark=dtmark+l ;if n>dt(dtmark,8),

    n"'dt(dtm"rk,8);output=oprintf('n is now = %g',n);diop(output);InuOl=makemuhat (n~4) ;mu02=muOl~2jeto.i=makeetahat (n) jmuOl=muOl(l:n.l:n)jm1102ar:muQ2(1:n,l:n) ;Lt:linoptint(l1,omoga);

    ondjKckopint(m,n,omeg~).*dt(dtmark,2)jN=(muOl- (dt(demark, 3) *dt (dtmarlc,2» *L) ;N"N*mu(n)~2;N(:,l)·chebv~c(lJn) .!n~2jN(:,2)=atal(1:n,1:n)*chebvec(O,n) .!n~2;[ll,uu]=lu(N) ;inv_N=mu(n)~2*inv(uu)*inv(ll)i

    M~(dt(dtmark.2)*dt(dtmark,4» .*L+muOl;disp('end of lOOp');

    andi

    u=inv(diag(maosflow(u»)*u:if rem(t,Gavo)==O I ta=l,

    disp('saving to filo');fnnmo=sprintf( ...

    'save .!ncc.%02g!U%02g%g.mat u v dt t 10ngthC', ...omogo.,omega, t) iovo.l(fnnmo)ifnnmo=sprintf(laave u%02g_60 u v dt t longthC',omoga);eval(fname)

    ondi

    if rem(t,Show)==O,diffcll-u_p;half=m!4;disp(max(max(abo(diff(l:ho.lf,:»»);

  • Apr'r;NDIX D. l\IATLAB M-FII,ES 5-15

    N=(u,uOl-(dt(dtmark, 2)*dt (dtmark ,3» .*L) jN=~,*mu(n)~2: % shift the tlatrix right 2 to augment BC I eoN(:,l)=chebv6c(l,n)./n~2;N(:,2)=etal*chebvec(O,n)./n~2:[ll.uu]=lu(N):inv_N=mu(n)~2*inv(uu)*inv(11):

    %Uinit=[l 0 OJ:%[x,y)=size(Uinit)j%for i=l:m,% u(i,l:y)=Uinitj%endj%v=zeros(m,n)j

    Nlin_p=zcros(~,n);Nlin_pp=zeros(m,n)jNlin=zeros(m,n)ju_PP"zeros(m,n);u_p"'zeroEl(m,n)j[x,y]t:size(u):if y >= n,

    u=u(: ,1:n):else,

    u(x,n)=Ojend:M=(dt(dtmark,2)*dt(dtmark,4».*L+muOl:%% start the loop%totartacputime::for t=?:tn,

    % shift the last time matricos to provious r.imes..Nlin_pp=Nlin_PiNlin_p"'Nlin:Nlina-nonlini(n,u,v,otal,muOl,otalmul,coll,Iplusint,C,Cinv)ju_pp=u_PjU_p"Ujif t==i,

    R=u_p(:,l:n)*M+I

  • APPENDIX D. MATLA13 P,J-FILES

    D.4 The two dimensional base flow equation

    D.4.1 base2d.m

    %base2d.m%% this scr.iptgenerates the 2D entrance base flow model% using the pressure-integral approach.% Before implementing, specify the global matrices u, v.%% set pazamet era%%dt= [ti dt aO ai a2 bO bi n(140) ...clgi % 4e-7dt= [100000 7e-6 1 0 0 1 0 60l

    100000 1e-4 100 1 0 32J;[dtoize,y]=size(dt)l11"'dt(1,8)lFirstN=n;me60ldtmark=liomega=60;tn=10000;lengthC=60i % axial domain is [O,l!lengthC]Save=20iFilt=20iShow=10i%% set global matrices%

    Xplot:::(-lobgrid(m)+l)!(lengthC)jYplot=(lobgrid(3*n!2)-1)!2iYplot=Yplot(1:6:3*n!2)i[RHS]=contmati(n,m)i[etal,eta2,muOl,etalmul,coll,Iplusint]=makemati(n,m)icoll=··coJ.l'.*lengthC;filt=rcosfilt(m);

    %% genernte operator matrices%L=linopint(n,omega)iK=kopint(m,n,omega).*dt(dtmark,2)j[C,Cinv]=transops(3*n!2)i

  • APPENDIX Do MA.TLAB M-FILES 543

    D.3.5 smat 0 m

    % smat calculates the shape matrix%% [S]=smat(n,eta,mu);%% Used by l_oper.m%function [S]=smat(n,eta,mu);k=n;onemat=zeros(k,k);onemat(:,l)=ones(k,l);8=-2 .* (eta(l:k,l:k)*onemat*mu(l:k,l:k»:S=S(l:n,l:n);

    D.3.6 nmat.m

    % nmat calculates the spatial operator for the l-D% pressure integral formulation%% Used by l_operom%% [N]=nmat(n,eta,mu);function [N]cnmat(n,eta,mu);k=n+4;N=eta(l:k,l:k)*(eye(k,k)+eta(l:k,l:k)*mu(l:k,l:k»;N=N(l:n,l:n):

    D.3.7 omegamat.m

    %% omegamat calculates the omega premultiplier onto u%% Used by l_operom%% [O]=omegamat(n,omega,mu);function [O]=omegamat(n,omega,mn);k=n;O=omega .* mu(l:k,l:k);O=O(l:n,l:n):

  • APPENDIX D. IvIATLAB lvI-FILES

    endjendisave U u dt

    D.3.2 etamu.m

    %% etamu creates the matrices eta and mu%% A convenience function used by baseld.m%% [eta,mu]=etamu(n)j%function [eta,mu]cetamu(n)ieta=makeetahat(n)imu=makemuhat (n)i

    D3.3 kmt.m

    %% kmnt calculates the constant RHS matrix;%% Used by baseld.m%% [K]~kmat(m,n,omega,mu);functio,1 [K]=kmat (m,ll,omega,mu);vec=zei-cs Oa.n) ivec(:,l)=ones(m,l)*omegaiK=vec*mu(l:n,l:n)i

    D.3.4 Loper.m

    %% l_oper calculates the implicit spatial operator%% Used by baseld.m%% [L)=l_opElr(n,omega,eta,mu);function [LJ=l_oper(n,ome~

  • ilPPENDIX E, TIlE MMN CONTROl, SOFTH:,\RE 5(ii!

    couvonlonro, and discussion of til(' flow ltsolf ill lutor dmlJt!'l'S 11H('1"> tll!' moreconvontioual nuliul cn-ordinato ~wst('ll1 with origin Oil tho plp« !lxis,

    Tho origiu of tho axis systom ill tho lJo:; plano (tItl' plan» Pl'l'!H'I11lklllal' III th!'pip!' axis) was taken as h!'iu(.'; Oil till' iuner wall of II!!' plpo, OU tho horlzoutulllllt,iOl' llxis, This was nlso the most eonvoniont locntion Ior tIll' origin I b('('aus!'it. corrospouded to tho point w11('1'(,tho laHPl' would be initially nllgnod IH'fol'!'traversing into tIl(' flow, Dellnitlon of tl\(' pip!' axis as til!' origin would not luwohoen useful, \)(I('ltIlHl' this point was not paHY to Iind, All oxporhneutal data wasnliguod to IhP 1111>1'1'usual ('Plltr(I.lms!'1control t ho !ll'l·HKurhiill!'. of t.ltl' t auk.merely tho mnlntcunnco of It Hl'!. 1>l'I':i:I\I1'I',

    Tho lll'(IHH1ll'(1 control WII" It sluiplo 'IHtllg ..llItug' control HYHt(lllIj hHHieally thoblood solenoid could olthor hI' switched Oil or (,It'. 'ro control ]>1'(,HH\11'(" tlt(· tankWIIH allowed to \)('('OIlW Hlil~htly ovor-prossurisod hy HPtting tho -uuuual l'l'gllllltol'Il('('ol'(lingly, This oxtru Pl'C'SH\ll'(' was thou hll'(l oll' through tho small solouokl,IItI' Iluo Irom which ('0111(11)('slil~htly !hrott-h'(1 to 1'('(1\1('1' Ilowrato.

