mtbe.unlocked

Upload: caminito-mallorca

Post on 01-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Mtbe.unlocked

    1/47

    PRO/II CASEBOOK

    Methyl Tertiary ButylEther (M TBE) Plant

    Abstract

    This casebook demonstrates the use of PRO/II ®  in the simulation of the synthesisof methyl tert -butyl ether (MTBE). MTBE is of current interest as an octane enhancerfor reformulated gasolines, and is becoming increasingly important as stricter airpollution control measures are implemented. A PRO/II simulation model of an MTBEplant is presented here. The process plant includes a reactor and an azeotropicdistillation column for separation of the MTBE product. A reactive distillation sectionis added to the MTBE azeotropic column in order to increase the overall conversionto MTBE. This is followed by the methanol recovery section which includes a

    liquid-liquid extractor. SimSci’s

    SM

     SRKM bank provides a good simulation of theVLE fractionators and the VLLE extractor. All product specifications are achieved.The thermodynamics successfully predicts the azeotropic removal of methanol fromthe MTBE product stream.

    Feature Highli ghts Petrochemicals Application

    Stoichiometric Reactor Units

    Multi-tray Reactive Distillation Column

    Complex Reaction Kinetic Models

    Liquid-liquid Extraction Column Using VLLE Thermodynamics

    Column Condenser Modeled as an Attached, Rigorous Heat Exchanger

    Column Tray Rating

    Recycle Acceleration Techniques

    Casebook #4, Rev 1. Methyl Tertiary Butyl Ether (MTBE) Plant, March 1995

    PRO/II is a registered mark of SIMULATION SCIENCES INC.

    SIMSCI is a service mark of SIMULATION SCIENCES INC.

    Amberlyst is a trademark of Rohm & Haas

     © Copyright 1995, SIMULATION SCIENCES INC. ALL RIGHTS RESERVED

  • 8/9/2019 Mtbe.unlocked

    2/47

    Customer Service and Support 

    Customer Services Address and Phone NumbersThe telephone numbers of Customer Support are given below:

    Support Center Telephone Facsimi le  

    USA and CanadaSimulation Sciences Inc.601 S. Valencia AveBrea, California 92621

    (800) SIMSCI1 (714) 579-0354(714) 579-0412

    Pacifi c RimSimulation Sciences Inc.601 S Valencia AveBrea, California 92621

    (800) 827-7999 (714) 579-7468(714) 579-0412

    JapanSIMSCI Japan K.K.Towa Hamamatsucho Building #203

    2-6-2 HamamatsuchoMinato-ku, Tokyo 105, Japan

    81-3-3432-4631 81-3-3432-4633

    Europe/IndiaSIMSCI InternationalHigh Bank House, Exchange StreetStockport, CheshireUnited Kingdom SK3 OET

    44-161-429-6744 44-161-480-9063

    South Ameri caSIMSCI Latinoamerica C.A.Centro Banaven (Cubo Negro)Torre ‘‘A’’, PH A-2

    Av. La Estancia, ChuaoCaracas, 1060, Venezuela

    58-2-959-8033 58-2-993-2717

  • 8/9/2019 Mtbe.unlocked

    3/47

    Introduction 

    What i s MTBE?Methyl tertiary butyl ether (MTBE) is an octane enhancing agent for unleaded motor gasoline.

    Suitable feedstocks for the manufacture of MTBE are mixed butylenes from liquid feed ethylenecrackers and from fluid catalytic crackers. In some plants, raffinates from butadiene extraction

    or catalytic butane dehydrogenation are used as feed. MTBE synthesis also offers a method ofselectively removing isobutylene from mixed C4 streams. This enables the recovery of high purity1-butene and 2-butene which are superior sulfuric acid alkylation feedstocks.

    Why is M TBE an Impor tant Comm odity?MTBE has a number of desirable properties that makes it a suitable gasoline additive:

    Table 1: Desirable Properties of M TBE

    Property Advantage

    RVP of 8-10 psiLow boiling point

    Low vapor pressure results in reducedemissions

    RON+MON/2 octane number of ~109 More complete combustion withoutreducing engine power

    Increases front-end octane number (FON)of gasoline

    Reduces knocking during acceleration

    Also, the addition of MTBE to gasolines generally implies a reduced aromatic and butane content.

    The current and future demand for MTBE and other oxygenates for reformulated gasoline stemsfrom environmental legislation and restrictions on air pollutant levels. Most US refiners haveelected to use MTBE (and other esters) rather than ethanol (and other alcohols) as their mainoxygenate for reformulated gasoline. Future US demand for MTBE is expected to grow at a rateof over 10% per year for the next 5 years. Recent environmental legislation in the Far East(especially Japan and Korea) has resulted in an increased demand for MTBE in those markets.In Europe, lead-based gasolines are being phased out, resulting in increasing use of MTBE andother octane-enhancing agents.

    Alternati ve Routes to M TBE SynthesisThere are two principal processes for MTBE synthesis currently in use. Both produce MTBE byreacting isobutylenes with methanol using sulfonic ion-exchange resins as the catalyst. TheMTBE product is separated in an azeotropic distillation column, and the unreacted methanol isrecovered and recycled to the MTBE reactor.

    Standard (Hüls) Process

    The key feature of this process is the fixed bed MTBE reactor used prior to the azeotropicdistillation column. Conversions of isobutylene to MTBE are in the range 85-95%. In many plants,two reactors are used in tandem, along with recycle, in order to increase the overall conversioncloser to 99%.

    Etherm ax Process 1

    The Ethermax process, developed jointly by UOP Corporation, Koch Engineering, and Hüls AGutilizes a single fixed-bed reactor followed by a reactive distillation column. In this process, towerpacking that holds the resin catalyst is placed in a section of the MTBE azeotropic distillationtower. The MTBE reaction is completed in the column and the product is separated at the sametime. The overall conversion of isobutylene to MTBE can be improved to 99% or greater withthis process, with almost no increase in capital expenditure.

    1 Chemical Engineering Progress, p. 15, Aug. 1991.

    1

  • 8/9/2019 Mtbe.unlocked

    4/47

    Catalyst

    A common catalyst for the MTBE synthesis process is the Amberlyst 15 polymeric catalystdeveloped by Rohm and Haas. Approximate properties of the commercial form of this catalyst,along with suggested operating conditions are provided below. For exact catalyst properties,please contact the manufacturer.

    Table 2: Approximate Properties of Amberlyst 15 Catalyst

    Properties 

    Physical Form Spherical beads

    Ionic Form Hydrogen

    Acid Site Concentration 1.8 meq/ml (4.9 meq/g)

    Moisture Content 53 %

    Apparent Density 770 g/l

    Particle Size 0.35-1.2 mm

    Shrinkage: Wet to methanol  Wet to MTBE

    4%12%

    Porosity 0.30 cc/gAverage Pore Diameter 250 A

    Surface Area 45 m2/g

    Bulk Density 48 lb/ft3

    Operating Conditions 

    Maximum Temperature 120 C

    Minimum Bed Depth 0.61 m

    Flowrate, LHSV 1-5 hr-1

    2

  • 8/9/2019 Mtbe.unlocked

    5/47

  • 8/9/2019 Mtbe.unlocked

    6/47

    Process Descripti on 

    Reactor SectionMTBE is manufactured by catalytically reacting isobutylene and methanol in a fixed-bed reactorat a moderate temperature and pressure. The reaction is exothermic and reversible, and iscarried out in the liquid phase over a fixed bed of ion-exchange resin-type catalyst. It is highly

    selective since methanol reacts preferentially with the tertiary olefin.In this MTBE process, an isobutylene-rich mixed C4 stream is mixed with fresh methanol and asmall amount of recycle methanol and fed to the reactor section. The reactors are cooled toprolong catalyst life and to minimize the undesirable side reactions such as dimerization ofisobutylene. Temperatures below 94 C (200 F) are recommended.

    The methanol-to-isobutylene ratio in the reactor feed is kept low to minimize the costs ofrecovering unreacted methanol, and to facilitate the operation of the MTBE column (discussedlater). Generally, this ratio is maintained close to the stoichiometic (molar) value of unity. Table3 contains the reactor feed composition used in this model.

    Table 3: Reactor Feed

    Stream Stream No Flowrate (kgmole/hr)C4 Feed 2 850

     Temperature 16 C

    Pressure 1620 kPa

    Component Library Name Mol e Percent

    N-butane NC4 9.0

    Isobutane IC4 41.0

    1-butene 1BUTENE 7.0

    cis 2-butene BTC2 4.0

    trans 2-butene BTT2 6.0

    Isobutylene IBTE 33.0

    MTBE MTBE 0.0tert-butanol TBA 0.0

    Water H2O 0.19

    Di-isobutylene (DIB) 244TM1P --------

    Stream Stream No Flowrate (kgmole/hr)

    Methanol Feed 1 277.5

     Temperature 16 C

    Pressure 1620 kPa

    Component Library Name Mole Percent

    Methanol MEOH 100.0

    Stream Stream No Flowrate (kgmole/hr)Methanol Recycle 20 4.3

     Temperature 44 C

    Pressure 1724 kPa

    Component Library Name Mole Percent

    Methanol MEOH 93.02

    Water H20 6.98

    4

  • 8/9/2019 Mtbe.unlocked

    7/47

    An isobutylene conversion to MTBE of 90 to 93% is easily achieved in the reactor. Overallisobutylene conversions higher than those obtained in the standard process can be achieved byeither recycling a portion of the MTBE column overhead product, or by providing a second reactorunit and MTBE column downstream of the first MTBE column. The cost-effectiveness of theseoptions vary from plant to plant, but both require greater capital expenditure. In the reactivedistillation process, no major increase in capital expenditure is required and overall isobutyleneconversions of over 99% are easily obtained.

    Any water in the reactor feed (from recycle methanol) is instantly converted to t-butanol (TBA).Another impurity, di-isobutylene (DIB), is formed by the dimerization of isobutylene. While theformation of di-isobutylene and t-butanol should be minimized, their presence in small concen-trations in the MTBE product is acceptable since these byproducts also have very high octanenumbers.

    Table 4 shows the three main reactions used in the stoichiometric reactor model. The basecomponent and the fraction converted are also shown.

    Table 4: Reaction Stoichiom etry

    Reaction Base Component Conversion %

    2 (IBTE) =DIB IBTE 0.25

    H2O +IBTE =TBA H2O 100.0

    IBTE +MEOH =MTBE MEOH 93.0

    MTBE Recovery SectionIn the Hüls process, the reactor products are processed in the MTBE column where MTBE, alongwith t-butanol (TBA), dimerized butylene (DIB) and a trace amount of methanol, are removed asthe bottoms product. In the Ethermax process, further reaction of the isobutylene to MTBE takesplace in a section of the distillation column containing the catalyst resin in tower packing. TheMTBE is removed as the bottoms product in a manner similar to the standard process. The MTBEproduct is greater than 99.5% pure and requires no further purification.

    The key to operating the MTBE column is to have sufficient amounts of C4s in the column feedto form azeotropes with the methanol in the feed. Conversely, if a proportionately large amount

    of methanol is present in the column feed, it may result in breakthrough of methanol with theMTBE bottoms product. Therefore, suitable azeotrope formation is possible only when a limitedexcess of methanol is used in the reactor feed. In this manner, unreacted methanol, which hasa higher boiling point than MTBE, is fractionated away from the MTBE bottoms. The overheadproduct containing non-reactive linear butenes, iso and normal butanes, and unreacted methanoland isobutylene, is sent to the methanol recovery section.

    Methanol Recovery SectionIn the methanol recovery section, the MTBE column overhead product is water washed to extractmethanol. This unit is simulated as a liquid-liquid extraction column. The raffinate, which containsless than 10 ppm methanol, is suitable for recovering high purity C4 isomers, or as a feed to analkylation unit.

    The extract phase which contains water, methanol and small amounts of dissolved hydrocarbonsis warmed and flashed to remove the hydrocarbons. The resultant methanol-water mixture isfractionated to recover methanol as the overhead product. The methanol (with a trace of water)is recycled to the MTBE reactor. The wash water stream from the bottoms, along with a smallamount of makeup water, is returned to the water wash column.

    5

  • 8/9/2019 Mtbe.unlocked

    8/47

    Process Simulation 

    The full input for the process simulated here may be found in Appendix A. Fragments of the inputare shown here to illustrate points of interest.

    Symbols UsedThe symbol

      n

    is used beside the highlighted fragments of the keyword input file. The number ‘‘n’’ refers to thechapter in the PRO/II Keyword Input Manual where detailed explanations of the input data maybe found. The PRO/II Keyword Input Manual may be obtained from SimSci.

    General DataSI units are used. The total calculation sequence is specified. The calculator CAL0 is processedbefore the MTBE column in order to set the reaction factor equal to 1.0 on the first pass throughthe flowsheet. The MBAL keyword on the PRINT statement specifies that an overall massbalance be reported in the final output.

