mu tan ts in th ree nove l comp lemen ta t ion g roup s...

8
Mut ant s i n Three Nove l Comp l ement ati on G r oups I nh i b it Memb r ane Prote i n I nserti on i nto and So l ub l e Prote i n Trans l ocati on across the Endop l asm i c Reti cu l um Memb r ane o f Saccharomyces cerev i s i ae Ne il Green , * Hong Fang , $ and Peter Wa lter* *Department o f B i ochem i stry and B i ophys i cs , Schoo l of Med i c i ne , Un i vers ity of Ca lif orn i a , San Franc i sco , Ca lif orn i a 94143 - 0448 ; and t Department of M i crob i o l ogy and I mmuno l ogy , Schoo l o f Med i c i ne , Vanderb ilt Un i vers ity , Nashv ill e , Tennessee 37232 - 2363 Abstract . We have i so l ated mutants that i nh i b it mem - brane prote i n i nserti on i nto the ER membrane o f Sac - charomyces cerev i s i ae . The mutants were conta i ned i n three comp l ementati on groups , wh i ch we have named SEC70 , SEC1 , and SEC72 . The mutants a l so i nh i b - ited the trans l ocati on of so l ub l e prote i ns i nto the l u - men o f the ER , i nd i cati ng that they p l e i otrop i ca ll y aff ect prote i n transport across and i nserti on i nto the ER membrane . Surpri s i ng l y , the mutants i nh i b ited the trans l ocati on and i nserti on o f d iff erent prote i ns to dras - ti ca ll y d iff erent degrees . We have a l so shown that mu - SCENT geneti c stud i es i n Saccharomyces cerev i s i ae have shown that the SEC61 , SEC62 , and SEC63 genes are requ ired f or secretory prote i n trans l ocati on i nto the l umen ofthe ER ( Desha i es and Schekman , 1987 ; Rothb l att et a l ., 1989) . These genes were i dentifi ed because mutants reta i ned i n the cytop l asm a f us i on prote i n that con - s i sted o f the prepro reg i on o f prepro - a -f actor f used to h i sti- d i no l dehydrogenase ( HD ),' a yeast cytop l asm i c enzyme requ ired f or ce ll s to grow on h i sti d i no l . Fused after a s i gna l sequence , HD was sequestered to the l umen of the ER , where it was enzymati ca ll y i nacti ve i n v i vo . Se l ecti on f or mutant ce ll s conta i n i ng enzymati ca ll y acti ve HD l ed to the i dentifi cati on of SEC61 , SEC62 , and SEC63 . SEC61 , SEC62 , and SEC63 are essenti a l f or ce ll growth . The three genes encode d i sti nct ER membrane prote i ns that are assoc i ated w ith one another and w ith other yet uncharac - teri zed prote i ns i n a comp l ex ( Desha i es et a l ., 1991) . Th i s comp l ex may f orm all or part of a po l ypepti de trans l ocati on apparatus . Mutants i n each component of the comp l ex i n - h i b it the trans l ocati on of a vari ety o f so l ub l e prote i ns across the ER membrane ( e . g ., the precursors o f c i-f actor (a secre - tory prote i n), i mmunog l obu li n heavy cha i n b i nd i ng prote i n ( B i P) ( an ER res i dent prote i n), and carboxypepti dase Y ( CPY) (a vacuo l ar prote i n) ( Desha i es and Schekman , 1987; Rose et a l ., 1989 ; Rothb l att et a l ., 1989 ; Sad l er et a l ., 1989) . 