    Tho ohj('('t. lmplom-ntod a shnplo cnutrol svstom, WhNl(IV(Il'!t \\oil:; (,!tIl(I(1hy nu'main loop it would (']lI'('k tho jll'('HHIl1'C', If til(' value WIIS nhovo tIll' s('t point (plusn siuull (\t'nd·hnlllll'('!l;iou). rho valve wouhl bo opou 10 1'('dl1(,(11.11('prossur«, If ou111(' otlwt' hand fht' pressure 1'('(111('('

  • APPENDIX B, TlIE !lIMN CONTIWL S()PTlV;'Um 5G4

    E.4.3 Limit object

    This oneapsulatod tltO bohavlour of till' limit l'iwitcll(% 'I'lio ohjP('t. containod Itroferonco to the 1>('14 to allow til!' limit (lata to he road, Tho bench ohj('('[: usedt.1l

  • M'I)ENDIX E, TIlE MMN CONTROL SOFTniWE IiG3

    polymorphic handling of tho trunsformatiou P1'()('('SH, Other more complicatedtrausfonnntious inherited from this basp class, TIl(,I"actuntor 1\11jl'cI ill ordor to rounuunlcato to 11)(1stopper-motor drive down tho sorlnl link, It contninod Iuuctlous to move the stopper-motors and chango 1)11111111('t·I'1':;. which mount that 11)(1USN' of tho Iunction» didnot huvo to bother with till' (\i'i:i('lllhly of counnaud Ht.l'illgl'l hut could cull highI(lV0IIllOVl.'IlH'nt Iunctious. Thus in till' splrl] of ohjl'ct orieutatiou, tll(' stI'Plll'l'-motor ohjl'('1 truly omulatod tho boluwlour of l~ S0t of stoppor-motors, COlIl-l11

  • ;lPl'ENlJiX E, TIIB MAIN CONTltOlJ SOFTmU?B .')G2

    E.2.6 Serial I/O object

    This (lhj(,(,t coutnluod all till' log it' for !{t.l'C'lUuiug strings tn and f1om 1111'sorinlport, It diIf

  • M)PENDIX E. THB MMN CONTIWI. S()F'Tn~iRB 5Ul

    E.2.2 Port control object

    Tlli!'! was n Hiugh' glounl pi .: ('I in th« systl'lll, owned hy t he main ohj(,(·t. ItHt{)l'I'(1a list. of por! "I), '.'11"113 nnd tholr \lS('S. Thus ('·11It ('1'\1(1('level it Pl"Vl'ut('(\dHl'l'l'l'ut ohjl'('(s from .\ltl'lIlptiur, to lllilisp 1lip saui« 110l't acldl','s:-l('H. It didhowever have' It Inr 11101'(' important Iuuction, nud that was preventing ('ollflkts1)('IWI'(,11oiljl'('ts utilising a SillAI(' card for dHf(,l'Put purposes,

    To oxpluln (.lIb, it iH ]\('st, to (,()llsh\l'l' tIll' ('ohl.g\\mt.iol\ of tJI

  • APPENDIX B. TIlE .MAIN CONTROl" SOFTn·:'WE [jUO

    loop docs not. 1H'('('S~1 this object. so it should ronlly 1)('eucapsulated within somesub-object, HOW('V(,l" it is wklclv used, and b('('alllw it l'PPl'(,H(lutS It Hinp;i(> iteru(tho physical card itself), uot 1ll00'!, t hall ou« ('opy of t 11('objl'('t should 1)(' ill('xist(lll('p, Thus the ('II1'l'

  • APPENDIX E. THE !lIMN CONTROL SOFTWARE 55!)

    1'11(' goncml rostrlctions, behaviour nnd conditious of the V1tl'iOIlH intorrolatinn-ships are outlined below.

    lil.1.2 Containment

    All objects must Ionn part of a containment hi -rarchy, Thus all tho I-\('ll('ricor mnltl-purposo oiJj('l'ts t hat an' not directly (lWIH'

  • ,iPPENDIX E, TIlE AlAIN CONTROl. SOFTWilRE 558

    ... ",,'(roll conUol)"- __ '

    Figure b,l: Tho top-level object relationships ill the system: -, inheritnnco: .,coutninuiont; 0, r('r('l'('llc(',

    Cram tho object pointed to, Ilowover tho 0111' object d()('H not own tho other: itis just nwnro of it.. A good illustration of this rolationshlp is ill tho closed-loopcontrol of tb(' Ilowrate. Hero tht' closed-loop object 11('('('l'('uc(, to tho Ilowmotor object, The ('los('

  • Appendix E

    The main control software

    This appendix presents r. (h,tniled rlosr ription of the structure of tho controland acquisition softwaro TIl(' design is presented ill an objeet-orioutod 1I11UUH'l',with the Iunctional description of the various components boing in terma oftho interaction botwoon these objects. 'rhiH description nssumos that tllo renderhas sonic basic knowledge of the concepts of object-oriented design, although (h('fundamental structure of tile design should be evident despite this, The reader isreferred to Rumbauch (1991) for further reading on the object-oriented method,

    The overall design is host Illustrated by au object diagram (figul'e E,l), showingthe functional relationships between the components.

    E.l General design principles

    E.!.1 The elements of the figure

    This figure follows roughly the notation of Booch (19011), concerning the repro-scntation of object rolatiouships in Object-Oriented Programming (001'), al-though in a much simplified form, The various symbols ou tho interconnretiuglluos indicate the type of relationship l>('tW('

  • APPENDIX D. MATLAB M-FII.ES 556

    alb..alp+dalp:curve=zeros(3.3):curve(1.1)=ala:curve(2.1)=alp:curve(3.1)=alb;

    [curve (1.3: •curve Ct , 2)]=findre(n. C\ ••,_.,. .1) ,0 ,L1,L2.M,U,UL •...bc,rea,reb,remax,tol,k);

    [curve(2,3),curve(2,2)]=findre(n,curve(2.1),o,L1,L2,M,U,UL •...bc,rea,reb,remax,tol.k):

    [curva(3.3) ,curve(3,2)]=findre(n,curve(3,1) ,o,L1,L2,M,U ,UL,...bc,rea,reb,remax,tol.k);

    %initial guesses for alpha bracket the given valuewhile (abs(cuxve(3,3)-curve(1,3» >alptol),

    [aa,i]=sort(curvo(:,l»;curvo=curvo(i,:);% cu~ve is sortod in increasing alphafit=polyfit(curve(:,1),curve(:,3),2);root=-fit(2)/(2*fit(1»jcurve(4,1)=root

    [curvo(4,3) ,curve(4,2)]=findre(n,curve(4,1) ,o,Ll,L2,M,U,UL, ...bc,rea,reb,remax,tol.k)j[aa,i]=sort(curve(:,3»jsave __temp;% curve is sorted in increasing Rocurve=curve(i,:);curve=curve(1:3,:)j% the smallest 3 elements of curve are retainedA=curve(l,l);R=cu2:ve(J.,3);E"curve(1,2);

    end:

  • APPENDIX D. MATLAB lVI·FILES 555

    eigc=s~xl(n,alp,rec,0,L1,L2,M,U,UL,bc);[I]:::fint1(real(eigc)60),

    error (,Iteration overflow (niter>50) ,)endif (reb>remax),

    error('Max Reynolds number exceeded');end

    endrey=rec;

    [Y,IJ=sort(imag(dJgc));I=flipud(I);eigc=eigc(I);eigval=eigc(1);

    D.5.9 gatnose.m

    %% This :functlon finds the nose of the stability curve :forpipe% :flow by using a polynominl iteration on findre% function% [alpha,rey,eig]=getnose(n,alp,rey,L1,L2,M,U,UL,% bc,tol,alptol,omGg~);function [A,R,E]=getnose(n,alp,rey,L1,L2,M,U,UL,bc,tol,alptol,0);

    remax~1e12; %If above this Re, flow deemed stablek=O.5; % eigenvalue real component search cutoffdo.lp=O.OOOl\~:rea=rflYireb=rey+200;

    o.lac:alp-dalp;

  • APPEND[\ D. l\JflTLAB M-FILES 554

    D.S.S findre.m

    y,% this function takes n (order), Ll,L2,M,D, two initial guesses% for ray, and a toler(ence), and then finds the neu.ral% stability curve crossing for that alpha by using ne.ton% iteration on the function genpois. A maximum Re is supplied to% terminate the search.%% [:rey,eigJ=fil1dre(n,alp,omega,Ll,L2,M,U,UL,bc,rea,reb,remax, ...% tol,k)%function [rey,eigvalJ=findre(n,~lp,o,Ll,L2,M,U,UL,bc,rea,reb, ...remax, toler ,k)

    counter=l;eiga=sexl(n,alp,rea,o,Ll,L2,M,U,UL,bc);eigb=sexl(n,alp,reb,o,Ll,L2,M,U,UL,bc);(IJ~find(real(~iga)