      5KeywordSyntax

      DIMENSION SI, TEMP=C  PRINT INPUT = ALL, STREAM = COMPONENT, MBAL

      SEQUENCE HX-1 , RX-1, HX-2A, CAL0 , T-1 , CONVERSION , &

      HX-2B , P-1 , HX-3 , &

      T-2 , HX4A , V-1 , D-1 , P-2 , T-3 , &

      CAL1 , P-4 , HX4B , HX-5 , P-3 , RC-1

    Component DataAll the components in the simulation are in the PRO/II databank.

    Thermodynami c DataThe VLE fractionators are simulated well with SimSci’s modified Soave-Redlich-Kwong (SRKM)equation of state method. For this method, PRO/II contains extensive, built-in databanks thatencompass binary interaction parameter data for the majority of component pairs present in thissimulation. In this casebook, however, binary interaction data (kijs) are directly supplied for 8component pairs to improve the accuracy of the separations in the columns and to demonstratethe input syntax.

    Transport property calculations are selected by specifying the TRANSPORT keyword in orderto use the rigorous heat exchanger model in the MeOH recovery section. The liquid extractionunit is simulated using the SRKM method for VLLE thermodynamics with binary interaction dataagain supplied as part of the input. Note that the L1KEY component (i.e., the predominantcomponent in the L1 liquid phase) is specified as component 1, n-butane. The L2KEY componentis specified to be component 10, water. Explicitly specifying the key components eliminates theneed for PRO/II to find an appropriate immiscible pair, and reduces computation time. Note alsothat each thermodynamic set is given a unique set id number. All the azeotropes are properlypredicted.

      23.3KeywordSyntax

    METHOD SYSTEM=SRKM, TRANSPORT=PURE, SET=S1

      KVAL

      SRKM 1, 9, 0.046973, 0.126027,0,0,0,0,1,1

      SRKM 3, 8, 0.136,-0.0323,0,0,0,0,1,1

      SRKM 4, 8, 0.136,-0.0323,0,0,0,0,1,1

      SRKM 5, 8, 0.136,-0.0323,0,0,0,0,1,1

      SRKM 6, 8, 0.135525,-0.032271,0,0,0,0,1,1

      SRKM 8, 9,-0.073971,-0.055222,0,0,0,0,1,1

      SRKM 9,10,-0.145000,-0.253000,0,0,0,0,1,1

      SRKM 7,11, 0.05785, -0.0093,-10.144,6.17,0,0,1,1

     

    6

  • 8/9/2019 Mtbe.unlocked

    9/47

      METHOD SYSTEM(VLLE)=SRKM, L1KEY=1, L2KEY=10, SET=S2

      KVAL

      SRKM 1, 9, 0.046973, 0.126027,0,0,0,0,1,1

      SRKM 3, 8, 0.136,-0.0323,0,0,0,0,1,1

      SRKM 4, 8, 0.136,-0.0323,0,0,0,0,1,1

      SRKM 5, 8, 0.136,-0.0323,0,0,0,0,1,1

      SRKM 6, 8, 0.135525,-0.032271,0,0,0,0,1,1

      SRKM 8, 9,-0.073971,-0.055222,0,0,0,0,1,1

      SRKM 9,10,-0.145000,-0.253000,0,0,0,0,1,1  SRKM 7,11, 0.05785, -0.0093,-10.144,6.17,0,0,1,1

    Stream Data

    Feed Streams

    The mixed C4 feed stream, and the methanol feed stream are specified in the normal manner,using the compositions and stream conditions given in Table 3.

    Recycle Stream

    The composition of the recycle methanol-water stream from the MeOH recovery section isestimated initially for the first run through the flowsheet (see Table 3).

      31

    KeywordSyntax

    $ RECYCLE STREAM ---- INITIAL GUESS

    PROP STRM=20, TEMP=44, PRES=1724, COMP=8,4.0/10,0.3

    Other Streams

    The amount of wash water in stream 10 (the feed to column T-2) is provided. The temperatureand pressure of the cooling water stream (CW) for the condenser for column T-3 is provided,along with an estimate of the flowrate. An estimated value is given for the flowrate of the make-upwater stream, MKUP.

      31KeywordSyntax

      PROP STRM=10, TEMP=38, PRES=793, COMP=10,375

      PROP STRM=CW, TEMP=21, PRES=690, COMP=10,100, RATE(V)=75

      PROP STRM=MKUP, TEMP=38, PRES=350, COMP=10,500

    Unit Operations

    MTBE ReactionThe MTBE reaction section of the plant is shown in Figure 2 below.

    Figur e 2: MTBE Reaction Section 

    7

  • 8/9/2019 Mtbe.unlocked

    10/47

    With reference to the previous figure, mixed C4s (stream 2) are combined with fresh methanol(stream 1) and recycle methanol (stream 20) and pre-heated in a heat exchanger (HX-1) to 43.5C. The heated feed (stream 3) is then sent to a conversion reactor (RX-1) which is maintainedat 55 C by circulating a coolant. The three reactions defined in Table 4 take place in this reactorat the specified conversion levels. A pressure drop of 69 KPa through the reactor is also specified.

    The stoichiometries of the major and minor reactions in the MTBE process are provided In theRXDATA Category of input:

      48KeywordSyntax

    $ Reaction Data for Reactors

    $

     

    RXSET ID=ST1

      REACTION ID=1

      STOIC 6,-2 / 11,1 $ IBTE + IBTE = DIB

      REACTION ID=2

      STOIC 10,-1 / 6,-1 / 9,1 $ H2O + IBTE = TBA

      REACTION ID=3

      STOIC 6,-1 / 8,-1 / 7,1 $ IBTE + MEOH = MTBE

    The unit is modeled as a conversion reactor in the Unit Operations Category of input:

      92

    KeywordSyntax

    CONREACTOR UID=RX-1, NAME=REACTORS

      FEED 3  PROD L=4

      OPER TEMP=55, DP=69

      RXCALC MODEL=STOIC

      RXSTOIC RXSET=ST1

      REACTION 1

      BASE COMP=6

      CONV 0.0025

      REACTION 2

      BASE COMP=10

      CONV 1.00

      REACTION 3

      BASE COMP=8

      CONV 0.93

    MTBE Distillation and RecoveryThe MTBE distillation and recovery section of the plant is shown in Figure 3 below.

    Figure 3: MTBE Distillation and Recovery Section 

    8

  • 8/9/2019 Mtbe.unlocked

    11/47

    The reactor product (stream 4) exchanges heat with the MTBE column bottoms product inexchanger HX-2. Normally, this would create a thermal calculation loop. However, since thetemperature of stream 5 is known, this process is modeled by two separate heat exchangers,HX-2A and HX-2B as shown in Figure 3. Stream 4 from the reactors is heated to 72 C in HX-2Ato produce stream 5. The product of column T-1, stream 7, is cooled in exchanger HX2-B toproduce the MTBE product stream 8. The duty of exchanger HX-2A is defined to be equal to theduty in HX-2A. This approach avoids an unnecessary calculation loop since the temperature of

    stream 5 is fixed at 72 C.

    The heated stream 5 is fed to tray 15 of the 30 tray MTBE column (T-1). The MTBE column issimulated with the CHEMDIST algorithm using the SIMPLE initial estimate generator (IEG). Atop pressure of 621 KPa and a column pressure drop of 76.5 KPa are given. The condenser isoperated at a fixed temperature (TFIX) of 43.5 C and pressure of 621 KPa. The controlspecifications are a bottoms flowrate of 278 kgmoles/h and a reflux ratio of 1.1. The condenserand reboiler duties are varied to achieve these specifications.

    The next step is to provide all the information required for specifying the reaction trays in thedistillation column.

    How is Reactive Distill ation Impl emented in PRO/II?You can visualize the reaction zone of a distillation column as a series of boiling pot reactors.

    On each reaction tray sits a bed of solid catalyst. Each tray is connected to the next in the forwarddirection (down the column) by the flow of liquid from one tray to the next, and in the reversedirection by the vapor flow moving up from one tray to the previous tray. See the PRO/II Reference Manual  (obtainable from your SimSci representative) for detailed information on theReactive Distillation column algorithm.

    For the reactive distillation process, the reaction zone (trays 8 through 13) is specified using theRXTRAY keyword. Note that the liquid volume of each of the reaction trays is also specifiedusing the LVOL keyword, and that the concentration of the dry  catalyst (GCAT, in g/l) is specifiedusing a DEFINE statement. A value of 360 g/l is given for GCAT to represent commercial catalystloadings (corresponding to a wet catalyst density of 770 g/l at 53% moisture content ---- see Table2). The reaction factor, RXFACT, is used to demonstrate how the reaction rate in the simulationmodel can be varied to match data from an actual plant. For this casebook, RXFACT is set equalto 1.0, indicating that the reaction rate has not been adjusted.

      75KeywordSyntax

      COLUMN UID=T-1, NAME=MTBE COLUMN

      PARA TRAY=30, CHEM=35

    FEED 5, 15

      PROD OVHD=6, BTMS=7,280

      PSPEC TOP=621, DPCOL=76.5

      COND TYPE=TFIX, PRES=621, TEMP=43.5

      DUTY 1,1 / 2,30

      VARY DUTY=1,2

      SPEC STRM=7,RATE,VALUE=278.0

      SPEC RRATIO, VALUE=1.1

      PRINT PROP=ALL , COMP=M

      PLOT LOG XCOMP=6,6/ 8, 8/ 7, 7/1,1

      ESTI MODEL=SIMPLE

      RXTRAY ALJX, 8 , 13

      LVOL(M3) 8 , 5.0 / 13, 5.0

      DEFINE GCAT AS 360.0

      DEFINE RXFACT AS 1.0

    9

  • 8/9/2019 Mtbe.unlocked

    12/47

    MTBE Kineti c ModelThe algorithm used for the reactive distillation column model is a Newtonian-based algorithm.Therefore, in order to accurately model the MTBE reaction in the distillation column, we need todetermine not only the reaction rate of the reaction, but also the temperature and compositionderivatives of the rate. These derivatives may be generated by one of two methods:

    1. Numerically, by an estimation method

    or

    2. Analytically, by an expression based on the reaction rate equation.

    The PRO/II program can automatically generate numerical estimates of the reaction ratederivatives. In many cases, this is sufficient. However, for certain types of reactions, the moreaccurate analytical derivatives provide better solutions. These are:

    Reversible reactions

    or

    Exothermic reactions

    or

    Reactions where the equilibrium is sensitive to temperature

    The MTBE reaction satisfies all three criteria. The reaction rate expression and its analyticalderivatives can be easily and readily entered by the user in the Procedure Data category of input.The MTBE reaction rate expression used in this simulation model is based on the rate expressiondescribed in a paper by Al-Jarallah et al 3. In this casebook, we will detail how to enter the reactionrate and the associated analytical derivatives for the MTBE reaction.

    First, in the Reaction Data category of input, the stoichiometry of the forward reaction is given(IBTE + MEOH = MTBE) and the base component is defined to be MEOH. The kinetic data willbe provided later on in the Procedure Data category of input using FORTRAN-like language asthe procedure named ALJD.

      75KeywordSyntax

     RXSET ID=ALJX

      REACTION ID=ALJ0

      STOICH 6, -1/8, -1/7, 1

      BASE COMP=8

      KINETIC PROCEDURE=ALJD, POSITION=1

    The reaction rate equation described by Al-Jarallah takes into account the forward and thereverse reaction. We have modified Al-Jarallah’s rate equation for this casebook to simulate theeffect of catalyst loading on the reaction rate. This was achieved by removing the catalyst termsfrom the concentration terms. The modified reaction rate is given by:

    (1)

    r s  = k s K a  

    C AC B 0.5

     − C C 

    1.5

    K eq 

    (1 +K AC A +K B C b ))1.5

    where:

    ks = surface reaction rate constant = 1.2x1013exp(- 87900/RT) in (gmole/g catalyst)1.5 /hr (1a)KA = equilibrium adsorption constant = 5.1x10

    -13exp(97500/RT) in g catalyst/gmole (1b)

    KC = equilibrium adsorption constant = 1.6x10-16

    exp(119000/RT) in g catalyst/gmole (1c)Keq = equilibrium constantCA = IBTE concentration in mole/lCB = MEOH concentration in mole/lCC = MTBE concentration in mole/l

    3 Al-J arallah, A.M., M.A.B. Siddiqui, and A.K.K. Lee, 1988, Kinetics of Methyl Tertiary Butyl Ether Synthesis Catalyzed by Ion Exchange

    Resin, Can. J . Chem. Eng., 66, 802-807.

