msc thesis final1

33
Interaction of submarine canyons with the longshore drift Investigations of sediment bypassing rates at canyons Researcher: Hesam Sanaee Supervisor: Prof. J. A. Roelvink External Supervisor : Edwin Elias, PhD, MSc Mentor : Ali Dastgheib , PhD, MSc WSE-HECEPD 2011-2013

Upload: hesam-sanaee

Post on 27-Jan-2017

28 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Msc Thesis Final1

Interaction of submarine canyons with the longshore driftInvestigations of sediment bypassing rates at canyons

Researcher : Hesam SanaeeSupervisor : Prof. J. A. RoelvinkExternal Supervisor : Edwin Elias, PhD, MScMentor : Ali Dastgheib , PhD, MSc

WSE-HECEPD 2011-2013

Page 2: Msc Thesis Final1

Content of Presentation

Introduction Research objective Research methodology Model setup in 2DH Forcing Model Simulation Analysis of residual current Analysis of the long shore rates Conclusion and recommendations

Page 3: Msc Thesis Final1

IntroductionArea of Study

Santa Barbara Littoral Cell

Page 4: Msc Thesis Final1

IntroductionTidal Information

A diurnal tide with a strong semi-diurnal distortionDiurnal Range = 1.64m Tidal velocities < 5 cm/s

Page 5: Msc Thesis Final1

IntroductionWave Climate

Wave directions range from 105°N to 345°N, No waves coming from 345N or more, due to the sheltering of Point Conception

More than 70% of waves within dataset originated from the west/north-western (270 - 345)

Wave heights ranging from 0.5 - 8.0m and waves higher than 7 m occurs rarely

Page 6: Msc Thesis Final1

IntroductionProblem Statement

Several large canyons connect to the SBLC coastal system and(are assumed) to cause a loss of sediment from the coastal zone

For a sustainable coastal management, it is necessary to:

– Understand the sediment transports around canyons

Page 7: Msc Thesis Final1

Main objective

To determine the quantity of littoral drift bypassing the submarine canyons versus the amount captured by the canyon

What is the role of sediment delivery due to the littoral sediment transport? What are the dominant processes in driving the hydrodynamics and sediment transport?

Process-based model consist of the following tasks

1. Hydrodynamic modelling; how do flow patterns in a canyon look like? 2. Sediment transport modelling; how do the sediment transports over a canyon look like?3. How does the canyon modify the wave propagation patterns? 4. What are the littoral drift rates along the coast with and without presence of the

submarine canyons?

Research objectives

Page 8: Msc Thesis Final1

In order to answer the objective of this research study, the following procedures was performed

o Using a 2DH model of SBLC Extending the sediment budget analysis to the point Mugu Investigating the effect of the Hueneme and Mugu canyons on the littoral drift Investigating the different geometries with and without canyons

o On a 3D model of Mugu submarine canyon Investigating the hydrodynamic patterns and processes Compare the Z-model with Sigma-Model

Research methodology

Page 9: Msc Thesis Final1

Model setup in 2DHDelft3D-Wave Module• Low resolution wave grid 180km x 90km +

High resolution grid at nearshore• Cross-shore resolution of 1100m -550 m

(nearshore)• Longshore resolution is about 1100 m• In total 22,800 grid points (151 in both M

and N direction)

Delft3D-Flow Module• Higher resolution flow grid 130km x12km• Cross-shore resolution of 550m(seaward

boundary) to 30 m (nearshore)• Longshore resolution is about 600 m

(western boundary) to 60m (eastern boundary)

• In total 60,965 grid points (M=685, N=89) • Neumann boundaries at Cross-shore

boundaries in combination of water level in offshore boundary

• Hydrodynamic time step = 15 seconds

Page 10: Msc Thesis Final1

ForcingInput reduction of the hydrodynamic forcing

• Schematization of tide A morphological tide (HW-LW cycle)

1.1x the mean tide

Constituent Description Amplitude [m]

Angular frequency

[deg/hr]

M2 Principal lunar semi-diurnal const. 0.5163 28.993289

K1 Lunisolar diurnal const. 0.3704 14.496644

O1 Lunar diurnal const. 0.2404 14.496644

Morphological tidal constituents with their adjusted amplitude and angular frequency