  • Jll'PENl)[X B. TIlB M.,UN ('ONTIWL SOF1'H:·Um

    Flow varlutlon

    Tho l'Ollst ants ill the above t ahl« dollned fill' required flow ratt' variatlnn for (hi'f(,(·tlhal'!, control. For tll!' various choson flow vnrlutions, tbl' dl'sit'l'd Ilow wasgivon by:

    (J(f)pob' -- (Jmilx [1.'0 + ~'I x f + k~ X f2] ,(J(t)t.ri~ :::: (JlllIlX [1"0+ 1.', Hill(I.'2 x t)j ,(J(t)

  • APPENDIX B, THB !lIMN ('ON nWL ,'iOFTmUm

    E.) 1.1 Command-Ilne and macro syntax

    All cununauds i~!'ll1'd at Iho ruuuunnd prompt. or included within 1\ mucro, uroof till' form

    {xx}lJCOMMANj);{argJi1rg.(lr~.",}All itvms wit hln hnu'PH ,11'1' (I(,Pl'll1i(,111 OU I hI' context, 01' opl ionnl, Tho xx h~ Itnumeric luhol, llH(,['1I1oulv in t h .. ('1\:-;(' of 1\ maero, ",111'1'('it is 111'11'(1illit GOTO:I'ItatC'111l'llt. The portio II COMMAND: iH any rnnunand from tahl

  • ilPI'ENDlX B. TIIB ALUN ('ONTIWI, SOFTH:Um ~-..i)(i)and tho rest of t II(' progmm lH'j',wjolll' WIIS Implicit in tho ohjort lutoracfions,

    E.1O.3 Data display sub-system

    TIll' Iunctlon of this nhjC'{'1 was siluply to display t he LDV. Ilowuiotor and ot her,WI[11ir{'d data f(raphi('11tit!' tnp-lovel oh.i(l(,t d('sigu of tho syst('Ill, Thisl'C'('tioll suuunnriso» tho counuauds 11:;('

  • it} "BNlJIX B, TIlB MMN CONTROl, ,r.,'OFl'H',WB .'i74

    (1) 'I 11(' [4tdll~ "l\1OVE:Y,200" WaH strlppod of loading aut! tl'ailill~~ [41HU'!'}'l, andconvort«] to 1l1111Pl'"('llS(' h'tt('I'[4, It was (11(111 [4(>ill'dwcl from til(> IH'giuuinguntil the colon was oucountored. TIll' dUtl'H('lt'l's lH'flll'

    '1'11('mnin conunnud locp Hilllply ('OllHiHI.('

  • \VIWll it rounuand was l'!'(,!'iVP(1 within till' coutrol lcop fot' tIlt' S!C'JlIH'l' to 1110\'1',a movomout command W!\~ ,(,Ilt directly to tho S(!'PIH'l' oiljP(,t lbYl>!lHHihg t he'clnxed loop control of 1'11('1)('l('h), TIt(' Hh'llIWl' w011Id 1'11 WlIHnovel .uul yleldod lntorostlng global illsigittH ill to th« Ilowt1('wl01111ll'llt, ill tIl

  • APPENDIX E, TIlE MAIN CONTIWI, SOFTHiWB

    ('lr(,('tH. A rnhh('l' liN'liou wali iUH('l't('(\ dowustrr-rnu of tl\(' flOwllwtl'l' to try toditlliuish any Pl'C',:SIll'1' WIWPS l'!'HIlItil1P; Irom start-up, hut it was rlecklod to tala'Iurthnr ll!('aHIll'l'S on rig shutdown, to avokl duugorous impulsiv« clP('C'!('rat.iollIIllcl('r 1)1'('SH111'!',

    Controlled shutdown was implcmontod t hrough n stundard Iunetion. When IhetrHtillp; torminnt rrl for whatever renson, I}I(' nhort Iuuctiou controlled t he rip;until it was dcomod safe' to simply closo all valves,

    011 h('illg culled, tIl

    E.g Auto traversing sub-system

    '1'11('bench contrcl cll's('rihl'I11('1I1 was 1'I'stl'i

  • ..lPPBNDIX E, THE MMN CONTROl, SOFTH:'lRE 571

    Tho position of t ho pis tou or tho oct-nrroure of Il'aknl~(I wore moultorod by thisunit with «nrh loop, If tho piston position ('xr'ppdC'd its limits or water was cI('-('('I('d behind tho diaphrngm (implying It rupture) then tIl(' tpst was inunodintclystopped,

    Pressure control was also impleiuontod Oll a constant hasis durlug operation ofIh(' rig, Tho prossurr-coutrol object was descrihcd earlier

    As 1\ Ilnal Haf(·!y cousidoratlou, tho key hoard was polled for any keystroke duringtpsting, mal Ill!' dotoction of a k('y I>l'I'SS resulted ill lunnodiat« ondlug of til(' test,

    E.S.4 Analogue acquisition & interrupts

    TIl(' aualogn« nrquisidon did not ('()Jl('PI'Il itsPlfwith the arqnisitiou loup. Ratherau intorrupt sorvieo was iustantint pel at tho l)('ginlling of tho test and tonuinntodOIl complotlou. 'flip PCaD har] It hardwaro int errupt Sl'l'vi('(' that could 1)(·s('t togonorato interrupts at a pnrtlculnr Iroquoncy, All interrupt handler was writtento ncquiro till' Ilowuictor und other analogue datn from tI1

  • ilPPENDIX E. THE MAIN CONTROL SOFTWARE 570

    E.S.2 Command execution

    If tho return value was Hot Z(,1'O thou tho appropriato rouunund was C'x('(·Il{('(1.Within tho loop was 11case statement. Depending on till' rommand numbor (.11('appropriatv conunand waH executed, All eonuuauds had to bo (Illicit to (';{('('U({,.and any action roquirhu; extensive processing had to 11('avoided. The avnilnhloconuunnds wore:

    Control the solenoid valve. TIl(' downstrenm solenoid valve could 11('switchedon or off, dependent on tho value of the returned paramotcr.

    Slave machine, A Bip;nal could 1)(' sent to tho slavo 1111\('l1i11l1, tolling it tooithor start 01' stop a('OV(· conunnuds wore 'optional' ilia HC'IlS('· it, was Ih('\ls

  • APPEI\DIX E, THE AlAIN CONTROL SOFTWARE lim)

    It contained 1'(,{'(,1'(,lI(,(,S to all the controllable or measurabl« clements of t he rig:t.he slrvo, solenoid. tank pressure, tank control, valves, closed loop control, anw('11 as the' auto-traversing object, which is described below,

    Tho object executed a tight acqulsition loop, controlled by commands from t.h('run-Iilo execution object, This loop rend the time value' from tho system timorobject, and theu executed tilt' counnand from the run-file structure when thotime was correct. Dopoudeut on tile couunnnds it receivod, tho appropriateaotlous wore thou implemented. TIl!' gonoral structure of this loop is shown illfigure E,3

    End

    Figur« E,3: The data ncquisition & control loop.

    The basic components of the 1)001 wore thus the' interrupt service, (,lw flowcontrol and tho command execution, Considering the execution of the connnnndIlrst, the structure of tho nm-filo ohjort must be ('o11si

  • APPENDIX E. THE MAIN CONTROL SOFTH'f\.RE GG8

    needed for this study. It. was used only by tho moro gouoral cont '01 sub-system,described in section E.8 below.