    10

  • 8/9/2019 Mtbe.unlocked

    13/47

    Kinetic Data

    In the Procedure Data category of input, the PROCEDURE type of RXKINETIC is selected todenote that the procedure will be used in the Reactive Distillation column model. In addition,process data, and real and integer variables are defined:

      47Keyword

    Syntax

      PROCEDURE DATA

     

    PROCEDURE(RXKINE) ID=ALJD,NAME=Al-Jarallah  PDATA GCAT , RXFACT

      REAL KS , KA , KC , KALJ , KREH1 , KREH2 , KIZQ , KEQREF

      INTEGER IBTE , MEOH , MTBE

    Next, the indices for the components are set, a value is given for the gas constant in J/gm-moleK, and the basis for the temperature values in the procedure is set to an absolute basis. Inaddition, the temperature and composition rate derivatives are initially set equal to zero.

      CODE

    $

      $ INITIALIZE DATA:

      $ SET INDEXES FOR COMPONENTS

      $ DEFINE GAS CONSTANT IN Joules/gm-mole K

      $ Note: R could have been retrieved in input units by R=RGAS.

      $ However, since the reaction basis won’t change, and  $ RGAS will change with the default units, this

      $ eliminates one possible source of error.

      $ Initialize the local variable TK to the absolute temperature.

      $ Note: The temperature basis for the flowsheet must be Centigrade

      $ or Kelvin.

      $ Set temperature and composition derivatives to zero.

      $

      IBTE = 6

      MTBE = 7

      MEOH = 8

      R = 8.314

      TK = RTABS

      DO 1000 I1 = 1,NOR

      DRDT(I1) = 0.0

      DO 1000 I2 = 1,NOC  1000 DRDX(I2,I1) = 0.0

    The surface reaction rate constant, ks, and the equilibrium adsorption constants, KA, and KB,are calculated using the expressions given previously as (1a), (1b), and (1c).

      KS = 1.2E+13*EXP(-87900.0/(R*TK))

      KA = 5.1E-13*EXP( 97500.0/(R*TK))

      KC = 1.6E-16*EXP(119000.0/(R*TK))

    Next, the derivatives of these constants are computed and are used later on in calculating therate derivatives.

      $

      DKSDT = KS * 87900.0 / R / (TK*TK)

      DKADT = KA * (-1.0) * 97500.0 / R / (TK*TK)

      DKCDT = KC * (-1.0) * 119000.0 / R / (TK*TK)

    Then the bulk concentration of components A, B, and C per gram of catalyst  (RHOA, RHOB,and RHOC) are determined from the liquid mole fractions of the components (XLIQ), the densityof the liquid, and the catalyst loading (GCAT) in g/l. Note that the liquid density, DENS, obtaineddirectly from PRO/II using the predefined variables, RLMRAT and RLVRAT, is in the user-speci-fied units of kg-moles/m

    3 (SI units). Our basis for calculations is gm-moles/l and the conversion

    factor between these kg-moles/m3 and gm-moles/l is 1.0. Also, note that the value of GCAT used

    here is 12.4 g/l. This value is used because it is the catalyst loading at which data for theAl-Jarallah rate equation was collected.

    11

  • 8/9/2019 Mtbe.unlocked

    14/47

      GCATX = 12.4

      DENS=RLMRAT/RLVRAT

      RHOA=(XLIQ(MEOH)*DENS/GCATX)

      RHOB=(XLIQ(IBTE)*DENS/GCATX)

      RHOC=(XLIQ(MTBE)*DENS/GCATX)

    Expressions for the equilibrium constant and its derivative as functions of temperature areprovided based on equilibrium data published by Al-Jarallah et al .

      KALJ = EXP(-17.31715+(7196.776/TK))

      $

      DKALJDT = - KALJ * 7196.776 / (TK*TK)

    Then the reaction rate and rate derivatives with respect to temperature and composition aredetermined.

      $

      $ -------- Calculate reaction rate and derivatives by terms

      $ -------- Units - RATE - gram-mole / gram catalyst / hr.

      $

      $ Denominator & derivatives.

      $

      RDEN = 1.0 + ( KA*RHOA ) + 0.0 + ( KC*RHOC )

      DRDDT = RHOA*DKADT + 0.0 + RHOC*DKCDT

      DRDDME = KA/GCATX*DENS  DRDDIB = 0.0

      DRDDMT = KC/GCATX*DENS

      $

      $ First factor in rate equation.

      FACT1 = KS *KA/RDEN

      DFAC1DT = DKSDT*KA/RDEN + KS*DKADT/RDEN - KS*KA/RDEN**2 * DRDDT

      $

      $ Second factor in rate equation.

      FACT2 = RHOA*RHOB**0.5 - RHOC**1.5/KALJ

      DFAC2DT = 0.0 + RHOC**1.5/KALJ**2 * DKALJDT

      $

      $ Combine terms to calculate rate and derivatives.

      $

      $ ---- Rate equation (rate per one gram of catalysis).

      RATE = FACT1 * FACT2

      $

      $ ---- Rate temperature derivative.

      DRDT(1) = DFAC1DT * FACT2 &

      + FACT1 * DFAC2DT

     

    $ ---- Rate composition derivatives.

      DRDX(MEOH,1) = -KS*KA/RDEN**2 * DRDDME * FACT2 &

      + FACT1 * (RHOB**0.5/GCATX*DENS)

      DRDX(IBTE,1) = -KS*KA/RDEN**2 * DRDDIB * FACT2 &

      + FACT1 * (RHOA/2.0/RHOB**0.5/GCATX*DENS)

      DRDX(MTBE,1) = -KS*KA/RDEN**2 * DRDDMT * FACT2 &

      - FACT1 * (1.5* RHOC**0.5/GCATX/KALJ*DENS)

    It is important to note, however, that the rate and rate derivatives calculated above are computedon a basis of 1 gram of catalyst . The reactive distillation algorithm requires that these values(RRATES, DRDT, and DRDX) be supplied on a unit reaction volume basis . Therefore, therate and rate derivatives are multiplied by the grams of catalyst per unit volume, GCAT.

    12

  • 8/9/2019 Mtbe.unlocked

    15/47

      $

      $ -------- Convert rate equation and derivatives to a straight volume basis

      $ -------- by multiplying the base rate by the grams of catalyst/unit volume.

      $ -------- The rate is returned in input units, kg-moles/cubic meter/hour.

      $

      RRATES(1) = GCAT * RXFACT * RATE

      $

      DRDT(1) = GCAT * RXFACT * DRDT(1)

      $  DRDX(MEOH,1) = GCAT * RXFACT * DRDX(MEOH,1)

      DRDX(IBTE,1) = GCAT * RXFACT * DRDX(IBTE,1)

      DRDX(MTBE,1) = GCAT * RXFACT * DRDX(MTBE,1)

      RETURN

    Once the column is converged, the top and bottom product compositions are known. Exchanger(HX-2B) is now simulated for heat exchange between the column feed (see HX-2A) and thebottom product (stream 7). The duty in this exchanger is set equal to the duty in exchangerHX-2A. The cooled hot side fluid is the MTBE product (stream 8).

    Pump P-1 pumps the liquid distillate (stream 6) at a pressure of 827 KPa to the methanol recoverysection.

      81

    KeywordSyntax

      HX UID=HX-2B, NAME=FEED-BTMS-B

      HOT FEED=7, L=8, DP=34.5  DEFINE DUTY AS HX=HX-2A DUTY

      52KeywordSyntax

      PUMP UID=P-1, NAME=T-1 OVHD

      FEED 6

      PROD L=6P

      OPER PRES=827, EFFI=65

    A calculator (CONVERSION) is set up to compute the conversions of IBTE and MEOH to MTBEin the reactive distillation column itself.

      121KeywordSyntax

    & Calculate RXDIST conversions.

      CALCULATOR UID=CONVERSION, NAME=CONVERSION OF IBTE-MEOH TO MTBE

      RESULT 1 , IN - MEOH / 2 , IN - IBTE / 3 , IN - MTBE / &

      4 , OUT - MEOH / 5 , OUT - IBTE / 6 , OUT - MTBE / &  20 , IBTE CONV /21 , MEOH CONV

      DEFINE P(1) AS STREAM=4 RATE(M) COMP=8 $ MEOH

      DEFINE P(2) AS STREAM=4 RATE(M) COMP=6 $ IBTE

      DEFINE P(3) AS STREAM=4 RATE(M) COMP=7 $ MTBE

      DEFINE P(4) AS STREAM=6 RATE(M) COMP=8 $ MEOH

      DEFINE P(5) AS STREAM=6 RATE(M) COMP=6 $ IBTE

      DEFINE P(6) AS STREAM=6 RATE(M) COMP=7 $ MTBE

      DEFINE P(7) AS STREAM=7 RATE(M) COMP=8 $ MEOH

      DEFINE P(8) AS STREAM=7 RATE(M) COMP=6 $ IBTE

      DEFINE P(9) AS STREAM=7 RATE(M) COMP=7 $ MTBE

      PROCEDURE

      $ ----- LOAD RATES

      R( 1) = P( 1)

      R( 2) = P( 2)

      R( 3) = P( 3)

      R( 4) = P( 4) + P( 7)

      R( 5) = P( 5) + P( 8)

      R( 6) = P( 6) + P( 9)

      $ ----- CALCULATE CONVERSION

      R(20) = ( R(2) - R(5) ) / R(2)

      R(21) = ( R(1) - R(4) ) / R(1)

      $ ----- DISPLAY RESULTS

      DISPLAY R( 1: 9 )

      DISPLAY R( 20:21 )

      RETURN

    13

  • 8/9/2019 Mtbe.unlocked

    16/47

    Methanol RecoveryThe methanol recovery section of the process is shown in Figure 4.

    Figure 4: Methanol Recovery Section 

    The methanol-C4s azeotrope (stream 6P) is delivered by pump P-1 to heat exchanger HX-3where it is cooled to 38 C against cooling water (CW). The exchanger also calculates the utility(CW) requirement given a CW delivery temperature of 16 C and a return temperature of 32 C.The cooled process stream is fed to the bottom of the water wash column (T-2).

      81KeywordSyntax

      HX UID=HX-3, NAME=COOLER

      HOT FEED=6P, L=9, DP=34.5

      OPER HTEMP=38

      UTIL WATER, TIN=16, TOUT=32 

      79KeywordSyntax

      COLUMN UID=T-2, NAME=WATER WASH

      PARA TRAY=5, LLEX=25

      FEED 9,5 / 10,1

      PROD OVHD=11, BTMS=12,185

      PSPEC TOP=792

      ESTI MODEL=SIMPLE

      METHOD SET=S2

    Column T-2 is simulated as a liquid-liquid extractor with 5 theoretical trays. Recirculating washwater is fed to the top of the column. A top pressure specification of 792 KPa is given. Thiscolumn uses the VLLE SRK thermodynamic set (S2) defined previously in the ThermodynamicData Category of the input file.

    The raffinate leaves the top of the column (stream 11) and contains the unreacted and non-reactive C4s. The extract phase (stream 12) exits at the bottom. It enters the cold side (HX4A)of the feed-bottoms heat exchanger where it is warmed to 99 C against the recycle wash water(stream 21) which in turn is cooled (in unit HX-4B described later on).

      81KeywordSyntax

      HX UID=HX4A, NAME=FEED-BTMS

      COLD FEED=12, L=13, DP=34.5

      OPER CTEMP=99

    14

  • 8/9/2019 Mtbe.unlocked

    17/47

    Valve V-1 drops the pressure of the heated methanol-water stream (13) to 241 KPa generatinga mixed phase stream (14) which is adiabatically flashed in unit D-1. The vapor phase (stream15) containing the dissolved hydrocarbons which have been released is vented as a flare gas;the liquid phase (stream 16) is pumped (P-2) to the methanol column to recover methanol.

      53Keyword

    Syntax

      VALVE UID=V-1, NAME=VALVE

      FEED 13

      PROD M=14

      OPER PRES=241

     

      51KeywordSyntax

      FLASH UID=D-1, NAME=SEPARATOR

      FEED 14

      PROD L=16, V=15

      ADIA

     

      52KeywordSyntax

      PUMP UID=P-2, NAME=FEED PUMP

      FEED 16

      PROD L=17

      OPER EFFI=65, PRES=690

    The methanol column (T-3) is simulated with 20 theoretical trays. The feed (stream 17) enterson tray 10. The column top pressure is 138 KPa; the pressure drop through the column is 34.5KPa. A TFIX type condenser operating at 30 C and 103.5 KPa is specified. The separation ofmethanol from water is readily solved using the I/O algorithm and conventional IEG. Theperformance specifications are 99.5% recovery of methanol in the overhead product and 99.95%recovery of water in the bottoms product. Tray rating calculations are done for this column for610 mm diameter sieve trays throughout the column.