Page 11: Msc Thesis Final1

ForcingInput reduction of the hydrodynamic forcing

• Schematization of wave climate • Wave buoys data

3 years of wave record

Page 12: Msc Thesis Final1

105-120 120-135 135-150 150-165 165-180 180-195 195-210 210-225 225-240 240-255 255-270 270-285 285-300 300-315 315-330 330-3450,00 - 1,50 0.00098 0.00218 0.00738 0.02668 0.05485 0.06596 0.00467 0.00314 0.00216 0.00195 0.00319 0.01514 0.02835 0.03914 0.00887 0.00011 0.261,50 - 2,00 0.00008 0.00021 0.00078 0.00128 0.00187 0.00232 0.00277 0.00165 0.00150 0.00186 0.00368 0.02188 0.05631 0.10207 0.02323 0.00035 0.222,00 - 2,50 0.00008 0.00008 0.00008 0.00018 0.00016 0.00026 0.00059 0.00035 0.00066 0.00074 0.00271 0.02023 0.06377 0.09758 0.02034 0.00003 0.212,50 - 3,00 0.00000 0.00000 0.00016 0.00029 0.00010 0.00026 0.00030 0.00018 0.00021 0.00035 0.00133 0.01168 0.04511 0.06465 0.01388 0.00002 0.143,00 - 3,50 0.00000 0.00000 0.00005 0.00005 0.00005 0.00006 0.00013 0.00010 0.00018 0.00013 0.00048 0.00632 0.02606 0.04104 0.00699 0.00005 0.083,50 - 4,00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00000 0.00000 0.00002 0.00022 0.00351 0.01305 0.02103 0.00407 0.00000 0.044,00 - 4,50 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00000 0.00000 0.00155 0.00619 0.01148 0.00229 0.00000 0.024,50 - 5,00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00003 0.00086 0.00277 0.00563 0.00102 0.00000 0.015,00 - 5,50 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00038 0.00134 0.00250 0.00050 0.00000 0.005,50 - 6,00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00026 0.00098 0.00190 0.00030 0.00000 0.006,00 - 6,50 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00006 0.00013 0.00040 0.00112 0.00019 0.00000 0.006,50 - 7,00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00003 0.00032 0.00034 0.00006 0.00000 0.007,00 - 7,50 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00008 0.00014 0.00003 0.00000 0.00000 0.007,50 - 8,00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00003 0.00003 0.00000 0.00000 0.00000 0.00

SUM 0.00 0.00 0.01 0.03 0.06 0.07 0.01 0.01 0.00 0.01 0.01 0.08 0.24 0.39 0.08 0.00 1.00

Mean Wave Hight Hs (m) Wave direction sector (degrees w.r.t. North)

Probability of Occurance (%)

SUM

ForcingInput reduction of the hydrodynamic forcing

• Schematization of wave climate • Wave classification (116 wave conditions)

Page 13: Msc Thesis Final1

ForcingInput reduction of the hydrodynamic forcing

• Schematization of wave climate • Reduction of wave climate

• Opti Methodselects an optimum subset of wave conditions that contributes more to the

mean total sediment transport, only trough a number of predefined transects

• Energy Fluxselects an optimum subset of wave conditions that has equal energy with the