1 . Abbrev i ati ons used i n thi s paper : Bi P , i nununog l obu li n heavy - cha i n b i nd - i ng protei n ; CPY , carboxypepti dase Y, HD , h i sti d i no l dehydrogenase ; SRP , s i gnal recogn iti on parti cl e . © The Rockefell er Un i vers ity Press , 0021 - 9525 / 92 / 02 / 597 / 8 $2 . 00 The Journa l of Cell Bi o l ogy , Vo l ume 116 , Number 3, February 1992 597 - 604 tati ons i n SEC61 and SEC63 , wh i ch were prev i ous l y i so l ated as mutants i nh i b iti ng the trans l ocati on of so l u - b l e prote i ns , a l so aff ect the i nserti on o f membrane prote i ns i nto the ER . Taken together our data i nd i cate that the process o f prote i n trans l ocati on across the ER membrane i nvo l ves a much l arger number o f gene products than prev i ous l y apprec i ated . Moreover, d iff er- ent trans l ocati on substrates appear to have d iff erent re - qu irements f or components o f the ce ll u l ar targeti ng and trans l ocati on apparatus . I nteresti ng l y , not all prote i ns pass i ng through the secretory pathway were equa ll y aff ected by mutati ons i n SEC61 , SEC - 62 , and SEC63 ; the trans l ocati on o f pre -i nvertase showed littl e i nh i b iti on i n mutant ce ll s ( Rothb l att et a l ., 1989) and the membrane i ntegrati on o f d i pepti dy l am i nopepti dase B was not aff ected ( Stirli ng et a l ., 1992) . Mutants i n B i P , an ER l umena l prote i n ( Rose et a l ., 1989), and mutants i n the cytop l asm i c 70K stress prote i ns a l so i n - h i b it prote i n trans l ocati on ( Desha i es et a l ., 1988) . Both pro - te i ns may i nteract w ith the preprote i ns or w ith the trans l oca - ti on apparatus on e ither s i de of the membrane to fac ilitate membrane trans l ocati on . I n contrast to yeast, stud i es i n mamma li an systems have i dentifi ed d iff erent mo l ecu l ar components as i mportant f or prote i n targeti ng to and trans l ocati on across the ER mem - brane . Spec ifi ca ll y , cytop l asm i c s i gna l recogn iti on parti c l e ( SRP), a ri bonuc l eoprote i n comp l ex o f s i x prote i n subun its and a 7S RNA , and the SRP receptor, a heterod i meri c ER membrane prote i n , are requ ired f or prote i n trans l ocati on across the mamma li an ER membrane i n v itro ( Wa lter and B l obe l, 1980 ; G il more et al ., 1982 ; Meyer et al ., 1982 ; Wa lter and B l obe l, 1982) . Other ER membrane prote i ns have a l so been i mp li ed top l ay a ro l e i nprote i n trans l ocati on ( W i edmann et al ., 1987 ; Kri eg et a l ., 1989) ; however, to date , no mamma li an prote i n homo l ogous to Sec61p , Sec - 62p , or Sec63p has been descri bed . Th i s l ack of common components i dentifi ed i n the d iff erent organ i sms l ed to the i dea that the mechan i sm of prote i n trans l ocati on may be f un - damenta ll y d iff erent . I ndeed , b i ochem i ca l stud i es showed 597 on March 17, 2006 www.jcb.org Downloaded from