    The control of Ilowrnto was a classic control theory problem. A measured flow(Irom tho flowmeter) had to 1)('controlled to follow a ('hOS('l1 varintiou in flowrateby moviug a controllable valve, A gonoral-purpose control object was built,which implemented proportional, integral, rlerivatlvc and pscudo-dorivativc con-trol mechunisms. 'I'ho values for the various control constants wore given ill the~;ett.ingHohjoct, and components could 1)(' doaetivated simply by setting all ap-propriate constaut to zero,

    TIl(' object contnined relerences to tho Ilowrate and pneumatic valve object IUHlobtained its thuo haso from the acquisitiou object, TIl(' mnin control functionof tho object WIlS lmplomeutod as a 'fail-through' Iunction; that, is tlIP controlfunction was ('a11('11within tho data ucqulsitlon loop, uud kept running totals oftho various relevant control parametors (running iutegral, \'11.111(' of Inst point)without delaying the loop, By this means appropriat« values could he sell! tothe valve oarh time t he Iuuctlou was rnllcd, based on calculations usillg thostored numbers,

    The desired Iuuction WIW supplied to till' object as It serlos of constants. \limited impleuientatlon was dovolopod. whereby a qnndrntic, sinusoidal or ex-ponontlal flow variation could be specified. Foul' constants were pnssod to thoohjrctj the llrst dotenuined the typ(' of acrolomtlon (qundratlc, oxpcnontinl,otc.) while the other three, dependent 011 the value of t.he fil'Ht ronstant, definedthe desired How variation ill thno. These constants could bo set 'on-tho-fly'during control, so that piece-wise ('0I1t,iI11l0tlS or oven dlscontinuous functionsassembled from the throo bnsic typl'S of vnnatiou could he assembled,

    J3eCI1.URC of tIll' nat me' of dynamic control, no calibmtlon of the valve was 11(,1'-ossnry, Duly adjustment of the parameters. Tho final conflgurntion only utilis«!tho illt('~rfll and pscudo-donvative mochanisms, ou the advice of Coustuntcnu(19!H), and nchlovod a suitably responsive and accurate system, However thoextreme rauge' of tho flow variatlou coupled with tIt!' nou-linenrity of I,ho valve,resulted in I~ control system that Wits not fl111~'opthuum over the ontiro l'ItlW·of opernciou. A suitable Improvement to tho control systrm, such as all arlnp-tivo control procedure would correct thls potential problem, although 11OU(' wasimplemented,

    E.8 Acquisition control sub-system

    This object was a primary compouout of tho sysll'lll, It wa» fully rosponsiblo forall dl\ia acquisition and rontrol during the ruuuing of tho test, Tho main loophaudod full control to this object during testing, thus nllowing for hip;h spoodcontrol and ncquisitiun.

  • flPPENDIX E, THE MMN CONTROL SOFTHJ.l.RE 5G7

    data object. This was achiovod by passing a reference to this data object tothe acquire fuuction, as Sl:.we,acquire (~RawdataArray), Tho function thenreturned data in this array (or an error in tIt(l ('nRr of failure). Thus tho slaveobject did not contain it reference to the

  • APPENDIX E. TIlE !lIMN CONTROL SOFTn0tRE :JGG

    controlsignAl tobleedvalve

    pressurevnrlntlcn

    time

    Figure E.2: Tho principle of controlling the tank pressure,

    other smL7Y'(! code, This is ill stark contrast to couveutlonal npproarhea, whoremany functions, all over the codo, would have to he modified to implement sucha change,

    E.5.2 Tank control

    The tank control object was merely for acquisition. It measured tank position(and any loalmge status), and was thus useful to both the acquisition and mainsub-systems, both described later.

    E.6 The slave control, data transfer and processingsub-system

    This sub-system WIIS really composed of two cliffl'l'!'nt components. Til!' slavecontrol and datn Lrallsfl'l' was due to tIll' slnvo iuachlne object, while' tlU' pro-cosslug wns done by till' data itsolf They are grouped together hero !W('ltU:iC'they formed part of n. routiguons process in t ho running of tho program,

    E.G,! Slave control & data j,ransfer

    As montiou«] this wns achieved by the slave machiue objoct. It. contalnod itroforon« to the 1'(,1:1 port .md ('0111

  • Gas!!'!' 1\1. HoIH'!'!s.1 B. (Wiil Tlu: »prrlml I'Jlt/I",'18 of IIlT1rl1l7ll/1I MI7IIpil'lll'l'I,'lI't/8Iil/ a direct In:lIQ/.J1'1>' l'J'()f'. Hoy. SOC'. A. 35·1 :!7-1iS

    G!'l'stilll~ .T.!\I. (l!)1'-, NlI7IIrI'lI'lll 1111 ilu»!» fill' (,1!II'1I811sl(,//I,~" Tiu: ()rl',SOlllll1l'1:(('lti111'11lJ/(,7n C!8 (11/ illil/("'IJaiul' 111'II/l/c'1II ('Olllp. awl MatIH~.with .'.,IIlS. {I 107-17,1

    (alh!'rt N. (1Ot{1{) NII1l11'1'/.rrht' simulnliou dl'!' 11'I11/,~ilitJ71 (11171 ilcr lumius n'lI illdic' iurbulrn! I' ktl7l1ll,\11'IJ1IIltll!1 Dbs('!'t at inu, F niv. Kurlsruhe

    Gill A.E. (HJCiri) Oil llu: IlI'lltllliolt.l' IIf MIIII.Il cli,'lllrllll1ll'I"~ /0 l'oiscuill« jlolll in IIrirculiu: 111111'.1. Flllicl1\I('('lt 21 Uri·172

    Gl('~.,·rA. Katz Y. Wygllallski 1. (l!ll'!l) On ilu. brl'llkclou'lI of llu: 11'111'1' lU1ch'dlmilill!/ a tlt!'bllll~lIf spot 111 II luuutuu: IlIIltllc/m'!/ill,ll('I'.T. Fluid Mcrh. 198 1·2G

    Golc\stl'ill S. (wan) (.'III11C'l'lIi7l!l 801111'sulution» IIf the IIlJlwrlnl'!IiIl1l1'7' cquution»in h!ltlmci!lllllmi("q Pror. Camhr. Phil. SOC'. 20 1-aO

    Golcbtl'iu !'oLE. (l!IH!i) Hmlil'l'ill,ll oj (/IIJ/I.,\til' 1II1t11('.~ tultl 1hll,/I('ill.Sd,zil'illill!11II(/.'IIC'8 bll Mllnll 811'1'1I111'1l1i,~I'oarialunt» ill slt/jau' !IC't.1IIl'i7'1I .J. Flnkl r.1('C'h. J 0,1riOD-52!)

    Graehol W.P. (lUiO) The 8tllbili/!I o] 1111)(' flou: Pari 1. IlsJj1ll1)/lIli(' 1l111111lSi8 J(W811/ntl 'Wlt1w-71,1t1ll11l'7's .J. Fluid :o.1('C'h.-13 part 2 2iU-2UO

    nl'(lC'llhlat.t D. (l!l!)Oa) kIJ('1'Il!lill!l 117111 ft'11I1)()1'Il1 !/I'lulil'nt bia» pmblr-11/'\ in 111/-,~1(,(/l11lturbulent U)V 711I'((8l!1'I'71I1'lI/,~ Fin 11 Iut, Svmp, Las!'!' T('('ltlli

  • Eilobachor G. Ilussnln! 1\[.Y. Sp(·7.ialt, C. Zang '1',A, (101-\7) 1'oWltrti8 tlu: lilme.ecZdy simulation oj c'(mIJl1'l'8,~i1il(' Illl'illlicllt .flow WASE Ht'l>. No, S7·20 (NASALnngloy H(I!'i('lil'(·!t CPU!!'!', Hampton, VA)

    FURl'! II. Kouzohuanu V. (WOO) N07l.pllmlld sln/lilitll oj a ./lllt-pintc' /wuUclal'lIInlllT Ilsing till' complut» Ncwil'1'·,i'to!.;c'_\ rquations ,J. Fluitt Merh, 221 :H1··a,17

    FhW'l'HOll L,M. Adrian ILl. Kaufman S,L. (WS!)) /'(18('1' dopple1' v!'[cwillH'tl'lI,'I'll ('(})',II, Cl1/]llit'll/iou iuu! 1('('ll1liqlL('8 TSI LDV (,OIU'S!' text,

    Fox L. (1!J02) Ch(,1I118h('1I mdlllllis fcl1' IInli7ltL1'1I riilT('7'('nliail'(]I!(liion,q C'Olll}lU{!'l'.T. r1 :31s·:3:nFox I" Parker LB. (l!l(iH) (,'hl'l1!18hc'lI Pobmomials i,lI mmll~I'i(,(ll Analllst8 OxfordUniv('l'sity Pl'l'!'i!'i,London

    Fraz(Il' H.A .JOlH'~ W.P. Skan S.W. (Wa7) All111'(uimnliol1 to Functions nndlo thoSo/ltt'ion oj Di.lTc'7'I'lllia/ Bqllalio1l8 H & M 1iUD Al'l'otmllti('al H(I~(lllr('h Cuuurll,Loudou

    Gm'g V.K (10tH) SluMliill of rl('lIdclJlill!l .flow in a. lli111· III1?Hl:fl811mnwll'iC' ([i8-tll7'ban('('.~ ,J. Fluit! 1\1('('11. 110 20!)·21G