      72KeywordSyntax

    COLUMN UID=T-3, NAME=MEOH COLUMN

      PARA TRAY=20, IO=10

      FEED 17,10

      PROD OVHD=19, BTMS=18,182

      PSPEC TOP=138, DPCOL=34.5

      DUTY 1,1 / 2,20

      COND TYPE=TFIX, PRES=103.5, TEMP=30

      VARY DUTY=1,2

      ESTI MODEL=CONV, RRATIO=10

      SPEC STRM=19, COMP= 8, RATE, DIVIDE, &

      STRM=17, COMP= 8, RATE, VALUE=0.995

      SPEC STRM=18, COMP=10, RATE, DIVIDE, &

      STRM=17, COMP=10, RATE, VALUE=0.9995

      TRATE SECTION(1)=2,19, SIEVE, DIAMETER=610

    A calculator (CAL1) computes the total loss of water as a result of carry over with the C4s (stream11), the vent gas (stream 15) and by consumption in the reactor. This total quantity is the amountof make-up water required. The flowrate of the make-up water stream (MKUP) is establishedthrough a procedure call to the PRO/II stream function SRXSTR.

      121KeywordSyntax

      CALC UID=CAL1, NAME=MAKEUP

      SEQUENCE STREAM=MKUP

      DEFINE P(1) AS STRM=11, COMP=10, RATE $ H2O IN C4S

      DEFINE P(2) AS STRM=15, COMP=10, RATE $ H2O IN FLARE GAS

      DEFINE P(3) AS STRM=19, COMP=10, RATE $ H2O TO REACTOR

      PROCEDURE

      R(1) = P(1) + P(2) + P(3)

      CALL SRXSTR(SMR,R(1),MKUP)

      RETURN

    Pump P-4 pumps the recovered wash water from the methanol column bottoms combined withmake-up water as stream 21 to heat exchanger HX4B. This unit represents the hot side of the exchangerHX-4 (see HX-4A described previously) and calculates the exit temperature for stream 22.

    15

  • 8/9/2019 Mtbe.unlocked

    18/47

    Trim cooler (HX-5) further cools the wash water (stream 22) to the desired temperature of 38 Cbefore it (stream 10) goes back to the water wash column. At this stage, the first recycle loopbetween unit T-2 (water wash column) and HX-5 (trim cooler) is closed.

    The second recycle loop between unit HX-1 (feed heater) and P-3 (recycle pump) is closed whenthe pump P-3 recycles the overhead (stream 19) from the top of the methanol column (T-3) tothe reactor section.

    Then, as an illustrative example, an HXRIG module is used to rigorously rate the methanolcolumn condenser. This rigorous heat exchanger is modeled as an attached heat exchanger tocolumn T-3. This unit takes as its input the exchanger’s mechanical data such as shell and tubedimensions, tube layout pattern, the baffle cut and shell and tube side nozzle sizes. A foulingfactor of 0.00035 m

    2-K/kW is used for the condenser cooling water side. The ZONES option is

    selected to determine where phase changes occur in the exchanger. An extended data sheet isprinted in the output.

      52KeywordSyntax

      PUMP UID=P-4, NAME=WATER PUMP

      FEED 18,MKUP

      PROD L=21

      OPER EFFI=65, PRES=862

     

      81Keyword

    Syntax

      HX UID=HX4B, NAME=FEED-BOTS

      HOT FEED=21, L=22, DP=34.5

      DEFINE DUTY AS HX=HX4A, DUTY

     

      81KeywordSyntax

      HX UID=HX-5, NAME=COOLER

      HOT FEED=22, L=10, DP=34.5

      OPER HTEMP=38

     

      52KeywordSyntax

      PUMP UID=P-3, NAME=RECYCLE PUMP

      FEED 19

      PROD L=20

      OPER PRES=1724, EFFI=65

     

      82KeywordSyntax

      HXRIG UID=RC-1, NAME=T-3 COND

      TYPE TEMA=AES

      SHELL ID=381

      TUBES OD=19, BWG=14, LENGTH=4.75, PASS=2, &

      PATTERN=90, PITCH=25.4, FOUL=0.00035, FEED=CW, L=WOUT

      BAFFLE CUT=0.18

      TNOZZLE ID=102, 102

      SNOZZLE ID=152, 102

      PRINT EXTENDED , ZONES

      ATTACH COLUMN=T-3, TYPE=CONDENSER

    Finally, the beginning and ending units for the two recycle loops are defined, and the Wegsteinrecycle acceleration method is chosen to speed up the convergence.

      134KeywordSyntax

      RECYCLE DATA 

    ACCEL TYPE=WEGS

      LOOP NO=1, START=T-2, END=HX-5

      LOOP NO=2, START=HX-1, END=P-3

    16

  • 8/9/2019 Mtbe.unlocked

    19/47

    Technical Results 

    The overall mole balance for a 200,000 metric tonne per day MTBE plant using the reactivedistillation process is shown in Table 5.

    Table 5: Overall Mole Balance for a 200,000 TPY MTBE Plant (Ethermax Process) (kg-mol/hr)

    Material FEEDS PRODUCTSC4s Feed Methanol Water

    MakeupMTBE

    ProductUnreacted

    C4sFlare Gas

    N-butane 76.50 ----- ----- trace 76.50 0.003

    Iso-butane 348.50 ----- ----- ----- 348.49 0.012

    1-butene 59.50 ----- ----- ----- 59.50 trace

    cis 2-butene 34.00 -------- -------- trace 34.00 trace

    trans 2-butene 51.00 -------- -------- trace 51.00 trace

    Isobutene (IBTE) 280.50 -------- -------- -------- 2.26 --------

    MTBE -------- -------- -------- 277.35 trace --------

    Methanol -------- 277.5 -------- 0.11 trace 0.001

    tert-butanol -------- -------- -------- 0.19 -------- --------

    Water -------- -------- 0.61 -------- 0.41 0.011

    Di-isobutylene -------- -------- -------- 0.35 -------- --------

     TOTAL 850.00 277.5 0.61 278.00 572.16 0.03

    Results Analysi s 

    The results of this simulation shown above indicate that the overall conversion of IBTE is 99.2%

    with a selectivity to MTBE of 99.7%. In the reactive distillation column itself, 87.2% of the IBTEfed to the column is converted to MTBE. The MTBE product is 99.77% pure and needs no furtherpurification.

    There are a number of factors that affect the overall conversion rate of IBTE. Some of these are:

    Methanol to IBTE ratio

    Number of reaction trays

    Type of catalyst used

    Note, however, that while the IBTE conversion in the conversion reactors increase as theMEOH:IBTE ratio is increased, the overall IBTE conversion reaches a maximum, then decreasesas the MEOH:IBTE ratio is increased. This is due to the fact that more MTBE product is carriedupward through the column stripping section into the reaction trays. This promotes the reverse

    reaction of MTBE to methanol and IBTE, thus reducing the overall conversion of IBTE.

    Output Resul ts 

    Selected results are attached. These include reactor RX-1, rigorous exchanger RC-1 zonesanalysis, MTBE column T-1 (reactive distillation), tray rating results for methanol column T-3,and stream molar component rates for selected streams.

    17

  • 8/9/2019 Mtbe.unlocked

    20/47

    Additi onal References 

    1. Hydrocarbon Processing, Vol. 61, No. 9, p.177, Sept. 1982.

    2. Bitar, L.S., E. A. Hazbun, and W. J. Piel, MTBE Production and Economics, HydrocarbonProcessing, Vol. 63, No. 10, pp. 63-68, Oct. 1984.

    3. Hutson, T., et al ., in ‘‘Handbook of Chemicals Production Processes’’, Ed. Robert A. Meyers,

    McGraw-Hill Book Company, New York, Chap. 1.12, 1986.

    4. Friedlander, R.H., in ‘‘Handbook of Chemicals Production Processes’’, Ed. Robert A.Meyers, McGraw-Hill Book Company, New York, Chap. 1.13, 1986.

    5. Jacobs, R., and R. Krishna, 1993, Multiple Solutions in Reactive Distillation of Methyltert-Butyl Ether Synthesis, Ind. Chem Res., 32(8).

    6. Hydrocarbon Processing, Vol. 69, No. 10, pp.29,31,33,44, Oct. 1990.

    7. Oil & Gas J., Mar. 25, 1991, pp.26-29.

    8. Shah, V.B., D. Bluck, J. W. Kovach III, R. Parikh, and R. Yu, 1994, The Sensitivity of theDesign and Operability of the MTBE Processs with Respect to Changes in ReactionParameters and Process Configurations, paper presented at the Refining LNG and Petro-chemasia 94 Conference in Singapore, December 7-8 1994.

    18

  • 8/9/2019 Mtbe.unlocked

    21/47

    Appendix A

    Keyword Input File ---- Reactive Distillation (Ethermax) Process

    TITLE PROJECT = MTBECASEBOOK , &

      PROBLEM = MTBE PLANT , &

      USER = SIMSCI , &

      DATE = Mar95

     

    DIMENSION SI, TEMP=C

      PRINT INPUT = ALL , &

      STREAM = COMPONENT , &

      MBAL

      SEQUENCE HX-1 , RX-1, HX-2A , &

      CAL0 , T-1 , CONVERSION , &

      HX-2B , P-1 , HX-3 , &

      T-2 , HX4A , V-1 , D-1 , P-2 , T-3 , &

      CAL1 , P-4 , HX4B , HX-5 , P-3 , &

      RC-1

     

    COMP DATA

     

    LIBID 1,NC4 / & $ N-BUTANE  2,IC4 / & $ I-BUTANE

      3,1BUTENE / & $ BUTENE-1

      4,BTC2 / & $ CIS BUTENE-2

      5,BTT2 / & $ TRANS BUTENE-2

      6,IBTE / & $ ISO BUTENE

      7,MTBE / & $ METHYL TERTIARY BUTYL ETHER

      8,MEOH / & $ METHANOL

      9,TBA / & $ TERT BUTYL ALCOHOL

      10,H2O / & $ WATER

      11,244TM1P,,DIB $ DI-ISO BUTYLENE & ISOMERS

     

    THERMO DATA

     

    METHOD SYSTEM=SRKM, TRANSPORT=PURE, SET=S1

      KVAL

      SRKM 1, 9, 0.046973, 0.126027,0,0,0,0,1,1

      SRKM 3, 8, 0.136,-0.0323,0,0,0,0,1,1

      SRKM 4, 8, 0.136,-0.0323,0,0,0,0,1,1

      SRKM 5, 8, 0.136,-0.0323,0,0,0,0,1,1

      SRKM 6, 8, 0.135525,-0.032271,0,0,0,0,1,1

      SRKM 8, 9,-0.073971,-0.055222,0,0,0,0,1,1

      SRKM 9,10,-0.145000,-0.253000,0,0,0,0,1,1

      SRKM 7,11, 0.05785, -0.0093,-10.144,6.17,0,0,1,1

     

    METHOD SYSTEM(VLLE)=SRKM, L1KEY=1, L2KEY=10, SET=S2

      KVAL

      SRKM 1, 9, 0.046973, 0.126027,0,0,0,0,1,1

      SRKM 3, 8, 0.136,-0.0323,0,0,0,0,1,1

      SRKM 4, 8, 0.136,-0.0323,0,0,0,0,1,1

      SRKM 5, 8, 0.136,-0.0323,0,0,0,0,1,1

      SRKM 6, 8, 0.135525,-0.032271,0,0,0,0,1,1

      SRKM 8, 9,-0.073971,-0.055222,0,0,0,0,1,1

      SRKM 9,10,-0.145000,-0.253000,0,0,0,0,1,1

      SRKM 7,11, 0.05785, -0.0093,-10.144,6.17,0,0,1,1

     

    STREAM DATA

     

    19

  • 8/9/2019 Mtbe.unlocked

    22/47

      PROP STRM= 1, TEMP=16, PRES=1620, COMP=8,277.5

      PROP STRM= 2, TEMP=16, PRES=1620, COMP=9/41/7/4/6/33, &

      RATE=850, NORMALIZE

      PROP STRM=10, TEMP=38, PRES=793, COMP=10,375

      PROP STRM=20, TEMP=44, PRES=1724, COMP=8,4.0/10,0.3

     $

     $ INCREASE MTBE COLUMN CONDENSER COOLING WATER FLOWRATE

     $

     $ PROP STRM=CW, TEMP=21, PRES=690, COMP=10,100, RATE(V)=75  PROP STRM=CW, TEMP=21, PRES=690, COMP=10,100, RATE(V)=175

      PROP STRM=MKUP, TEMP=38, PRES=350, COMP=10,500

     

    NAME 1, MEOH FEED / 2, OLEFINS / 20, MEOH RECYC / &

      6, T-1 OVHD / 8, MTBE / 11, C4’S / &

      15, FLARE GAS / MKUP,MKUP WATER

     

    RXDATA

      $

      $ Reaction Data for Reactors

      $

     

    RXSET ID=ST1

      REACTION ID=1

      STOIC 6,-2 / 11,1 $ IBTE + IBTE = DIB

      REACTION ID=2

      STOIC 10,-1 / 6,-1 / 9,1 $ H2O + IBTE = TBA

      REACTION ID=3

      STOIC 6,-1 / 8,-1 / 7,1 $ IBTE + MEOH = MTBE

     

    $

      $ ======================================================================

      $ = =

      $ = Reaction Data =

      $ = =

      $ = Column Reaction Data =

      $ ======================================================================

      $  $

      $ ==================================================

      $

      $ MTBE REACTION SET - Supplemented Al-Jarallah

      $

      $ Iso-butane+Methanol - MTBE

      $

      RXSET ID=ALJX

      REACTION ID=ALJ0

      STOICH 6, -1/8, -1/7, 1

      BASE COMP=8

      KINETIC PROCEDURE=ALJD, POSITION=1

     

    $

    20

  • 8/9/2019 Mtbe.unlocked

    23/47

      $ ======================================================================

      $ = =

      $ = PROCEDURE DATA =

      $ = =

      $ ======================================================================

      $

     

    PROCEDURE DATA

     $ ======================================================================

      $ = =

      $ = PROCEDURE DATA for RXKINETIC REACTIONS =

      $ = (Column Reaction PROCEDURES) =

      $ = =

      $ ======================================================================

      $

      $ ==================================================

      $ ==================================================

      $ ==================================================

      $

      $ Al-Jarallah MTBE Column Reaction Kinetics.

