mse 3300-lecture note 07-chapter 05 imperfections in solids

Upload: chuong

Post on 06-Jul-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 MSE 3300-Lecture Note 07-Chapter 05 Imperfections in Solids

    1/17

    Lecture 7. Imperfections in Solids (2) 

    Learning Objectives After this lecture, you should be able to do the following:

    1. What type of defects exist in solids?

    2. Can the number and type of defects be varied and controlled?

    3. What are the solidification mechanisms?

    4. How do defects affect material properties?

    5. Are defects undesirable?

    Reading

    • Chapter 4: Imperfection in Solids (4.5–4.10)Multimedia

    • Virtual Materials Science & Engineering (VMSE):

    http://www.wiley.com/college/callister/CL_EWSTU01031_S/vmse/

    Lecture 7 - 1MSE 3300 / 5300 UTA SPRING 2015

  • 8/18/2019 MSE 3300-Lecture Note 07-Chapter 05 Imperfections in Solids

    2/17

      Line Defects

    • are line defects,• slip between crystal planes result when dislocations move,

    • produce permanent (plastic) deformation.

    Dislocations:

    Schematic of Zinc (HCP):

    • before deformation • after tensile elongation

    slip steps

    MSE 3300 / 5300 UTA SPRING 2015 Lecture 7 - 2

  • 8/18/2019 MSE 3300-Lecture Note 07-Chapter 05 Imperfections in Solids

    3/17

    Imperfections in Solids

    Linear Defects (Dislocations)• Are one-dimensional defects around which atoms are

    misaligned (due to presence of an extra portion of plane ofatoms or half plane)

    • Edge dislocation: • extra half-plane of atoms inserted in a crystal structure

    • b perpendicular (⊥) to dislocation line

    • Screw dislocation:• spiral planar ramp resulting from shear deformation

    • b parallel (||) to dislocation line

    Burger ’s vector, b: measure of lattice distortion

    MSE 3300 / 5300 UTA SPRING 2015 Lecture 7 - 3

  • 8/18/2019 MSE 3300-Lecture Note 07-Chapter 05 Imperfections in Solids

    4/17

    Imperfections in SolidsEdge Dislocation

    Fig. 4.4, Callister & Rethwisch 9e. (Adapted from A. G. Guy, Essentials of Materials Science, McGraw-Hill

    Book Company, New York, NY, 1976, p. 153.)

    Copyright © 2014 John Wiley & Sons, Inc. All rights reserved 

    MSE 3300 / 5300 UTA SPRING 2015 Lecture 7 - 4

  • 8/18/2019 MSE 3300-Lecture Note 07-Chapter 05 Imperfections in Solids

    5/17

    Imperfections in Solids

    Screw Dislocation

     Adapted from Fig. 4.5, Callister & Rethwisch 9e.[Figure (b) from W. T. Read, Jr.,Dislocations in Crystals,

    McGraw-Hill Book Company, New York, NY, 1953.] 

    Burgers vector b

    Dislocation

    line

    b

    (a)

    (b)

    Screw Dislocation

    MSE 3300 / 5300 UTA SPRING 2015 Lecture 7 - 5

  • 8/18/2019 MSE 3300-Lecture Note 07-Chapter 05 Imperfections in Solids

    6/17

    Edge, Screw, and Mixed Dislocations

     Adapted from Fig. 4.6, Callister & Rethwisch 9e.[Figure (b) from W. T. Read, Jr., Dislocations in Crystals,

    McGraw-Hill Book Company, New York, NY, 1953.] 

    Edge

    Screw

    Mixed

    MSE 3300 / 5300 UTA SPRING 2015 Lecture 7 - 6

  • 8/18/2019 MSE 3300-Lecture Note 07-Chapter 05 Imperfections in Solids

    7/17

    Imperfections in Solids

    Dislocations are visible in electron micrographs

    Fig. 4.7, Callister & Rethwisch 9e.(Courtesy of M. R. Plichta, Michigan

    Technological University.) 

    MSE 3300 / 5300 UTA SPRING 2015 Lecture 7 - 7

  • 8/18/2019 MSE 3300-Lecture Note 07-Chapter 05 Imperfections in Solids

    8/17

    Dislocations & Crystal Structures

    • Structure: close-packed

    planes & directionsare preferred. 

    view onto two

    close-packedplanes.

    close-packed plane (bottom)  close-packed plane (top) 

    close-packed directions

    • Comparison among crystal structures:FCC: many close-packed planes/directions;

    HCP: only one plane, 3 directions;

    BCC: none 

    • Specimens that

    were tensile

    tested.

    Mg (HCP)

     Al (FCC)tensile direction

    Brittle fracture

    Ductile fracture

    BCC

    FCC

    MSE 3300 / 5300 UTA SPRING 2015 Lecture 7 - 8

  • 8/18/2019 MSE 3300-Lecture Note 07-Chapter 05 Imperfections in Solids

    9/17

    Catalysts and Surface Defects

    • A catalyst increases therate of a chemicalreaction without beingconsumed

    • Active sites on catalystsare normally surfacedefects

    Fig. 4.11, Callister & Rethwisch 9e.

    Fig. 4.12, Callister & Rethwisch 9e.[From W. J. Stark, L. Mädler, M. Maciejewski, S. E.

    Pratsinis, and A. Baiker, “Flame Synthesis of

    Nanocrystalline Ceria/Zirconia: Effect of Carrier

    Liquid,” Chem. Comm., 588–589 (2003). Reproduced

    by permission of The Royal Society of Chemistry.] 