    Gal'g \'.1\. Rouleau w:r. (1!J;'2) Liuron: spaHn I silt/lili/il oj II it/(: Paiscnille flow.T.Flnill :M('(')l. l:i4 par! 1 113-12i

    Gary .1. II(I}g!lHOll n. (1U71) 11 mnt'l'i,v md/lOll Jc)!' cmlinn7',11 rli.lT!'I'cnlinl l'i!ll'rwullU']lmblrms .1. Comp. PhYH. {j IOU·1S7

    Ga:-;t('l' M. (WG2) II nott: on tlu: ,dation iw/w('('1! !r:mp()1'lIllll-inc'/'('(!silll/ a:llrl81Iai.inllll·inel'C'rt8inl/ (li8In1'l1lL7Il'('8 in hyil1'Ocl!lllnmic 8taltilil" J. Flukl. Moch, 14222..224

    Gm,j.(ll' M. (100G) Tlu. I'lIlt, oj 81mtiallll !,!'Owi'll!l W(W('8 ill the 111mI'll oj ""tim(ly-ntl.1I!i(' slaililitll Prog, /\(11'01

  • HEFEm~NCBS

    Constantrou (" (1001) PC1'8011Cz{ C'01111Jl1l7liC'Clti(lll School of' Mech, EllP;, Univ. oft.IH'Wltwatorsmnd Sout It Afd('lI

    ('Ol'('OS (tM, Lin S ..I. (HHH) Tlu. maill!llllye'?'; deterministi: model» oj IL 1111'-/miront fll'lII, jlul'l:], Th« ori!lin of ilu: th",'C'·climc'1l8itlllClI wolion 1aU !ii·Dil

    ('or('os (j,M, S..llurs J.R, (l!l1i!)) On lilt' 8/nl!ilif:!II.f /lIl1,11 dC'11f'iflJlI'd }lolll ill It fl1lw.), Fluid Merh, 5 !Ji-1l2

    Crnik ~vI.D,D, (10tl5) Wcw€, illtl'ral'iioll,' aiul flltulflows Call1hl'it\gp Univ. P1'('HS

    Crau« eM, Blll'l{'Y n,M, (lDiO) .J. Comp. App!. l\fal hs, 2 111i

    Cuunuins II.Z, Knnbl« N, Y('l1Y, (W(H) (}/18C'7'lIniw11 o] cli.fJU8i07! 1J1(lIuit'llill!l o]fl;~1Jlci!lh .~('(J,ltC7('rlli!lhl Phys, Rev. Lett, 12 l1i()·l1i:3

    l'inl'il11c'8 tuul 117111'111', (If lClSC'1'dopp/I'l' t!lIC'HW711l'il'!I 'i('W Ycrk: A{'ac\('].Iit- Pr('Ht:

    E{IWltl'tl H.V, D~'hhsA, (!!IIH) Rc:(mdil'c' intlc» IIIffll'hill!/ ,(m 1'1 InC'll,!! 1//('11811.1'1"11/('1It8 i7) C(l7111'/c',r !i"fI'I1Il'il'it'8 TSI quurtorlv X il'Klll' 'J

    Ekman \',W, (1!llO) (in llu: I'hll71f/l' [nun ,~1(,(1I1,ll1(1 iurbulvu! motion (}llil}ltirl.~Ark. f, Mat. AHtl'OIl. orh FYH 0 No. 12

  • IlEFERENC'ES

    Bouthlor 1\1 (lU72) StllbiJilil' liueairr dr'.~rcoulcmeut» ptrsqtu: 1Iltmlll'II·.~ .1. M(·-chnuiquo 11 5!l!l-111. Phys, 55 ,137-·WO

    Brklgos '1'..1. Morris P .•I, (lUtH!» S]lI'('/1'1l1 cnlculaiion« of tlu: 8J1I1Ual stllbility ofNon-parallc! /lolLnril!1'IJ 1l!11t'1'8AIAA Pap. No. ~,l-().1:'1i

    Bl'icl~('s '1' ..1. Morris P ..1. (1U~7) lloll71riUl',IJ 1111/1'1' .~i(lbilily calculations Phvs. Flu-his 30 Part 11 :1351·;]3ril{

    Buchhavo P. G('Ol'g

  • References

    Abbot A.II. Moss B.A. (lfl!1·1) The t'J'I.~tr'1I(·t' of critical Rt·JJ1Iold.9 numlm» l!I pi1J1'1!11.tntU{,(! jlows .~ltbj('dc'd to iujinitl'.mlllllu'i8!11IIml'll'i;c 1li.~/ItI'(Ja1I1'I·S Phys, Flnhl:;6 part 10 aaa5·33·10

    A1>1>olA.II. ~Ioss E.A, Olivil't· (.:.II. (19!J2) A 1(l8t'l' t1Y£tIt'7Wlll!l tcclmiqtu: jlJ1' lilt'1II(,(!8Ul'1'mClIt of 11('lociill I1mjilc'8 in lL118lmd!J lliJl(' j10wB Proc, (jth Int. Sympo.slum Oil Appllcn! ions of Lnser Tochulquos to Fluid :vI(lC'lvmks 2.3

    Ajmnlli D.B.S. Roberts ,1.B. (lOUD) b1111711l1l'1l .~lll'dml ostimnlinn. [or i7'1't'!lttitll'11l8pa('('d tlaia 'Using rli!lllal jiltt'T·.9 Mechanical SySI

  • Appendix G

    Raw data on CD-ROM

    TIH' CD-HOM cnutnlnod ill tho sloovc below routnins the' rnw data aH('Olllpr('HSl'dASCII fUI'H, arruugod ill a sulxllreetorv strurture lu [\('('ordnu('(' with tIl(' t(·S!llal\lNl, 'I'ho CD·HOM iHSl'lf·(ltH'11llH'lltNl: tho road-me lilt, ill thl' root (lil'(l('t.tll'~'H(,l'VI'HIlH It 'road-map" !LIllI point» t () moro SIl('('Hit' lnfonuatlon Illes (,(lIl!aill(l(1ill 111('Iurt her Hllhclh'('('(Ori('H, Till' modla was cronted uslug tIl(' stnndard (,DIt'SiiII' system, and Ill' It result should 1)(' rondablo fro III both DOS/WINDOWSruul UNIX HJ'sh'llls, Datn rmnprossion is vln tIl!' Pk:-lip Il(.i!it.y, which is [1'('(llynvailubl« as shnreware (Lc. Itt most Illtornet F'l'P sites).

  • APPENDlX F. TIlE uiv COMPONENTS 583

    Model 9169-460 focusing lens: This unit (m'us(ls tho widely spared bemusonmunting from the bomn expander, aud (O('lISC'S them at 1\ single point in tilt'now. R('frnrt('(l light from this measuring volume is roll('('t('t\ hy this IN},'! andtransmittod hark through tho Hold-stop systom, and into tho phcto-dotortors.H had a Coral length of 450 nun,

  • M'PBNDlX F, TIIB u»: COMPONENTS 5~2

    Model 9176 mounting ring: This unit serves as n support for tho ('OIllPO-ueuts, Several monuting adapters were spaced eveulv down t.h« length of thooptical barrel.

    Model 9180A frequency shift unit: Two of thC's(' units WI'1'{' inrurporatedinto tho system. Two model Dl!:!2Brag c('lIs W(,1'(, placed ill the optical barrel- OIl closer lop;ptiI('l',to allow tlu-m to pas:- pl'op

  • jlPl'J~NDIXF. TIlE usv COMPONENTS 581

    Model 9108 hr arn colllmatori This unit collin; the IOU1HI unit" whose primarytask is to sopnrnto th« inrirlont laser boum into its spectral ('01l11HlUPll(:S, and t.JH'11to transmit two of these components (blue at 'lSt-I.O 11111 and groon at. 514.5 mu).ItH Internal (,01111>01l(,l1tsare: model 92011attenuntor: model !)10(l dispersionprism; one model 910G and two model 910i mirrors; and a model 913HenclosureIn! e, Th(1 rut ire set of cmupoueuts is enclosed by tho model 013G (lUdOSUl'('over, The two dlOSC'1l colour laser 1H'lUllS leave tho enclosure and pass into till'optical barrel, the eoinponeuts of which arc doscrihod below.