total wave record

Page 14: Msc Thesis Final1

ForcingInput reduction of the hydrodynamic forcing

Page 15: Msc Thesis Final1

ForcingInput reduction of the hydrodynamic forcing

116 simulations with different wave conditions

Each simulation has a certain influence on the long shore transport

Page 16: Msc Thesis Final1

ForcingInput reduction of the hydrodynamic forcing

• Opti-Method

Reduction116 ---> 24

RMS error < 5%

WC Hs (m) Tp (s) Dir (°) Old Weight New Weight

South/South-eastern

4 0.95 14.22 159.28 0.0267 0.0359

5 0.94 14.36 173.71 0.0549 0.0959

19 1.68 10.34 144.53 0.0008 0.0011

6 0.92 14.38 187.89 0.0660 0.1134

24 1.7 15.04 217.84 0.0016 0.0007

West/Northwest

25 1.71 14.37 233.39 0.0015 0.0029

11 1.21 12.96 263.5 0.0032 0.0044

27 1.75 13.3 263.81 0.0037 0.0072

12 1.27 12.03 278.58 0.0151 0.0256

85 4.21 14.6 279.21 0.0016 0.0028

28 1.77 12.78 279.27 0.0219 0.0264

80 3.71 14.68 280.23 0.0035 0.0021

45 2.25 12.83 293.58 0.0638 0.1248

73 3.23 13.92 293.79 0.0261 0.0129

81 3.72 14.12 293.99 0.0130 0.0075

14 1.31 9.32 308.08 0.0391 0.0415

82 3.73 12.3 308.14 0.0210 0.0282

60 2.74 11.02 308.18 0.0646 0.0693

74 3.23 11.69 308.22 0.0410 0.0752

87 4.22 12.24 308.35 0.0115 0.0066

46 2.24 10.11 308.41 0.0976 0.1925

101 5.75 13.07 308.96 0.0019 0.0032

83 3.74 10.99 319.18 0.0041 0.0046

15 1.29 8.49 319.56 0.0089 0.0012

Page 17: Msc Thesis Final1

ForcingInput reduction of the hydrodynamic forcing

• Schematization of wave climate • Energy Flux

Page 18: Msc Thesis Final1

ForcingInput reduction of the hydrodynamic forcing

• Schematization of wave climate • Reduction of wave climate

• Energy flux

WC Hs (m) Tp (s) Dir (°) Occ (%) Total %

South/South-eastern

9 1.53 13.04 157.6 1.11

2 0.8 14.1 160.2 3.735 1.08 14.44 161.1 2.03

1 0.79 14.07 182 3.87

7 1.45 14.49 182 1.114 1.05 14.59 182.1 2.13

3 0.93 14.33 195.1 2.736 1.44 14.91 206.1 1.1

14 2.13 14.48 211.1 0.52 18.33

West/Northwest

8 1.49 13.38 255.8 1.1515 2.25 13.8 259.1 0.49

20 3.29 14.03 260.2 0.22

10 1.88 12.72 284.4 11.6922 4.23 14.75 285.5 1.99

16 2.86 13.91 285.6 4.63

17 2.97 13.33 297.6 4.4712 1.99 11.82 297.6 11.29

21 4.21 13.94 298 2.12

13 1.99 10.07 306.2 13.1719 3.04 11.75 306.2 4.86

23 4.35 12.7 306.4 2.19

24 4.39 11.74 315 2.3218 3 10.28 315.1 5.69

11 1.95 8.98 315.2 15.38 81.66

Page 19: Msc Thesis Final1

ForcingInput reduction of the hydrodynamic forcing

• The energy flux method resembles better percentage of the total target

24 wave cases from WEF are the reduced wave climate

Page 20: Msc Thesis Final1

Model simulationModel simulations was performed separately for each wave condition(24 wave conditions from selected wave cases) -On Deltares cluster

Delft3D = Version 5.01.00.2163

Run time = over one tidal cycle of 1490 minutes

Transport formula = Van Rijn 1993 by default

Bed updating = Turned off (maximum longshore transport)

Page 21: Msc Thesis Final1

Analysis of residual current

Residual current is determined by Fourier analysis of the velocity field

Accounting for both effect of tides and waves

Residual current results from the weighted average of the mean velocities of all 24 wave cases

Page 22: Msc Thesis Final1

Analysis of residual current Section 1

Page 23: Msc Thesis Final1

Analysis of residual currentSection 3

Page 24: Msc Thesis Final1

Analysis of the longshore ratesLongshore drift rates

Less than 10% error in annual dredging rates for two bench mark

Transect 12 Santa Barbara harbor

Transect 24 Ventura harborCanyons

Page 25: Msc Thesis Final1

Analysis of the longshore ratesIndividual wave case contribution to the annual sediment transport

Longshore sediment transport is a function of wave height and direction (according to the CERC formula)

Page 26: Msc Thesis Final1

Analysis of the longshore ratesLittoral drift rates along the coast with and without canyons

Page 27: Msc Thesis Final1

Analysis of the longshore ratesLittoral drift rates along the coast with and without canyons

Potential sediment lost to the canyons

? Canyons

Page 28: Msc Thesis Final1

Analysis of the longshore ratesIndividual wave case contribution to the annual sediment transport

With canyons

Southern Swells

Page 29: Msc Thesis Final1

Analysis of the longshore ratesLittoral drift rates along the coast without canyons

Wave case 4 ( Dir 182 degree)

Page 30: Msc Thesis Final1

Analysis of the longshore ratesLittoral drift rates along the coast without canyons

Wave case 4 ( Dir 182 degree)

Page 31: Msc Thesis Final1

Analysis of the longshore ratesLittoral drift rates along the coast without canyons

• Effect of each canyon

Page 32: Msc Thesis Final1

Conclusion The quantity of littoral drift bypassing the submarine canyons vs. the amount captured by the canyon

The dominant processes in driving the hydrodynamics and sediment transport• Dominant westerly swells induce a net increasing eastward sediment transport, except

upcoast of the Hueneme canyon due to coastline orientation and presence of the Hueneme canyon

• Southern waves drives the sediment transport westward and net sediment transport along the up coast of the canyons increases due to the refraction over the canyons

The role of sediment delivery due to the littoral sediment transport• The longshore sediment transport analysis estimates the potential lost to the canyons

Recommendations

• Using a real forces could validate the observed hydrodynamic data (in between two canyons)• The 3D Model of each canyons could resolve the sediment movement in the canyons

Page 33: Msc Thesis Final1

Thank you and

Questions ?