    Single crystals of

    (Ce0.5Zr 0.5)O2 

    used in an automotivecatalytic converter

    MSE 3300 / 5300 UTA SPRING 2015 Lecture 7 - 9

  • 8/18/2019 MSE 3300-Lecture Note 07-Chapter 05 Imperfections in Solids

    10/17

    Microscopic Examination

    • Crystallites (grains) and grain boundaries.Vary considerably in size. Can be quite large.

    • ex: Large single crystal of quartz or diamond or Si

    • ex: Aluminum light post or garbage can - see the

    individual grains• Crystallites (grains) can be quite small (mm or

    less) – necessary to observe with amicroscope.

    MSE 3300 / 5300 UTA SPRING 2015 Lecture 7 - 10

  • 8/18/2019 MSE 3300-Lecture Note 07-Chapter 05 Imperfections in Solids

    11/17

    Optical Microscopy

    • Useful up to 2000X magnification.

    • Polishing removes surface features (e.g., scratches)• Etching changes reflectance, depending on crystal

    orientation. 

    Micrograph of

    brass (a Cu-Zn alloy)

    0.75 mm

    Fig. 4.14(b) & (c), Callister &

    Rethwisch 9e.

    crystallographic planes

     C  o ur  t   e s  y  of  

     J .E .B  ur k  e , G en er  al  E l   e c  t  r i   c  C  o.

    MSE 3300 / 5300 UTA SPRING 2015 Lecture 7 - 11

  • 8/18/2019 MSE 3300-Lecture Note 07-Chapter 05 Imperfections in Solids

    12/17

    Optical MicroscopyGrain boundaries... 

    • are imperfections,• are more susceptible

    to etching,

    • may be revealed as

    dark lines,

    • change in crystal

    orientation across

    boundary.Fig. 4.15(a) & (b), Callister &

    Rethwisch 9e. [Fig. 4.15(b) is courtesy of L.C.

    Smith and C. Brady, the National

    Bureau of Standards, Washington,DC (now the National Institute of

    Standards and Technology,

    Gaithersburg, MD).]

    Fe-Cr alloy(b)

    grain boundary 

    surface groove 

    polished surface 

    (a)

    MSE 3300 / 5300 UTA SPRING 2015 Lecture 7 - 12

  • 8/18/2019 MSE 3300-Lecture Note 07-Chapter 05 Imperfections in Solids

    13/17

    Electron Microscopy

    Optical resolution ca. 10

    -7

    m = 0.1μ

    m = 100 nmFor higher resolution need higher frequency

    • X-Rays? Difficult to focus.

    • Electrons

    • wavelengths ca. 3 pm (0.003 nm)• (Magnification - 1,000,000X)

    • Atomic resolution possible

    • Electron beam focused by magnetic lenses.

    e.g. - Transmission electron microscope and

    scanning electron microscope.

    MSE 3300 / 5300 UTA SPRING 2015 Lecture 7 - 13

  • 8/18/2019 MSE 3300-Lecture Note 07-Chapter 05 Imperfections in Solids

    14/17

    Scanning Tunneling Microscope

    (STM)

    • Atoms can be arranged and imaged!

    Carbon monoxide

    molecules arranged

    on a platinum (111)surface.

    Photos produced from the

    work of C.P. Lutz,

    Zeppenfeld, and D.M. Eigler.

    Reprinted with permission

    from International Business

    Machines Corporation,

    copyright 1995.

    Iron atoms arranged

    on a copper (111)

    surface. These Kanjicharacters represent

    the word “atom”.

    • Employs a tiny probe with a sharp tip.• Raster scans the surface

    MSE 3300 / 5300 UTA SPRING 2015 Lecture 7 - 14

  • 8/18/2019 MSE 3300-Lecture Note 07-Chapter 05 Imperfections in Solids

    15/17

    Summary

    • Defects may be desirable or undesirable (e.g., dislocations

    may be good or bad, depending on whether plastic

    deformation is desirable or not).

    • Microscopic Examination of Defects – Optical and

    Electron Microscopy

    • Line defects – Screw and Edge Dislocations.

    MSE 3300 / 5300 UTA SPRING 2015 Lecture 7 - 15

  • 8/18/2019 MSE 3300-Lecture Note 07-Chapter 05 Imperfections in Solids

    16/17

    Homework 3

    1. Describe both vacancy and self-interstitial crystalline defects.

    2. Calculate fraction of atom sites that are vacant for Cu at its melting temperature

    of 1084 deg C (1357 K). Assume energy of vacancy formation of 0.90 eV/atom.

    Repeat this calculation at room temperature (298 K).

    3. Is it possible for three or more elements to form a solid solution. Explain your

    answer.

    4. Home – Ruthery Law: Using Table in Lecture 6.Which of these elements would

    you expect to form the following with copper:

    (a) A substitutional solid solution having complete solubility

    (b) A substitutional solid solution of incomplete solubility

    (c) An interstitial solid solution

    MSE 3300 / 5300 UTA SPRING 2015 Lecture 7 - 16

  • 8/18/2019 MSE 3300-Lecture Note 07-Chapter 05 Imperfections in Solids

    17/17

    5. For each of edge, screw, and mixed dislocations:

    (a) describe and make a drawing of the dislocation;

    (b) note the location of the dislocation line; and

    (c) indicate the direction along which the dislocation line extends.

    6. For an FCC crystal would you expect the surface energy for a (100) to be

    greater or less than that of (111) plane . Explain why.

    7. Explain what preparations are necessary for observation of the grain structure of

    a polycrystalline material with an optical microscope.

    8. Name and briefly describe the operation of each of the two types of electron

    microscopes. How are they different from Scanning Probe Microscope.

    MSE 3300 / 5300 UTA SPRING 2015 Lecture 7 - 17

    Homework 3