    The optlcn! hnrrol lucorporatos nil tho trawHuitt.illg and rocoivlug optlcs. Till'greon and bluo lnsor boamn I'nt,('l' tho unit Itt tho 1'('(\1' - OUl' on-axis I1.U

  • Appendix F

    The LDV components

    Thi» appendix coutnins 11 (lptail('cllistillg of the components rmuprising I ho twodll111111'1 9100 srrirs 'IS! Laser Doppler Volorhuctor lIHPd In till' current study.Thil4 HYHtC'1ll is n four beam-two channel dovir« All model 111ll11b

  • APPENDIX E, THE MAIN CONTROL SOFTWARE 57D

    Table E,2: The C'uhau('('d progralll ('Dutrol counuunds [DI'macro HS('.(,Olllll1lUHl' I parametors Illleauiug ------~

    int N, string 8 Display the string '8" if Ihe user pressps - --=DECISION:the 'Y' key jump to the label N.

    END: UOlIt' The hu~t.lino of tll(' macro. Donoros tho end,FOR: char C, int 1,,1 St'! variable CE[I,.1,Kj to each value botwoon

    I and .1I execute conunands below until NEXT:counuand is rcnchorl.

    GOTO: int N .1limp to the label N -----r-:rnr.o; string S First line of mnero. A d('h('riptiVC' title. ---INPUT: striug 5, var V Display S, n'nd keyboard input into

    ,_

    ,- tho variable' VElVAIn,VAnS.VAnnjlsp(' below). -,NEXT: dllll'C SC'C' FOR:, rot urn program control to tho matching

    FOR: loop. l:C: [1,.1,KJ,VARI NjA -;r'1iC;-illtl'gC'l' svstom varinhlo, Most ronuuauds (lX])('('tillg

    uu illtC'grt' parauicter will (tc('('pt VARI as arjnnuent,VARR N/A Ali above, hilt for real number argumontaVARS NjA As above, hilt for string arguments

    PTY Sot tho tYP(l of flow variation doslrodo =polynominl, l:=;trigouolllPtl'i('al,2=oxpouontial~Sii\!'~.Jr ::lIn}} LDV IW{l\1iHitioll (l=sll\1't,)OjH'uj"rYos(' t he dow list l'Plllll SOI(lIlOid (l-O!lI'll)-!'IIo\'(' th!' pnoumutic valve to posit ion N-:-'I'G;-mug(' of N ('Ol'l'(lSI)(lll

  • APPENDIX E. TIlE !lIAIN CONTROL SOFTn:ARE 5itl

    [{·i)mUHlIIlI I parumnters I moaningTable E.1: TI1

  • 5!)!)

    Wygllltusld .I.H, Ilurltnnidls J.Il, Kaplun H .E, (1!liO) Ou It Tollmirn • .

  • HBFBRENCES

    Tictgou H, (Wi5) Laminar turbulent transition in 111]11'jlIl1ll1T1I'(l,m7'1'1IIf'nls made'with Iii/of 111'0/"'. hoi win' ,~I'?I.W)7' osut LIM 1>10(', LDA Symp. Coponhngon

    Tietgon H, (lUiO) T.umi71f17' turbulent transition m 1,ill(' flow: })Cllc[o1J11l1'nt andsiruriur« oj 111(' turilltil'llt .~ltl!1 n'TAM Lauiiunr-Turhulrnt Trausitiou

    Tollmolu W, (lD2D) fib!'1' IIiI' I!1I,nfstl'lWlI!l elI!?' In7'l1ll.!C'n:: Nnchr. GI'H, WiHH.Giitting

  • HEFEHBNCES Ii!)i

    Soxl T. Slli(>lhl'rg K. (l(J.18) ZlL1I! .~llt/lilitiitS11I'1lbl(,1II 1(1'1' Pllis('uill('.~ll'c;mltllfJ AI.'ta.Phys. Austriaca 12 !)·2t:

    Sl.ah IlK, (H)iG) A corrcluiinn [orliunmar hyrimrl1ltla11lu' ('lItl'lIit'lI!llh soluiiunsfm' rircuun: aTIII non-circular dtu-!» Trans, ASME .1. Fluids Elli~'100 1ii·li!)

    Shou !-i.F. (Hl5·1) (.'a/I'lllldl'li Il!1dllijirti oscillations in llu: 11/1L11r'Poiscuili: Il1IdBlasius 11ow$ .J. Aero. So. 21 (j2·(j·1

    She'll S.F, (HHil) /)0711(' (,CI1I:litil'mtIIl118 on the liurur 8ta/lilily of iiml'.rl''lI('71cil'lIt/J(t.9il·jl(}!11.~ ,J, APl'O, Scion. 28 :lU7·,l(J,1, and ,'117

    Sllhormnu I. (19tH) Plan €'iar!1 lIIa1J('.~111till' atlllo81J/t ('1'(' .J. Mot oorol. 11 27·;3 1

    Slater J.e. (19:H) Elrl'i1'1J1!U' ellC'rgy lnuul» in metal Phys, Hl'V ·15 7U,1·~OlSmith P,T. (1D7Da) OIl the 1107I,pllmlld jl(Ht' stability of the lllasiu« bouudiLr!J!nycr PI'()(" Hoy. SOC'. A 300 Hl-109

    Smith F.'l'. (1!)7!)h) NOll·linl'lll' siabilliy o] /mll7lrinl'll 11L!1t'IW[or Ili.\tltl'lJt!w'I's of'/l(t1'iOIlS .~i:;I'8Proc. Hoy. SO(" A 308 1i73·1iH!I

    Souuuerfekl A. (lDO~) Bin /lI'iimg ::U1' h1Jc!"l)(ly7!(L71t1,~h('tl ('1'klnl'rlLll.q clf'" turbulcn-t(~njltLc,9,~i!lkcilsb('tll('.'JIL11!Jf'n Pror, -lth Int. C()ll~l'P!'H of r-.rnUII11lHltidn.ns BOllI('vol III ppllG-12il

    Spalart P,B, Lcounrd A. (l!JH1i) DiIY'l't tunncruul ,~i71l1LllLlio1tof cquilibriuni lUI'·bulcn! iJlllwtia1'/1 InY/C1WProc, 5th Syuip, Turhulent HIlI'lII' flows Cornell Uuiv,Ithaca, NY

    SPI'l'l'()W lUvI. Liu S,Il, Lundgren 'l'.S. (lUG!I) Plow ri"":o/011711('I',t in llu: hllilmri!l'7wmir C'71I1YI71C'(! n'!/i(m of luhc« nntl tiuci,q Phya, 1·'llli

  • RBFERENCES 5V(i

    SnhVl'II n. Gl'Ol'('\1C.E. (l(1i~) The .~IClililil!l of Poiscu illl' flow in a 111111' of circularcross-section J. Fluid ,M1'('h. 64 93-112

    SalW1'1lH, Grosch C.E. (1m'l) TIlt ('(11I/.,lIIOlM '~lwctrlLm of ilu: (}IT-Srmmwrfeldrquaium, Part 2. Ei!11'1Iflt'lriicl11 1'.rJlIl7IMcm.~ .1. Fluid MI'('h 104 ·H5-4G!j

    Saudham N.D. Klelsor L. (1992) The late .'Iagc.~ of iransiiinn 10 uubulcnc« UIrhanno! flow J. Fluid Mt'dl. 245 319-a·ix

    Saric W.S Nayft'h A.II. (19i!i) Nonpamllcl .~tnbility of bountLCL7'.'ILal/cr flow,' Phys,Fluids 18 9·15-D50

    Snric W.S. Thomas A.S.W. (19~'l) Erperitnruts 071 th« subharmoni» raulc toiurbulcnr« m bcltl1lcim'!/ /U?Jl't·., Turb, t.- Chnot if' Phonom, ill Fluids I'd. TTntsumi 117-122 Amsterdam

    Snrpl

  • HEFEHBNCES

    Ortiz E.L. (19GO) Tit I' tUlL mf'fTwd SIAM ,J. Nmnor. Anal. 6 ·ll:1l}··W2

    Ortiz E.L. Samnra H. ~lDt-ll) 1n upl'mii()neil Ap]l1YJllch to the Tall Ml'iTwtlfol' tlu:Nl£mc','iclll Solution of Non·Lim!!!' DiJJcTc'niilll Bllunti()n,~ Computing 27 Ui·:.!!i