      $

      $ ==================================================

      $ ==================================================

      $ ==================================================

      $

      $

      $

      $ Also modified to remove catalyst based concentration

      $ from reaction expression. To revert to paper, set

      $ GCATX = GCAT. This will drop the reaction rate to

      $ way below what seems realistic based on literature

      $ data. As is, it is still low.

      $

      PROCEDURE(RXKINE) ID=ALJD,NAME=Al-Jarallah

      $

      $ Reference: Adnan M. Al-Jarallah, Mohammed A. B. Siddiqui, and

      $ A. K. K. Lee, ‘‘Kinetics of Methyl Tertiary Butyl  $ Ether Synthesis Catalyzed by Ion Exchange Resin"

      $ Canadian Journal of Chemical Engineering (66)

      $ pp. 802-807

      $

      PDATA GCAT , RXFACT

      REAL KS , KA , KC , KALJ , KREH1 , KREH2 , KIZQ , KEQREF

      INTEGER IBTE , MEOH , MTBE

      CODE

      $

      $ INITIALIZE DATA:

      $ SET INDEXES FOR COMPONENTS

      $ DEFINE GAS CONSTANT IN Joules/gm-mole K

      $ Note: R could have been retrieved in input units by R=RGAS.

      $ However, since the reaction basis won’t change, and

      $ RGAS will change with the default units, this

      $ eliminates one possible source of error..

      $ Initialize the local variable TK to the absolute temperature.

      $ Note: The temperature basis for the flowshet must be Centigrade

      $ or Kelvin.

      $ Set temperature and composition derivatives to zero.

      $

      IBTE = 6

      MTBE = 7

      MEOH = 8

      $

      R = 8.314

    21

  • 8/9/2019 Mtbe.unlocked

    24/47

      $

      TK = RTABS

      $

      DO 1000 I1 = 1,NOR

      DRDT(I1) = 0.0

      DO 1000 I2 = 1,NOC

      1000 DRDX(I2,I1) = 0.0

      $

      $ Calculate the surface reaction rate constant, ks, and the  $ equilibrium adsorption constants Ka and Kb. The activation

      $ energy is in J/gm-mole.

      $ units: ks - (gm-mole / gm catalyst)**1.5 /hour

      $ Ka - gm-catalyst / mole

      $ Kc - gm-catalyst / mole

      $

      KS = 1.2E+13*EXP(-87900.0/(R*TK))

      KA = 5.1E-13*EXP( 97500.0/(R*TK))

      KC = 1.6E-16*EXP(119000.0/(R*TK))

      $

      DKSDT = KS * 87900.0 / R / (TK*TK)

      DKADT = KA * (-1.0) * 97500.0 / R / (TK*TK)

      DKCDT = KC * (-1.0) * 119000.0 / R / (TK*TK)

      $

      $ -------- Calculate the equilibrium constant.

      $

      $ Units - (gm-moles/gm-catalyst)/hour

      $ Phase - Liquid Phase Reaction

      $ Catalyst - Ion Exchange Resin Amberlyst 15,

      $ the equilibrium should be independant of the catalyst

      $

      $

      $ ---- METHOD 1.0: Adnan M. Al-Jarallah, Mohammed A. B. Siddiqui, and

      $ A. K. K. Lee, ‘‘Kinetics of Methyl Tertiary Butyl

      $ Ether Synthesis Catalyzed by Ion Exchange Resin"

      $ Canadian Journal of Chemical Engineering (66)

      $ pp. 802-807

      $

      KALJ = EXP(-17.31715+(7196.776/TK))  $

      DKALJDT = - KALJ * 7196.776 / (TK*TK)

     

    $

      $ Bulk concenrations of components per gram of catalyst, XLCONC is

      $ in moles/flow volume. XLCONC will be passed to the procedure

      $ in user input units. Internally to PRO/II, it is in SI units

      $ (kg-mole/cubic meter). The basis for these reaction equations

      $ is gm-moles/liter. The conversion factor from input units of

      $ kg-moles/cubic meter to the reaction basis of gm-moles/liter

      $ is one. Therefore, XLCONC can be used with no conversion.

      $

      $

      $ RHOA=(XLCONC(MEOH)/GCAT) |-This should be equivalent to below.

      $ RHOB=(XLCONC(IBTE)/GCAT) | It has been written explicitly below

      $ RHOC=(XLCONC(MTBE)/GCAT) | to make it obvious how to do the

      $ analytical derivatives.

      $

      $ Calculate density in moles / volume

      $

      GCATX = 12.4

      DENS=RLMRAT/RLVRAT

      RHOA=(XLIQ(MEOH)*DENS/GCATX)

      RHOB=(XLIQ(IBTE)*DENS/GCATX)

      RHOC=(XLIQ(MTBE)*DENS/GCATX)

     

    22

  • 8/9/2019 Mtbe.unlocked

    25/47

      $

      $ -------- Calculate reaction rate and derivatives by terms

      $ -------- Units - RATE - gram-mole / gram catalyst / hr.

      $

      $ Denominator & derivatives.

      $

      RDEN = 1.0 + ( KA*RHOA ) + 0.0 + ( KC*RHOC )

      DRDDT = RHOA*DKADT + 0.0 + RHOC*DKCDT

      DRDDME = KA/GCATX*DENS  DRDDIB = 0.0

      DRDDMT = KC/GCATX*DENS

      $

      $ First factor in rate equation.

      FACT1 = KS *KA/RDEN

      DFAC1DT = DKSDT*KA/RDEN + KS*DKADT/RDEN - KS*KA/RDEN**2 * DRDDT

      $

      $ Second factor in rate equation.

      FACT2 = RHOA*RHOB**0.5 - RHOC**1.5/KALJ

      DFAC2DT = 0.0 + RHOC**1.5/KALJ**2 * DKALJDT

      $

      $ Combine terms to calculate rate and derivatives.

      $

      $ ---- Rate equation (rate per one gram of catalysis).

      RATE = FACT1 * FACT2

      $

      $ ---- Rate temperature derivative.

      DRDT(1) = DFAC1DT * FACT2 &

      + FACT1 * DFAC2DT

     

    $ ---- Rate composition derivatives.

      DRDX(MEOH,1) = -KS*KA/RDEN**2 * DRDDME * FACT2 &

      + FACT1 * (RHOB**0.5/GCATX*DENS)

      DRDX(IBTE,1) = -KS*KA/RDEN**2 * DRDDIB * FACT2 &

      + FACT1 * (RHOA/2.0/RHOB**0.5/GCATX*DENS)

      DRDX(MTBE,1) = -KS*KA/RDEN**2 * DRDDMT * FACT2 &

      - FACT1 * (1.5* RHOC**0.5/GCATX/KALJ*DENS)

      $

      $ -------- Convert rate equation and derivatives to a straight volume basis  $ -------- by multipling the base rate by the grams of catalyst/unit volume.

      $ -------- The rate is returned in input units, kg-moles/cubic meter/hour.

      $

      RRATES(1) = GCAT * RXFACT * RATE

      $

      DRDT(1) = GCAT * RXFACT * DRDT(1)

      $

      DRDX(MEOH,1) = GCAT * RXFACT * DRDX(MEOH,1)

      DRDX(IBTE,1) = GCAT * RXFACT * DRDX(IBTE,1)

      DRDX(MTBE,1) = GCAT * RXFACT * DRDX(MTBE,1)

     

    RETURN

     

    UNIT OPS

     

    HX UID=HX-1, NAME=FEED HEAT

      COLD FEED=1,2,20, L=3, DP=34.5

      OPER CTEMP=43.5

     

    CONREACTOR UID=RX-1, NAME=REACTORS

      FEED 3

      PROD L=4

      OPER TEMP=55, DP=69

      RXCALC MODEL=STOIC

      RXSTOIC RXSET=ST1

    23

  • 8/9/2019 Mtbe.unlocked

    26/47

      REACTION 1

      BASE COMP=6

      CONV 0.0025

      REACTION 2

      BASE COMP=10

      CONV 1.00

      REACTION 3

      BASE COMP=8

      CONV 0.93  $

      $ Provide storage location (RESULT(1))

      $ Note: RXFACT is not varied in this casebook,

      $ but is set equal to 1.0 always

      $

      CALCULATOR UID=CAL0, NAME=COPY RXFACT

      PROCEDURE

      IF (R(2) .NE. 1.0) R(1) = 1.0 $Set RXFACT TO 1 on first call.

      R(2) = 1.0

      RETURN

     

    HX UID=HX-2A, NAME=FEED-BTMS-A

      COLD FEED=4, L=5, DP=34.5

      OPER CTEMP=72

     

    $

      $ Reactive Distillation.

      COLUMN UID=T-1, NAME=MTBE COLUMN

      PARA TRAY=30, CHEM=35

     

    FEED 5, 15

      PROD OVHD=6, BTMS=7,280

     

    PSPEC TOP=621, DPCOL=76.5

      COND TYPE=TFIX, PRES=621, TEMP=43.5

      DUTY 1,1 / 2,30

      VARY DUTY=1,2

      SPEC STRM=7,RATE,VALUE=278.0

      SPEC RRATIO, VALUE=1.1 

    PRINT PROP=ALL , COMP=M

      PLOT LOG XCOMP=6,6/ 8, 8/ 7, 7/1,1

      ESTI MODEL=SIMPLE

     

    RXTRAY ALJX, 8 , 13

      LVOL(M3) 8 , 5.0 / 13, 5.0

      DEFINE GCAT AS 360.0

      DEFINE RXFACT AS 1.0

      TSIZE VALVE FF=80.0 DPCALC=0.0

     

    $

      $ Calculate RXDIST conversions.

      CALCULATOR UID=CONVERSION, NAME=CONVERSION OF IBTE-MEOH TO MTBE

      RESULT 1 , IN - MEOH / 2 , IN - IBTE / 3 , IN - MTBE / &

      4 , OUT - MEOH / 5 , OUT - IBTE / 6 , OUT - MTBE / &

      20 , IBTE CONV /21 , MEOH CONV

      DEFINE P(1) AS STREAM=4 RATE(M) COMP=8 $ MEOH

      DEFINE P(2) AS STREAM=4 RATE(M) COMP=6 $ IBTE

      DEFINE P(3) AS STREAM=4 RATE(M) COMP=7 $ MTBE

      DEFINE P(4) AS STREAM=6 RATE(M) COMP=8 $ MEOH

      DEFINE P(5) AS STREAM=6 RATE(M) COMP=6 $ IBTE

      DEFINE P(6) AS STREAM=6 RATE(M) COMP=7 $ MTBE

      DEFINE P(7) AS STREAM=7 RATE(M) COMP=8 $ MEOH

      DEFINE P(8) AS STREAM=7 RATE(M) COMP=6 $ IBTE

      DEFINE P(9) AS STREAM=7 RATE(M) COMP=7 $ MTBE

    24

  • 8/9/2019 Mtbe.unlocked

    27/47

      PROCEDURE

      $ ----- LOAD RATES

      R( 1) = P( 1)

      R( 2) = P( 2)

      R( 3) = P( 3)

      R( 4) = P( 4) + P( 7)

      R( 5) = P( 5) + P( 8)

      R( 6) = P( 6) + P( 9)

      $ ----- CALCULATE CONVERSION  R(20) = ( R(2) - R(5) ) / R(2)

      R(21) = ( R(1) - R(4) ) / R(1)

      $ ----- DISPLAY RESULTS

      DISPLAY R( 1: 9 )

      DISPLAY R( 20:21 )

      RETURN

     

    HX UID=HX-2B, NAME=FEED-BTMS-B

      HOT FEED=7, L=8, DP=34.5

      DEFINE DUTY AS HX=HX-2A DUTY

     