Upload: others

Post on 27-May-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mu tan ts in Th ree Nove l Comp lemen ta t ion G roup s ...walterlab.ucsf.edu/wp-content/uploads/2015/04/Green_JCB_1992.pdf · ac ross the mamma lian ER memb rane in v itro (Wa lte

Mutants i n Three Novel Comp l ementat i on Groups Inh i b i t MembraneProtei n Insert i on i nto and So l ub l e Protei n Trans l ocat i on across theEndop l asmi c Ret i cu l um Membrane of Saccharomyces cerev i s i aeNei l Green , * Hong Fang , $ and Peter Wal ter**Department of Bi ochemi stry and Bi ophys i cs , Schoo l of Med i ci ne, Un i vers i ty of Cal i forn i a, San Franci sco , Cal i forn i a 94143 - 0448 ;and t Department of Mi crob i o l ogy and Immuno l ogy , Schoo l of Med i ci ne, Vanderb i l t Un i vers i ty , Nashv i l l e, Tennessee 37232 - 2363

Abstract . We have i so l ated mutants that i nh i b i t mem-brane protei n i nsert i on i nto the ER membrane of Sac-charomyces cerev i s i ae . The mutants were contai ned i nthree comp l ementat i on groups , wh i ch we have namedSEC70 , SEC1 , and SEC72 . The mutants al so i nh i b -i ted the trans l ocat i on of so l ub l e protei ns i nto the l u -men of the ER , i nd i cat i ng that they p l ei otrop i cal l yaf fect protei n transport across and i nsert i on i nto theER membrane . Surpr i s i ng l y , the mutants i nh i b i ted thetrans l ocat i on and i nsert i on of d i f ferent protei ns to dras -t i cal l y d i f ferent degrees . We have al so shown that mu -

SCENT genet i c stud i es i n Saccharomyces cerev i s i aehave shown that the SEC61 , SEC62 , and SEC63genes are requ i red for secretory protei n trans l ocat i on

i nto the l umen of the ER (Deshai es and Schekman , 1987 ;Rothb l att et al . , 1989) . These genes were i dent i f i ed becausemutants retai ned i n the cytop l asm a fus i on protei n that con -s i sted of the prepro reg i on of prepro - a- factor fused to h i st i -d i no l dehydrogenase (HD) , ' a yeast cytop l asmi c enzymerequ i red for cel l s to grow on h i st i d i no l . Fused af ter a s i gnalsequence, HD was sequestered to the l umen of the ER ,where i t was enzymat i cal l y i nact i ve i n v i vo . Sel ect i on formutant cel l s contai n i ng enzymat i cal l y act i ve HD l ed to thei dent i f i cat i on of SEC61 , SEC62 , and SEC63 .

SEC61 , SEC62 , and SEC63 are essent i al for cel l growth .The three genes encode d i st i nct ER membrane protei ns thatare associ ated wi th one another and wi th other yet uncharac-ter i zed protei ns i n a comp l ex (Deshai es et al . , 1991) . Th i scomp l ex may form al l or part of a po l ypept i de trans l ocat i onapparatus . Mutants i n each component of the comp l ex i n -h i b i t the trans l ocat i on of a var i ety of so l ub l e protei ns acrossthe ER membrane (e. g . , the precursors of ci - factor (a secre-tory protei n) , i mmunog l obu l i n heavy chai n b i nd i ng protei n(Bi P) (an ER res i dent protei n) , and carboxypept i dase Y(CPY) (a vacuo l ar protei n) (Deshai es and Schekman , 1987;Rose et al . , 1989 ; Rothb l att et al . , 1989 ; Sad l er et al . , 1989) .

1 . Abbrev i at i ons used i n th i s paper : Bi P, i nununog l obu l i n heavy - chai n b i nd -i ng protei n ; CPY, carboxypept i dase Y, HD , h i st i d i no l dehydrogenase ; SRP,s i gnal recogn i t i on part i cl e .

© The Rockefel l er Un i vers i ty Press , 0021 - 9525 / 92 / 02 / 597 / 8 $2 . 00The Journal of Cel l Bi o l ogy , Vo l ume 116 , Number 3 , February 1992 597 - 604

tat i ons i n SEC61 and SEC63 , wh i ch were prev i ous l yi so l ated as mutants i nh i b i t i ng the trans l ocat i on of so l u -b l e protei ns , al so af fect the i nsert i on of membraneprotei ns i nto the ER . Taken together our data i nd i catethat the process of protei n trans l ocat i on across the ERmembrane i nvo l ves a much l arger number of geneproducts than prev i ous l y appreci ated . Moreover , d i f fer -ent trans l ocat i on substrates appear to have d i f ferent re-qu i rements for components of the cel l u l ar target i ngand trans l ocat i on apparatus .

Interest i ng l y , not al l protei ns pass i ng through the secretorypathway were equal l y af fected by mutat i ons i n SEC61 , SEC-62 , and SEC63 ; the trans l ocat i on of pre- i nvertase showedl i tt l e i nh i b i t i on i n mutant cel l s (Rothb l att et al . , 1989) andthe membrane i ntegrat i on of d i pept i dy l ami nopept i dase Bwas not af fected (St i r l i ng et al . , 1992) .