    Ortiz E.L. Samnra II, (1083) Nunu-ricnl Sotuiuni of DifJI'l'C'1!/illl BI!I('1/1In/U{' Prub-lems 'with an ()]If~mti(l1lul Al'111'()rtrh t{) f111~ T[w Md/wd Computing 31 !)!i·1\13

    Pntern A.T. Or:-;zag 8.A. (l!J81) Filliil"aml'litucil' 8tabilil!l of a,rz.~lImmctri(' IJilJ['}lo'W .1.Fluid MI'('h. 112 4G7·4''.1

    Pekoris C.L. (lD(18) Sfllbi/it!J of the laminar flow limlll!llt a 8lmi,qitt IJipl' of cit'·I'll/nl' rruss·,qeciion to illJi1!itrmll(lllli,~t1L1'IJ1tncL~ ! • ' t alT' 81/mmd"iml a/mnt 1111'cxis of tlic pipe Pl'O(·. Nat. Arnd. Sei, Wash. 34 !J1j

    l)C'kC'l'is C.L, Shkollcr B. (WG7) .%L/Jilitu of IJ/nne ]>oisl'uilk jl()w{o 1JITi()flic Ili,~·t.ubancc« of finite mnplitlui(' in llu: 71icmiill of thr nuulral cm'lw .T. Fluid MI·('h.29 :n·38

    POlliC'1 Cz.O, Traas O. (l!J!Jl) Vi,mnU:;ntioll of f/,(,I~ n7l(l 'im1)inginn rowul jdSource unknown, roprlnt from tho author.

    Rnylolgh Lord (1880) On tlu. stnbilitll, 01' insiallilit1l, of (,('1'lain flui(l 11!oti0718Proc, London MMh. Soc, 11 57-70

    Reynold» O. (1883) An l';r1JC7'iml'ufal i11111'.9tigat tlui ci1'ltmsl!L1u·C.~ uihiclidcteruutu: llIhcl/tc7' tlu: 7Ilotum oj UlILir1' sludl bo rZin'd ()1' .9i1l1tolts, atul o] ih« lawof 1'f'.9ista!tc(' in pamllrl channels Phil. Trnns. Roy. SOC'. 174

    Reynokla W.C, Potter M.C. (l!JG7) P'initl! a71lplit'IUir. in81(1,/Jilitll of 1){t1'I/.//d sTwnt·flolll.9 .J. Fluid M('l'll. 27 ·1G5··HJ2

    Illvlin T.J. (lD!JO) Chr.bllsh('ll ]lol'111{Jllllais Wilov-Intorsciouce

    RolH'l'I.H ,1,13. Gns\(1l' M. (UlHO) On the c:stima['io1! of .~ll(,(·t7'CI,[ron: mnci(l'IIlill.~nmlli{'d data: It 7111 ,horZ of I'I~tllwi71.Qllarillbiliill Proc, Hoy. So(', A. 371 235·258

    JOSH ,LA. DUl'IH's F.Il. 13lI1'lIH r.«. Ross ~LA.S. (1!l70) TILl' flat plal: bOlt111/llrNIn!l{'1' Pari », G01Il1)11.l'i,MI. of th(,07'1I with ('J'lJC'l'im{'1!t .J. Fluid MI'('h. 43 !{1!)-H:i2

    Rubin Y. Wygnllllsid LT. Ilurlrouldl« (W7!l) F,t1'th,'1' ob,w'1'lInli{m,~ on immsiiionin n IJi1}/' HTTA?>.! 1.11111. 'Iurh, Trnnsition,

    Rumbaugh ,J. Blahu 1\1. Promorlaui W. Eddy F. Lorenson W. (I!JDl) ObJl'd.CJl'ilmtC'tllllOcldiu!I tuui d,'8il/1/. Pl'('lIti('l' Hull

    Slliwt'n II. ('ot to" 1.',W. (;l'osC'h (.' E. (WHO) Linear 8taiJilit.ll tlf Poiscuill« f101l1in II rinulur IJi111'.J. Fillitil\i('('h. 98 par! 2 2i:l·28·1

  • REFERENCES 5!H

    Muunkatu K. (1!)7U) Lill1'!L1' instabilil, "J Iii]!!' Poiseuillc .llow ,J, Phy«, SU(' ••J .. nnn Letters 47 No, 2 GH5·G8G

    Munakatn K. (1!)!l3) The i7l8tnbllit!l oj Poiscuillc .flow 111 n circular llip(' .1. Phy«.SOC'. Japnn 62 No. (j 2(1).1-2015

    Murdock .T.'''. (l!Jt'G) Th1'l'c'-clim('718icJ7IallI1Ll/1(Ti('(!I.~lud!l of lmu7Iclm'y-ICL]/cT sta-bility AIAA Pap. No. HG-O·13·1

    Nlkrudaso J, Laminnrc 1'I'ilJlm!18.~dlidltell cm dc'1' lci:lI!1,wLn!lc's/l'Om/I'lI Iliatt(' Mono-grnph Z(lutrul(' f. wiss. Bcrirhtsweseu, Berlin

    Ng B.S. Reld W.II. (lUi!») An iniiial valu« 1II1'f/toci [ov ('i!lc'1I11aiILl' problctu« Il,~in!lcompouud uuilricrs .1. Comp. Phys. 30 125-130

    Nisholka M. Ildn S. Ichikawa Y. (lDi5) An (,;VllI'I'i11lC'nl,nl in'll('st,t!lo'/io1/. (lj ilu:staiJilitll olllltllll' Poi8C'uillC' flow .1. Fluicl Merh. 72 731-751

    Nnother F. (W21) Dlls TIl1'blllC'71zpm/Jl(,lII Z. Agnew. Math. Moch, 1 l25-1:JiI,218-210

    Orr W. M'F. (1007) Thr ,~tllbilittl (II' i'l.~tabilit!f o] the .~f(,IIc111111()ticm,~of (}.llc·1:/i'clliquid tuul oj (! 1)i8t'(JII,~ liquid 1'1'0('. Hoy. Irish Acad. A 27 O-l:i!i

    Ol'szug S.A. (lOiO) Traiuform tnctlunl« jor ('(!/c~1ti(Ltion of vector c'ou]lll'cl sums:AJiP/'ication in ilic 81}(!cil'nl ,(01'111. of ilu: lICl"'lic'ill/ c'I]UctiiCJ1/ J. Atmosph. SI'i. 27890-805

    Ol'szng 8.A. (1U71a) A rcuraio solution of the 01'1'-Smlltlwljeld .qtabiliill rquuiion..1. Fluid. IVI('('1100 ess-roaOrszap; S.A. (lfJ71h) NU7I!C'1·iml.mnulnii0718 of illC'07I1]l1't!8Sib[c' .flows within .~imll/(!boundltrips: (U'CUffiCIJ J. Fluid mech. 19 75-112

    Orszag 8.A. (1971(') Cia/cl'kin (!1'1m):rimati()i\~ {(I 1lows wi/hit!. slctll.~, 81,/11'1'1'8, (mel1'1Ilincll!IW PhYH. Rrw, Lett, 20 1100·ll03

    Ol'HZllV; S.A. (1071d) NU11I.(·t'i('([/ .~imll/ltti(m of ill('01ll1))'('S8i/Jl(' .flolJ·s 'Ilililin .~imlll('1}()ILtltlCL1't('.~: I. Gnlcrkin (81)('ciml) 1Y'117'C'8c'1lIfltiIJ1I.~Stud. Appl, ~h.th. 00 20:3-:i2i

    Or~:zn!!.8.A. (lUi2) OOIllI'nrwJ1l OI1181'Ur/osIlC'l'Imi cwd ,7}('C'/ml IlI1111'C1;timnfiol!8SllI

  • HEnmENCES 5!J3

    Luke Y.L. (l!lO!lh) Tlu: spcciul f'IL71t'iiol1S ILntI tlWi.1' Ilppro:rimatio7!8 Vol 2 Acn ..demic Pl'!'ss. Nt'w York. Loudon

    Mack L.M. (l!liG) A 1I1L1TW1'jml .~lltclJ/ 'Jf tlic tl'7n1J01'Cll Ci!lt!1lltn/llC' speclrum. of llu:lllusiu» //()ulI!la:n! laUl"I' .I. Fluid 1111'ch, 73 4!1i-520

    Mnlik l\I.H. Ilussuini 1LY. (ll)!)!)) Nll1n(,7'ic:a/ simulation. of iuintu-iion» /1('(/11('(:11GiMleT 1Iol'ii(,(,8 1!11ci 1'o1l1l1cill.Schli('ltI.i11!l WIL{I(,8 ,J. Fluid 11