    PUMP UID=P-1, NAME=T-1 OVHD

      FEED 6

      PROD L=6P

      OPER PRES=827, EFFI=65

     

    HX UID=HX-3, NAME=COOLER

      HOT FEED=6P, L=9, DP=34.5

      OPER HTEMP=38

      UTIL WATER, TIN=16, TOUT=32

     

    COLUMN UID=T-2, NAME=WATER WASH

      PARA TRAY=5, LLEX=25

      FEED 9,5 / 10,1

      PROD OVHD=11, BTMS=12,185

      PSPEC TOP=792

      ESTI MODEL=SIMPLE

      METHOD SET=S2 

    HX UID=HX4A, NAME=FEED-BTMS

      COLD FEED=12, L=13, DP=34.5

      OPER CTEMP=99

     

    VALVE UID=V-1, NAME=VALVE

      FEED 13

      PROD M=14

      OPER PRES=241

     

    FLASH UID=D-1, NAME=SEPARATOR

      FEED 14

      PROD L=16, V=15

      ADIA

     

    PUMP UID=P-2, NAME=FEED PUMP

      FEED 16

      PROD L=17

      OPER EFFI=65, PRES=690

     

    COLUMN UID=T-3, NAME=MEOH COLUMN

      PARA TRAY=20, IO=10

      FEED 17,10

      PROD OVHD=19, BTMS=18,182

      PSPEC TOP=138, DPCOL=34.5

      DUTY 1,1 / 2,20

    25

  • 8/9/2019 Mtbe.unlocked

    28/47

      COND TYPE=TFIX, PRES=103.5, TEMP=30

      VARY DUTY=1,2

      ESTI MODEL=CONV, RRATIO=10

      SPEC STRM=19, COMP= 8, RATE, DIVIDE, &

      STRM=17, COMP= 8, RATE, VALUE=0.995

      SPEC STRM=18, COMP=10, RATE, DIVIDE, &

      STRM=17, COMP=10, RATE, VALUE=0.9995

      TRATE SECTION(1)=2,19, SIEVE, DIAMETER=610

     CALC UID=CAL1, NAME=MAKEUP

      SEQUENCE STREAM=MKUP

      DEFINE P(1) AS STRM=11, COMP=10, RATE $ H2O IN C4’S

      DEFINE P(2) AS STRM=15, COMP=10, RATE $ H2O IN FLARE GAS

      DEFINE P(3) AS STRM=19, COMP=10, RATE $ H2O TO REACTOR

      PROCEDURE

      R(1) = P(1) + P(2) + P(3)

      CALL SRXSTR(SMR,R(1),MKUP)

      RETURN

     

    PUMP UID=P-4, NAME=WATER PUMP

      FEED 18,MKUP

      PROD L=21

      OPER EFFI=65, PRES=862

     

    HX UID=HX4B, NAME=FEED-BOTS

      HOT FEED=21, L=22, DP=34.5

      DEFINE DUTY AS HX=HX4A, DUTY

     

    HX UID=HX-5, NAME=COOLER

      HOT FEED=22, L=10, DP=34.5

      OPER HTEMP=38

     

    PUMP UID=P-3, NAME=RECYCLE PUMP

      FEED 19

      PROD L=20

      OPER PRES=1724, EFFI=65

     

    HXRIG UID=RC-1, NAME=T-3 COND  TYPE TEMA=AES

     $

     $ SIZE FOR UNFINNED TUBES

     $

      SHELL ID=381

      TUBES OD=19, BWG=14, LENGTH=5.75, PASS=2, &

      PATTERN=90, PITCH=25.4, FOUL=0.00035, FEED=CW, L=WOUT

      BAFFLE CUT=0.18

      TNOZZLE ID=102, 102

      SNOZZLE ID=152, 102

      PRINT EXTENDED , ZONES

      ATTACH COLUMN=T-3, TYPE=CONDENSER

     

    RECYCLE DATA

     

    ACCEL TYPE=WEGS

      LOOP NO=1, START=T-2, END=HX-5

      LOOP NO=2, START=HX-1, END=P-3

    26

  • 8/9/2019 Mtbe.unlocked

    29/47

    APPENDIX B

    Output File ---- Reactive Distillation (Ethermax) Process

    The following are selected exerpts from the PRO/II output report. The complete output isavailable from SimSci on floppy disk.

     SIMULATION SCIENCES INC. R PAGE P-50

     PROJECT MTBECASEBOOK PRO/II VERSION 4.02 386/EM

     PROBLEM MTBE PLANT OUTPUT SIMSCI  CONVERSION REACTOR SUMMARY Mar95

     ==============================================================================

     

    UNIT 2, ’RX-1’, ’REACTORS’

     

    OPERATING CONDITIONS

     

    REACTOR TYPE ISOTHERMAL REACTOR

      DUTY, M*KJ/HR -12.3321

      TOTAL HEAT OF REACTION AT 25.00 C, M*KJ/HR -19.6827

     

    INLET OUTLET

      --------------------- ---------------------

     

    FEED 3  LIQUID PRODUCT 4

      TEMPERATURE, C 43.50 55.00

      PRESSURE, KPA 1585.5000 1516.5000

     

    REACTION DATA

     

    ----------------- RATES, KG-MOL/HR --------------------  FRACTION

      COMPONENT FEED CHANGE PRODUCT CONVERTED

      ------------------------------------ --------------------- --------------------- --------------------- ---------------------

      1 NC4 76.5019 .0000 76.5019

      2 IC4 348.5030 .0000 348.5030

      3 1BUTENE 59.5000 .0000 59.5000

      4 BTC2 34.0001 .0000 34.0001

      5 BTT2 51.0000 .0000 51.0000

      6 IBTE 280.5000 -262.8161 17.6839 .9370

      7 MTBE 2.22240E-05 261.9277 261.9277

      8 MEOH 281.6427 -261.9277 19.7150 .9300

      9 TBA 4.49482E-13 .1871 .1871

      10 H2O .1871 -.1871 .0000 1.0000

      11 DIB .0000 .3506 .3506

     

    TOTAL 1131.8350 -262.4655 869.3694

     

    KG-MOL/HR FRACTION

      BASE COMPONENT REACTION CONVERTED CONVERTED(1)

      ------------------------------------ --------------------- --------------------- ------------------------

      6 IBTE 1 .7013 2.50000E-03

      10 H2O 2 .1871 1.0000  8 MEOH 3 261.9277 .9300

     

    (1) FRACTION CONVERTED BASED ON AMOUNT IN FEED

    27

  • 8/9/2019 Mtbe.unlocked

    30/47

     SIMULATION SCIENCES INC. R PAGE P-51

     PROJECT MTBECASEBOOK PRO/II VERSION 4.02 386/EM

     PROBLEM MTBE PLANT OUTPUT SIMSCI

      CONVERSION REACTOR SUMMARY Mar95

     ==============================================================================

     

    UNIT 2, ’RX-1’, ’REACTORS’ (CONT)

     

    REACTOR MASS BALANCE 

    --------------------- RATES, KG/HR ------------------------  FRACTION

      COMPONENT FEED CHANGE PRODUCT CONVERTED

      ------------------------------------ --------------------- --------------------- --------------------- ---------------------

      1 NC4 4446.5970 .0000 4446.5970

      2 IC4 20256.3900 .0000 20256.3900

      3 1BUTENE 3338.4280 .0000 3338.4280

      4 BTC2 1907.6760 .0000 1907.6760

      5 BTT2 2861.5090 .0000 2861.5090

      6 IBTE 15738.2900 -14746.0800 992.2104 .9370

      7 MTBE 1.95902E-03 23088.6700 23088.6700

      8 MEOH 9024.3950 -8392.6870 631.7076 .9300

      9 TBA 3.33174E-11 13.8712 13.8712

      10 H2O 3.3712 -3.3712 .0000 1.0000  11 DIB .0000 39.3450 39.3450

     

    TOTAL 57576.6600 -.2617 57576.4000

    28

  • 8/9/2019 Mtbe.unlocked

    31/47

     SIMULATION SCIENCES INC. R PAGE P-14

     PROJECT MTBECASEBOOK PRO/II VERSION 4.02 386/EM

     PROBLEM MTBE PLANT OUTPUT SIMSCI

      RIGOROUS HEAT EXCHANGER SUMMARY Mar95

     ==============================================================================

     

    UNIT 21, ’RC-1’, ’T-3 COND’

     

    HEAT EXCHANGER IS ATTACHED TO COLUMN T-3, UNIT 15 AS A CONDENSER OPERATING CONDITIONS OVERALL

      ---------------------

      DUTY, M*KJ/HR 3.9720

      LMTD, C 42.683

      MTD, C 36.858

      F FACTOR, (FT) .864

      U*A, KW/K 29.935

      U, KW/M2-K .876 .809 (REQD)

      A, M2 36.981 34.160 (REQD)

     

    SHELL SIDE CONDITIONS INLET OUTLET

      --------------------- ---------------------

      STREAM IS FROM COLUMN T-3 , UNIT 15

      VAPOR, KG-MOL/HR 98.803 N/A  K*KG/HR 3.109 N/A

      CP, KJ/KG-C 1.520 N/A

      LIQUID, KG-MOL/HR N/A 98.803

      K*KG/HR N/A 3.109

      CP, KJ/KG-C N/A 2.538

      TOTAL, KG-MOL/HR 98.803 98.803

      K*KG/HR 3.109 3.109

      CONDENSATION, KG-MOL/HR 98.803

      L/F .0000 1.0000

      TEMPERATURE, C 74.079 27.217

      PRESSURE, KPA 138.000 91.775

     

    TUBE SIDE CONDITIONS INLET OUTLET

      --------------------- ---------------------

      FEED(S) CW

      PRODUCTS LIQUID WOUT

      VAPOR, KG-MOL/HR N/A N/A

      K*KG/HR N/A N/A

      CP, KJ/KG-C N/A N/A

      LIQUID, KG-MOL/HR 9700.201 9700.201

      K*KG/HR 174.749 174.749

      CP, KJ/KG-C 4.499 4.457

      TOTAL, KG-MOL/HR 9700.201 9700.201

      K*KG/HR 174.749 174.749

      VAPORIZATION, KG-MOL/HR N/A

      L/F 1.0000 1.0000

      TEMPERATURE, C 21.000 26.164

      PRESSURE, KPA 690.000 318.172

    29

  • 8/9/2019 Mtbe.unlocked

    32/47

     SIMULATION SCIENCES INC. R PAGE P-15

     PROJECT MTBECASEBOOK PRO/II VERSION 4.02 386/EM

     PROBLEM MTBE PLANT OUTPUT SIMSCI

      RIGOROUS HEAT EXCHANGER SUMMARY Mar95

     ==============================================================================

     

    SHELL AND TUBE EXCHANGER DATA SHEET FOR EXCHANGER ’RC-1’

     I--------------------------------------------------------------------------------------------------------------------------------------------------------I

     I EXCHANGER NAME T-3 COND UNIT ID RC-1 I I SIZE 381 - 5750 TYPE AES, HORIZONTAL CONNECTED 1 PARALLEL 1 SERIES I

     I AREA/UNIT 37. M2 ( 34. M2 REQUIRED) AREA/SHELL 37. M2 I

     I--------------------------------------------------------------------------------------------------------------------------------------------------------I

     I PERFORMANCE OF ONE UNIT SHELL-SIDE TUBE-SIDE I

     I--------------------------------------------------------------------------------------------------------------------------------------------------------I

     I FEED STREAM ID CW I

     I FEED STREAM NAME (ATTACHED) I

     I TOTAL FLUID KG/HR 3109. 174749. I

     I VAPOR (IN/OUT) KG/HR 3109. / / I

     I LIQUID KG/HR / 3109. 174749. / 174749. I

     I STEAM KG/HR / / I

     I WATER KG/HR / / I

     I NON CONDENSIBLE KG/HR I

     I TEMPERATURE (IN/OUT) DEG C 74.1 / 27.2 21.0 / 26.2 I

     I PRESSURE (IN/OUT) KPA 138.00 / 91.78 690.00 / 318.17 I

     I--------------------------------------------------------------------------------------------------------------------------------------------------------I

     I SP. GR., LIQ (4C / 4C H2O) / .800 1.000 / 1.000 I

     I VAP (4C / 4C AIR) 1.087 / / I

     I DENSITY, LIQUID KG/M3 / 787.360 993.997 / 989.495 I

     I VAPOR KG/M3 1.538 / / I

     I VISCOSITY, LIQUID PAS / 5.5E-04 9.8E-04 / 8.7E-04 I

     I VAPOR PAS 1.1E-05 / / I

     I THRML COND,LIQ W/M-K / .2003 .6051 / .6121 I

     I VAP W/M-K .0192 / / I

     I SPEC.HEAT,LIQUID KJ/KG-K / 2.5378 4.4992 / 4.4567 I

     I VAPOR KJ/KG-K 1.5205 / / I

     I LATENT HEAT KJ/KG 1157.83 I

     I VELOCITY M/SEC .16 5.23 I

     I DP/SHELL KPA 46.25 371.85 I I FOULING RESIST M2-K/KW .35222 ( .44648 REQD) .00035 I

     I--------------------------------------------------------------------------------------------------------------------------------------------------------I

     I TRANSFER RATE KW/M2-K SERVICE .88 ( .81 REQD), CLEAN 1.27 I

     I HEAT EXCHANGED M*KJ/HR 3.972 MTD(CORRECTED) 36.9 FT .864 I

     I--------------------------------------------------------------------------------------------------------------------------------------------------------I

     I CONSTRUCTION OF ONE SHELL SHELL-SIDE TUBE-SIDE I

     I--------------------------------------------------------------------------------------------------------------------------------------------------------I

     I DESIGN PRESSURE KPA 2068. 2068. I

     I NUMBER OF PASSES 1 2 I

     I MATERIAL CARB STL CARB STL I

     I INLET NOZZLE ID MM 152.0 102.0 I

     I OUTLET NOZZLE ID MM 102.0 102.0 I

     I--------------------------------------------------------------------------------------------------------------------------------------------------------I

     I TUBE: NUMBER 109 OD 19.000 MM BWG 14 LENGTH 5.8 M I

     I TYPE BARE PITCH 25.4 MM PATTERN 90 DEGREES I

     I SHELL: ID 381.00 MM SEALING STRIPS 0 PAIRS I

     I BAFFLE: CUT .180 SPACING (IN/CENT/OUT): MM 93.70/ 76.20/ 93.70,SINGLE I

     I RHO-V2: INLET NOZZLE 1473.0 KG/M-SEC2 I

     I TOTAL WEIGHT/SHELL,KG 1007.4 FULL OF WATER 2655.4 BUNDLE 1062.8 I

     I--------------------------------------------------------------------------------------------------------------------------------------------------------I

    30

  • 8/9/2019 Mtbe.unlocked

    33/47

     SIMULATION SCIENCES INC. R PAGE P-16

     PROJECT MTBECASEBOOK PRO/II VERSION 4.02 386/EM

     PROBLEM MTBE PLANT OUTPUT SIMSCI

      RIGOROUS HEAT EXCHANGER SUMMARY Mar95

     ==============================================================================

     

    SHELL AND TUBE EXTENDED DATA SHEET FOR EXCHANGER ’RC-1’

     I--------------------------------------------------------------------------------------------------------------------------------------------------------I

     I EXCHANGER NAME T-3 COND UNIT ID RC-1 I

     I SIZE 381 - 5750 TYPE AES, HORIZONTAL CONNECTED 1 PARALLEL 1 SERIES I

     I AREA/UNIT 37. M2 ( 34. M2 REQUIRED) I

     I--------------------------------------------------------------------------------------------------------------------------------------------------------I

     I PERFORMANCE OF ONE UNIT SHELL-SIDE TUBE-SIDE I

     I--------------------------------------------------------------------------------------------------------------------------------------------------------I

     I FEED STREAM ID CW I

     I FEED STREAM NAME (ATTACHED) I

     I WT FRACTION LIQUID (IN/OUT) .000 / 1.000 1.000 / 1.000 I

     I REYNOLDS NUMBER 52994. 81759. I

     I PRANDTL NUMBER 5.045 6.936 I

     I WATSON K,LIQUID / 10.599 8.762 / 8.762 I

     I VAPOR 10.599 / / I

     I SURFACE TENSION N/M / .024 .072 / .072 I

     I FILM COEF(SCL) KW/M2-K 1.9 (1.000) 15.6 (1.000) I I FOULING LAYER THICKNESS MM .000 .000 I

     I--------------------------------------------------------------------------------------------------------------------------------------------------------I

     I THERMAL RESISTANCE I

     I UNITS: ( M2-K/KW ) (PERCENT) (ABSOLUTE) I

     I SHELL FILM 52.00 .52123 I

     I TUBE FILM 8.24 .08260 I

     I TUBE METAL 4.58 .04593 I

     I TOTAL FOULING 35.18 .35267 I

     I ADJUSTMENT 8.26 .08280 I

     I--------------------------------------------------------------------------------------------------------------------------------------------------------I

     I PRESSURE DROP SHELL-SIDE TUBE-SIDE I

     I UNITS: (KPA) (PERCENT) (ABSOLUTE) (PERCENT) (ABSOLUTE)I

     I WITHOUT NOZZLES 97.00 44.87 76.94 286.11 I

     I INLET NOZZLES 2.95 1.36 8.46 31.48 I

     I OUTLET NOZZLES .05 .02 14.59 54.27 I

     I TOTAL /SHELL 46.25 371.85 I

     I TOTAL /UNIT 46.25 371.85 I

     I DP SCALER 1.00 1.00 I

     I--------------------------------------------------------------------------------------------------------------------------------------------------------I

     I CONSTRUCTION OF ONE SHELL I

     I--------------------------------------------------------------------------------------------------------------------------------------------------------I

     I TUBE:OVERALL LENGTH 5.8 M EFFECTIVE LENGTH 5.33 M I

     I TOTAL TUBESHEET THK 66.0 MM AREA RATIO (OUT/IN) 1.285 I

     I THERMAL COND 51.9 W/M-K DENSITY 7862.00 KG/M3I

     I--------------------------------------------------------------------------------------------------------------------------------------------------------I

     I BAFFLE: THICKNESS 4.762 MM NUMBER 74 I

     I--------------------------------------------------------------------------------------------------------------------------------------------------------I

     I BUNDLE: DIAMETER 327.0 MM TUBES IN CROSSFLOW 92 I

     I CROSSFLOW AREA .010 M2 WINDOW AREA .012 M2 I

     I WINDOW HYD DIA 40.63 MM I

     I TUBE-BFL LEAK AREA .002 M2 SHELL-BFL LEAK AREA .001 M2 I

     I--------------------------------------------------------------------------------------------------------------------------------------------------------I

    31

  • 8/9/2019 Mtbe.unlocked

    34/47

     SIMULATION SCIENCES INC. R PAGE P-17

     PROJECT MTBECASEBOOK PRO/II VERSION 4.02 386/EM

     PROBLEM MTBE PLANT OUTPUT SIMSCI

      RIGOROUS HEAT EXCHANGER SUMMARY Mar95

     ==============================================================================

     

    ZONE ANALYSIS FOR EXCHANGER ’RC-1’

     

    TEMPERATURE - PRESSURE SUMMARY 

    ---------------- TEMPERATURE, C -------------   ---------------- PRESSURE, KPA -------------

      SHELL-SIDE TUBE-SIDE SHELL-SIDE TUBE-SIDE

      ZONE IN OUT IN OUT IN OUT IN OUT

      -------- ------------- ------------- ------------- ------------- ------------- ------------- ------------- -------------

      1 74.1 69.6 21.6 26.2 138.0 122.6 643.4 318.2

      2 69.6 65.0 21.4 21.6 122.6 107.2 658.7 643.4

      3 65.0 60.5 21.4 21.4 107.2 91.8 663.8 658.7

      4 60.5 27.2 21.0 21.4 91.8 91.8 690.0 663.8

     

    HEAT TRANSFER AND PRESSURE DROP SUMMARY

     

    ------------ HEAT TRANSFER ---------   PRESSURE DROP (TOTAL) - FILM COEFFICIENT -

      MECHANISM KPA KW/M2-K  ZONE SHELL-SIDE TUBE-SIDE SHELL-SIDE TUBE-SIDE SHELL-SIDE TUBE-SIDE

      -------- ------------------------ ------------------------ -------------------- ----------------- -------------------- -----------------

      1 CONDENSATION LIQ. HEATING 15.408 325.273 2.998 15.917

      2 CONDENSATION LIQ. HEATING 15.408 15.245 1.405 15.310

      3 CONDENSATION LIQ. HEATING 15.408 5.090 .656 15.179

      4 LIQ. SUBCOOL LIQ. HEATING .000 26.220 .478 15.088

      -------------------- -----------------

      TOTAL PRESSURE DROP 46.225 371.828

     

    HEAT TRANSFER SUMMARY (CONT)

     

    ------------ DUTY -------------   U-VALUE AREA LMTD FT

      ZONE M*KJ/HR PERCENT KW/M2-K M2 C

     -------- ----------------- ------------- ------------------------ -------------------- ----------------- ----------------

      1 3.47 87.48 1.23 18.96 47.91 .864

      2 .16 4.10 .84 1.37 45.71 .864

      3 .05 1.37 .50 .85 41.32 .864

      4 .28 7.05 .39 12.98 17.89 .864

      ----------------- ------------- ------------------------ -------------------- ----------------- ----------------

      TOTAL 3.97 100.00 34.16

      WEIGHTED .88 42.68 .864

      OVERALL 20.42 .864

      INSTALLED 36.98

     

    TOTAL DUTY = (WT. U-VALUE) (TOTAL AREA) (WT. LMTD) (OVL. FT)

      ZONE DUTY = (ZONE U-VALUE) (ZONE AREA) (ZONE LMTD) (OVL. FT)

    32

  • 8/9/2019 Mtbe.unlocked

    35/47

     SIMULATION SCIENCES INC. R PAGE P-19

     PROJECT MTBECASEBOOK PRO/II VERSION 4.02 386/EM

     PROBLEM MTBE PLANT OUTPUT SIMSCI

      COLUMN SUMMARY Mar95

     ==============================================================================

     

    UNIT 5, ’T-1’, ’MTBE COLUMN’

     

    TOTAL NUMBER OF ITERATIONS 

    CHEM METHOD 38

     

    COLUMN SUMMARY

     

    -------------------- NET FLOW RATES --------------------- HEATER

      TRAY TEMP PRESSURE LIQUID VAPOR FEED PRODUCT DUTIES

      DEG C KPA KG-MOL/HR M*KJ/HR

      ------------ ------------- ---------------- ---------------- ---------------- ----------------- ----------------- ------------------------

      1C 43.5 621.00 633.5 575.9L -23.5395

      2 50.8 621.00 661.3 1209.5

      3 51.5 623.73 659.0 1237.2

      4 52.0 626.46 657.6 1235.0  5 52.3 629.20 656.4 1233.6

      6 52.7 631.93 654.5 1232.3

      7 53.1 634.66 650.4 1230.5

      8 53.8 637.39 633.1 1226.3

      9 54.8 640.12 610.5 1211.6

      10 56.5 642.86 578.0 1191.6

      11 59.4 645.59 534.9 1161.9

      12 63.8 648.32 489.4 1121.9

      13 68.7 651.05 458.5 1079.8

      14 73.3 653.79 441.1 1049.8

      15 76.7 656.52 1202.6 1032.5 869.4M

      16 90.4 659.25 1170.9 924.6

      17 104.8 661.98 1188.8 892.9

      18 114.9 664.71 1223.4 910.8

      19 120.6 667.45 1251.4 945.4

      20 123.7 670.18 1269.5 973.4

      21 125.4 672.91 1280.7 991.5

      22 126.4 675.64 1287.8 1002.7

      23 127.0 678.37 1292.7 1009.8

      24 127.5 681.11 1296.2 1014.7

      25 127.8 683.84 1298.9 1018.2

      26 128.1 686.57 1301.1 1020.9

      27 128.4 689.30 1303.0 1023.1

      28 128.6 692.04 1304.7 1025.0

      29 128.8 694.77 1306.2 1026.7

      30R 129.1 697.50 1028.2 278.0L 23.5465

    33

  • 8/9/2019 Mtbe.unlocked

    36/47

     SIMULATION SCIENCES INC. R PAGE P-20

     PROJECT MTBECASEBOOK PRO/II VERSION 4.02 386/EM

     PROBLEM MTBE PLANT OUTPUT SIMSCI

      COLUMN SUMMARY Mar95

     ==============================================================================

     

    UNIT 5, ’T-1’, ’MTBE COLUMN’ (CONT)

     

    FEED AND PRODUCT STREAMS 

    TYPE STREAM PHASE FROM TO LIQUID FLOW RATES HEAT RATES

      TRAY TRAY FRAC KG-MOL/HR M*KJ/HR

      --------- ------------------------ ------------ -------- -------- ------------ ------------------------ ------------------------

      FEED 5 MIXED 15 .9471 869.37 9.8626

      PROD 6 LIQUID 1 575.94 3.4055

      PROD 7 LIQUID 30 278.00 7.1853

     

    OVERALL MOLE BALANCE, (FEEDS - PRODUCTS) 15.43

      TOTAL HEAT OF REACTION AT STANDARD CONDITIONS -1.1572

      TOTAL HEAT OF REACTION AT PROII ENTHALPY BASIS CONDITIONS -.7213

      OVERALL HEAT BALANCE, (H(IN) - H(OUT) ) -6.6467E-06

     