  • REFERENCES 5!J2

    Landau L.D. Lifshitz (HJ5!J) FLuid mcclionics. Vul. 6' of" ('OUt'S(' on throrciiculphysics translatod from russian hy .J.n. Svkos k \V,n. Roid, Pergamon p1'r:;:;Londoll

    Lefebvre P .•I, Whitt' F.M. (lU8U) E:1'lIC'1'imcnis on iransiiion to tur/l'Ilil'1lI(' in Iiconstont-orc-lcmtiot: IJipc jlow ASME J. Fluid:; Eng. 111 part 12 ·128-·132

    Lefobvre P.J. White F.1I, (UJU1) Flu'liler f'.rl){,1'i7l1l·nt,~011 transitio!l to turuuicur«in constl!11/-uccclcmiion lli]l(! flow AS~n; .1. Fluids Eng. 113 part (j 223-227

    Leite RoOl. (1\)58) An ca:1)('1'imentui i711)('.~li!lati()n of till! ,~labilil!1 of J>()i.~C'1Lilll: flow.1. Fluid Mrdl. 5 81-96

    Lesson 11 Sadler S.G. Lin T.Y. (1DOtl) Sla/lil!t,11 of pil)(' i'Oi.H'uillc jlmn Phys,Fluids 11 No. 7 }t104-1/109

    Levchouko V.Y. Solovyov A.S. (lU7·1) Izv ,-jib. Old, Akad. Nauk, SSSR 3 7

    Lin e,c, (19,14) On till' 8il1bilitll of two-tli1l!('71.,io71aLlmmlid jlo1il,~ Prot'. Nat.Mad, Sei., Wash. 30 al(l-3~:';

    Lin C.C. (1945) On the stability of uuo-ilimensionnl paraliol jl01ll.\ Quart. Appl.Math. 3 117-1,12, 218-234, 277-301

    Lin C.C. (1055) The Tltl'Ory of Ilyd7'Ollll1!IWtir. Stabilitl/ Cambridge Uuiv. Pross,Cambridge

    Lindgren EiR, (19G9) J>1'01)(l9I1tion f1e[o('itll of turbulcn! .dU98 (mel streak» in iran»sition pint: flow Phys. Flnid« 12 No. 2 ·118-,125

    Ling C.Il. Revnokls w.e. (1D73) Non-Jlnmlld jlow C01'1'I!ctiOll.Q for tli« 8/,nbiliI1lof shC'lt1' flows .1. Fluid ~k('h. 1)9 part :3 fiiI-501

    Lin K.~L Ortiz g.L. (1082) Ap]1f'CJ.ri7l!ulion of ('ige1Lmlww rlrji7l(·tl by Imli7HL1'.ljtli.jJ(,rtontinl cI]lwlio7l8 ?!lith till' 1'IW 7Twl/to,l ill Matrix Poncil» (Ki\!~stl'lilll,B.HuhoA. «ls.) LNM no. on, (Sprlngor- VC'rlag)Lin K.M. Or,iz E.L. (WHO) Nutl1l'l;m/.QollLtilnt I)f l'i[J"711lullLc lI1Y1/JI(,W,q I',!' IHl1'tillldiffc1'('nlial equations with tlic lou-lines mrilwcl Comp, & Matha, \'ith Appls,12B 115:3

    Lin K.M. Ortis E.L. (10H7) Tau md/wei 1!11111·o.l'i7llnil· .9011t/ioJl. of hi!l/:-lIl'tlIT IlIf-jrrr·ll.tial (,j!lt'll11alul' l,robl!'1Il8 IkJ~71('tl if llu: ('OIll1JI1'.r plan«, with (111 (Jll[111Iflii(17Ito 07'7',SOlllllll'lldll .~I(lbil!l!lI·1}1I1lIi011 Connuunlc, AI>I>1.Nmn, ~ll'tlL 3 It'7

    Luke Y.I .. (lOIHla) Tlu: 8]11'(:i1lLfllndio,w lI'IIIl their (Il'll1·().rimlLt.il)n,~ Vol 1 A('I\-tll'llliC' Pl'I'SS, Nl'W York, London

  • REFERENCES 501

    Itoh N. (1!J7'1c) Sl)(!tiai growth oj jinii» WILlIe! tlisturbunrcs in parallol llnclllcrL1'l!Jparall»! jlows. Part {d. Th« nUTT1('7'iml resulis JOT the jiai 11latl' boundal',I lnl/eT'Irans . Jnpan SoC'.A('" Spaco Sci, 17175-1HG

    Itoh N. (W77) Nonlinear stability ojl)(!1'llllcl jlouu. with 8lLbl'rilic((1 U('YIl(llel.~ 71l1.m·bere, Pur! 1. An CL8Y11tlJlotic thmrll Iloliel JOT MlIllllampliluclc' disiurlnncos .J.Fluid M('('h. 82 part ~ ·155·,lGi

    Itoh N. (lUSH) The origin and 81',[lscquent clwlwio]l1Il.cnl spac« oj Tollmciu-Sdllichting 'WlL'IWSin a bll1mdlL7'~' la.ll(~l·Fluid Dvn, TIps. 1 UO-Iao

    Jacobson I. Christorson M. .JOIlSSOU P. ()vPl'gaard G. (1092) Olijl'ct'07'i(;ntI'Clsojtware r.nginc(!rin[J. A usc ('(m~ driucn. CLIlJl1'ondl Addison W('slpy

    .Torr llnson H (1970) Tlu: jlat, 111al.n bOIl:1Id(lTU 1(1111'1'./'1/.7'( 1. Numerical inl('!l7'ntiolloj II/(! ()J-,..Sommc'11drl ('(IlllLtion ,1. Fluid I\1('('11, 43 HOl-tn 1

    Joseph D.D, Sattingcr D.n. (lDi2) lJijlLrclttinfl tim!! 11('l'if'riic sauuion: un{l their.~l(/.bilitlJ Arch, Hal. l\1p(·h. Anal. 't5 i!l·tOn

    Kantorovic L. V. (193·1) On n '/lew muiluul o] aJllI1'O:rimntC' ,wintion of Im1'lialriiff(,?,('nfinl cquaiio?!8 Dokl, Akml. Nault, SSSR 4 532-530 (Paper ill Russian)

    Kachanov Y.S. Lovrhonko V.Y. (191301)The resonen: interaction oj di.~tll,l'll(mcc.9at laminar·t1t'l'bullmt il'ansiiion in n b(J1tncllL1'l1 lnyC',/,.J. Fluid 1\1[('('11.138 200-2'17

    Kachnnov Y.S. (1987) ()1I the rcsoniuu 71czlu1'l' oj Uti' 111'('(II~rl()'It11! of a liunisun:lllmnrlo"71 larlnr .1. Fluid Mevh 184 .13·7·J

    Kl1t:!. Y. Si('[pl't A. WYP;IlI1.11tlkiI. (1000) On thr. ('llolnt'ion of the 1,u.1'Imlcnl, 8]10tin a /nmium' bOllnrl(ll'lIln1/(~1' with a jltll()lt!'ILblc 111'{'.~s!t1'(~ gmclilmt .1. Fluid Mech.2211-22

    Kelvin Lord (1871) IIIIII7'okinl'lic soluiious (/,1111oliseruaiious Phil. Mag. (:1) 42

    Klohanov P S. Ti

  • REFERENCES 590

    Heisenberg W. (192,1) Ubc1' ,~t~bililiit 'UuII turbulcn: lion jlItB8Z9k(!it.~s{riim('n Anu,PhYH., Lpz. 74 5i7-G~ 7 (Translatod lUi: On ,stnlJiiit.ll atul turbulenc« of jillirl flows1'l'l'h. mentor, Nat. .\

  • Author Abbot Anthony Hailey.Name of thesis The transition to turbulence in strongly accelerated pipe flows.

    PUBLISHER:University of the Witwatersrand, Johannesburg©2015

    LEGALNOTICES:

    Copyright Notice: All materials on the Un ive rs ity of th e Witwa te rs ra nd, J0 han nesb u rg Li b ra ry websiteare protected by South African copyright law and may not be distributed, transmitted, displayed or otherwise publishedin any format, without the prior written permission of the copyright owner.

    Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, youmay download material (one machine readable copy and one print copy per page)for your personal and/oreducational non-commercial use only.

    The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes anyand all liability for any errors in or omissions from the information on the Library website.