    SPECIFICATIONS

     

    PARAMETER TRAY COMP SPECIFICATION SPECIFIED CALCULATED

      TYPE NO NO TYPE VALUE VALUE

      --------------------------------- -------- ------------ ------------------------- -------------------- --------------------

      STRM 7 30 MOL RATE 2.780E+02 2.780E+02

      UNIT T-1 1 RRATIO 1.100E+00 1.100E+00

     

    REFLUX RATIOS

     

    ---------------- REFLUX RATIOS ----------------

      MOLAR WEIGHT STD L VOL

      ----------------- ----------------- -----------------

      REFLUX / FEED STREAM 5 .7287 .6318 .6974

      REFLUX / LIQUID DISTILLATE 1.1000 1.1000 1.1000

    34

  • 8/9/2019 Mtbe.unlocked

    37/47

     SIMULATION SCIENCES INC. R PAGE P-36

     PROJECT MTBECASEBOOK PRO/II VERSION 4.02 386/EM

     PROBLEM MTBE PLANT OUTPUT SIMSCI

      COLUMN SUMMARY Mar95

     ==============================================================================

     

    UNIT 5, ’T-1’, ’MTBE COLUMN’ (CONT)

     

    MOLAR REACTION RATES KG-MOL/HR 

    COMPONENT TRAY 1 TRAY 2 TRAY 3 TRAY 4

      -------------------- -------------------- -------------------- --------------------

      1 NC4 .0000 .0000 .0000 .0000

      2 IC4 .0000 .0000 .0000 .0000

      3 1BUTENE .0000 .0000 .0000 .0000

      4 BTC2 .0000 .0000 .0000 .0000

      5 BTT2 .0000 .0000 .0000 .0000

      6 IBTE .0000 .0000 .0000 .0000

      7 MTBE .0000 .0000 .0000 .0000

      8 MEOH .0000 .0000 .0000 .0000

      9 TBA .0000 .0000 .0000 .0000

      10 H2O .0000 .0000 .0000 .0000

      11 DIB .0000 .0000 .0000 .0000 

    TEMPERATURE, DEG C 43.500 50.775 51.471 51.952

      PRESSURE, KPA 621.000 621.000 623.732 626.464

     

    COMPONENT TRAY 5 TRAY 6 TRAY 7 TRAY 8

      -------------------- -------------------- -------------------- --------------------

      1 NC4 .0000 .0000 .0000 .0000

      2 IC4 .0000 .0000 .0000 .0000

      3 1BUTENE .0000 .0000 .0000 .0000

      4 BTC2 .0000 .0000 .0000 .0000

      5 BTT2 .0000 .0000 .0000 .0000

      6 IBTE .0000 .0000 .0000 -2.5733

      7 MTBE .0000 .0000 .0000 2.5733

      8 MEOH .0000 .0000 .0000 -2.5733

      9 TBA .0000 .0000 .0000 .0000

      10 H2O .0000 .0000 .0000 .0000

      11 DIB .0000 .0000 .0000 .0000

     

    TEMPERATURE, DEG C 52.319 52.657 53.069 53.759

      PRESSURE, KPA 629.196 631.928 634.661 637.393

      VOLUME, M3 5.000

    35

  • 8/9/2019 Mtbe.unlocked

    38/47

     SIMULATION SCIENCES INC. R PAGE P-37

     PROJECT MTBECASEBOOK PRO/II VERSION 4.02 386/EM

     PROBLEM MTBE PLANT OUTPUT SIMSCI

      COLUMN SUMMARY Mar95

     ==============================================================================

     

    UNIT 5, ’T-1’, ’MTBE COLUMN’ (CONT)

     

    COMPONENT TRAY 9 TRAY 10 TRAY 11 TRAY 12

      -------------------- -------------------- -------------------- --------------------

      1 NC4 .0000 .0000 .0000 .0000

      2 IC4 .0000 .0000 .0000 .0000

      3 1BUTENE .0000 .0000 .0000 .0000

      4 BTC2 .0000 .0000 .0000 .0000

      5 BTT2 .0000 .0000 .0000 .0000

      6 IBTE -2.5327 -2.8062 -3.1954 -3.2871

      7 MTBE 2.5327 2.8062 3.1954 3.2871

      8 MEOH -2.5327 -2.8062 -3.1954 -3.2871

      9 TBA .0000 .0000 .0000 .0000

      10 H2O .0000 .0000 .0000 .0000

      11 DIB .0000 .0000 .0000 .0000

     

    TEMPERATURE, DEG C 54.763 56.481 59.417 63.760  PRESSURE, KPA 640.125 642.857 645.589 648.321

      VOLUME, M3 5.000 5.000 5.000 5.000

     

    COMPONENT TRAY 13 TRAY 14 TRAY 15 TRAY 16

      -------------------- -------------------- -------------------- --------------------

      1 NC4 .0000 .0000 .0000 .0000

      2 IC4 .0000 .0000 .0000 .0000

      3 1BUTENE .0000 .0000 .0000 .0000

      4 BTC2 .0000 .0000 .0000 .0000

      5 BTT2 .0000 .0000 .0000 .0000

      6 IBTE -1.0336 .0000 .0000 .0000

      7 MTBE 1.0336 .0000 .0000 .0000

      8 MEOH -1.0336 .0000 .0000 .0000

      9 TBA .0000 .0000 .0000 .0000

      10 H2O .0000 .0000 .0000 .0000

      11 DIB .0000 .0000 .0000 .0000

     

    TEMPERATURE, DEG C 68.742 73.285 76.662 90.407

      PRESSURE, KPA 651.053 653.785 656.518 659.250

      VOLUME, M3 5.000

     

    COMPONENT TRAY 17 TRAY 18 TRAY 19 TRAY 20

      -------------------- -------------------- -------------------- --------------------

      1 NC4 .0000 .0000 .0000 .0000

      2 IC4 .0000 .0000 .0000 .0000

      3 1BUTENE .0000 .0000 .0000 .0000

      4 BTC2 .0000 .0000 .0000 .0000  5 BTT2 .0000 .0000 .0000 .0000

      6 IBTE .0000 .0000 .0000 .0000

      7 MTBE .0000 .0000 .0000 .0000

      8 MEOH .0000 .0000 .0000 .0000

      9 TBA .0000 .0000 .0000 .0000

      10 H2O .0000 .0000 .0000 .0000

      11 DIB .0000 .0000 .0000 .0000

    36

  • 8/9/2019 Mtbe.unlocked

    39/47

     SIMULATION SCIENCES INC. R PAGE P-38

     PROJECT MTBECASEBOOK PRO/II VERSION 4.02 386/EM

     PROBLEM MTBE PLANT OUTPUT SIMSCI

      COLUMN SUMMARY Mar95

     ==============================================================================

     

    UNIT 5, ’T-1’, ’MTBE COLUMN’ (CONT)

     

    TRAY 17 TRAY 18 TRAY 19 TRAY 20

      -------------------- -------------------- -------------------- --------------------

      TEMPERATURE, DEG C 104.758 114.861 120.615 123.696

      PRESSURE, KPA 661.982 664.714 667.446 670.178

     

    COMPONENT TRAY 21 TRAY 22 TRAY 23 TRAY 24

      -------------------- -------------------- -------------------- --------------------

      1 NC4 .0000 .0000 .0000 .0000

      2 IC4 .0000 .0000 .0000 .0000

      3 1BUTENE .0000 .0000 .0000 .0000

      4 BTC2 .0000 .0000 .0000 .0000

      5 BTT2 .0000 .0000 .0000 .0000

      6 IBTE .0000 .0000 .0000 .0000

      7 MTBE .0000 .0000 .0000 .0000  8 MEOH .0000 .0000 .0000 .0000

      9 TBA .0000 .0000 .0000 .0000

      10 H2O .0000 .0000 .0000 .0000

      11 DIB .0000 .0000 .0000 .0000

     

    TEMPERATURE, DEG C 125.389 126.389 127.035 127.493

      PRESSURE, KPA 672.910 675.642 678.374 681.107

     

    COMPONENT TRAY 25 TRAY 26 TRAY 27 TRAY 28

      -------------------- -------------------- -------------------- --------------------

      1 NC4 .0000 .0000 .0000 .0000

      2 IC4 .0000 .0000 .0000 .0000

      3 1BUTENE .0000 .0000 .0000 .0000

      4 BTC2 .0000 .0000 .0000 .0000

      5 BTT2 .0000 .0000 .0000 .0000

      6 IBTE .0000 .0000 .0000 .0000

      7 MTBE .0000 .0000 .0000 .0000

      8 MEOH .0000 .0000 .0000 .0000

      9 TBA .0000 .0000 .0000 .0000

      10 H2O .0000 .0000 .0000 .0000

      11 DIB .0000 .0000 .0000 .0000

     

    TEMPERATURE, DEG C 127.845 128.136 128.389 128.620

      PRESSURE, KPA 683.839 686.571 689.303 692.035

    37

  • 8/9/2019 Mtbe.unlocked

    40/47

     SIMULATION SCIENCES INC. R PAGE P-39

     PROJECT MTBECASEBOOK PRO/II VERSION 4.02 386/EM

     PROBLEM MTBE PLANT OUTPUT SIMSCI

      COLUMN SUMMARY Mar95

     ==============================================================================

     

    UNIT 5, ’T-1’, ’MTBE COLUMN’ (CONT)

     

    COMPONENT TRAY 29 TRAY 30

      -------------------- --------------------

      1 NC4 .0000 .0000

      2 IC4 .0000 .0000

      3 1BUTENE .0000 .0000

      4 BTC2 .0000 .0000

      5 BTT2 .0000 .0000

      6 IBTE .0000 .0000

      7 MTBE .0000 .0000

      8 MEOH .0000 .0000

      9 TBA .0000 .0000

      10 H2O .0000 .0000

      11 DIB .0000 .0000

     

    TEMPERATURE, DEG C 128.841 129.067  PRESSURE, KPA 694.767 697.500

    38

  • 8/9/2019 Mtbe.unlocked

    41/47

  • 8/9/2019 Mtbe.unlocked

    42/47

     SIMULATION SCIENCES INC. R PAGE P-49

     PROJECT MTBECASEBOOK PRO/II VERSION 4.02 386/EM

     PROBLEM MTBE PLANT OUTPUT SIMSCI

      COLUMN SUMMARY Mar95

     ==============================================================================

     

    UNIT 15, ’T-3’, ’MEOH COLUMN’ (CONT)

     

    ESTIMATED TRAY MECHANICAL DETAILS 

    SECTION TRAY ------------ DOWNCOMER WIDTHS, MM --------------------  NO VALVES

      SIDE CENTER OFF-CTR OFF-SIDE OR CAPS

      ------------- -------- ------------- -------------------- ----------------- ----------------- -----------------

      1 2 47.32 N/A N/A N/A N/A

      1 3 44.31 N/A N/A N/A N/A

      1 4 38.05 N/A N/A N/A N/A

      1 5 30.39 N/A N/A N/A N/A

      1 6 27.63 N/A N/A N/A N/A

      1 7 27.19 N/A N/A N/A N/A

      1 8 27.14 N/A N/A N/A N/A

      1 9 27.15 N/A N/A N/A N/A

      1 10 82.22 N/A N/A N/A N/A

      1 11 82.15 N/A N/A N/A N/A  1 12 82.13 N/A N/A N/A N/A

      1 13 82.12 N/A N/A N/A N/A

      1 14 82.14 N/A N/A N/A N/A

      1 15 82.17 N/A N/A N/A N/A

      1 16 82.21 N/A N/A N/A N/A

      1 17 82.25 N/A N/A N/A N/A

      1 18 82.29 N/A N/A N/A N/A

      1 19 82.34 N/A N/A N/A N/A

     

    * NOTE THIS VALUE WAS NOT CALCULATED

    40

  • 8/9/2019 Mtbe.unlocked

    43/47

      SIMULATION SCIENCES INC. R PAGE P-52

     PROJECT MTBECASEBOOK PRO/II VERSION 4.02 386/EM

     PROBLEM MTBE PLANT OUTPUT SIMSCI

      STREAM MOLAR COMPONENT RATES Mar95

     ==============================================================================

     

    STREAM ID CW MKUP WOUT 1

      NAME MKUP WATER MEOH FEED

      PHASE LIQUID LIQUID LIQUID LIQUID 

    FLUID RATES, KG-MOL/HR

      1 NC4 .0000 .0000 .0000 .0000

      2 IC4 .0000 .0000 .0000 .0000

      3 1BUTENE .0000 .0000 .0000 .0000

      4 BTC2 .0000 .0000 .0000 .0000

      5 BTT2 .0000 .0000 .0000 .0000

      6 IBTE .0000 .0000 .0000 .0000

      7 MTBE .0000 .0000 .00