Mutants i n Bi P, an ER l umenal protei n (Rose et al . , 1989) ,and mutants i n the cytop l asmi c 70K stress protei ns al so i n -h i b i t protei n trans l ocat i on (Deshai es et al . , 1988) . Both pro -tei ns may i nteract wi th the preprotei ns or wi th the trans l oca-t i on apparatus on ei ther s i de of the membrane to faci l i tatemembrane trans l ocat i on .

In contrast to yeast , stud i es i n mammal i an systems havei dent i f i ed d i f ferent mo l ecu l ar components as i mportant for

protei n target i ng to and trans l ocat i on across the ER mem-brane . Speci f i cal l y , cytop l asmi c s i gnal recogn i t i on part i cl e(SRP) , a r i bonucl eoprotei n comp l ex of s i x protei n subun i tsand a 7S RNA, and the SRP receptor , a heterod i mer i c ERmembrane protei n , are requ i red for protei n trans l ocat i onacross the mammal i an ER membrane i n v i tro (Wal ter andBl obel , 1980 ; G i l more et al . , 1982 ; Meyer et al . , 1982 ;Wal ter and Bl obel , 1982) . Other ER membrane protei nshave al so been i mp l i ed to p l ay a ro l e i n protei n trans l ocat i on(Wi edmann et al . , 1987 ; Kr i eg et al . , 1989) ; however , todate, no mammal i an protei n homo l ogous to Sec61p , Sec-62p , or Sec63p has been descr i bed . Th i s l ack of commoncomponents i dent i f i ed i n the d i f ferent organ i sms l ed to thei dea that the mechan i sm of protei n trans l ocat i on may be fun -damental l y d i f ferent . Indeed , b i ochemi cal stud i es showed

597

on March 17, 2006

www.jcb.orgDownloaded from

Page 2: Mu tan ts in Th ree Nove l Comp lemen ta t ion G roup s ...walterlab.ucsf.edu/wp-content/uploads/2015/04/Green_JCB_1992.pdf · ac ross the mamma lian ER memb rane in v itro (Wa lte

that protei n trans l ocat i on i n mammal i an cel l s occurs most l yco - trans l at i onal l y med i ated by SRP and SRP receptor , whereasyeast ER membranes can trans l ocate certai n fu l l y synthe-s i zed preprotei ns posttrans l at i onal l y wi thout an apparentneed for these components (Hansen et al . , 1986 ; Rothb l attand Meyer , 1986 ; Waters and Bl obel , 1986) .

Recent l y , however , the yeast and mammal i an stud i es con -verged wi th the d i scovery of a yeast gene (SRP54) that i s ho -mo l ogous to the 54 - kD protei n subun i t of mammal i an SRP(Bernstei n et al . , 1989 ; Hann et al . , 1989 ; R6mi sch et al . ,1989) . Further stud i es showed that i n yeast an SRP comp l exand an SRP receptor ex i st and , i n anal ogy to thei r mam-mal i an counterparts , funct i on i n protei n trans l ocat i on (Hannand Wal ter , 1991 ; S. Ogg , M . Por i tz , and P Wal ter , manu -scr i pt i n preparat i on) . Thus wi th respect to yeast a model i sevo l v i ng i n wh i ch d i f ferent trans l ocat i on pathways operate i nparal l el . D i f ferent trans l ocat i on substrates may be ab l e tout i l i ze the d i f ferent pathways to d i f ferent degrees ; some pro -tei ns l i ke prepro - a- factor can be ef f i ci ent l y trans l ocatedposttrans l at i onal l y and i ndependent of SRP, whereas othersmay be more d i f f i cu l t to mai ntai n trans l ocat i on competentaf ter rel ease f rom the r i bosome and may therefore str i ct l y re-qu i re co - trans l at i onal target i ng by SRP and SRP receptor .

From these resu l ts i t i s apparent that components otherthan Sec61p , Sec62p , and Sec63p part i ci pate i n protei ntrans l ocat i on across the ER membrane, and i t i s l i kel y thatmany other components have not yet been i dent i f i ed . Underthe premi se that i ntegral membrane protei ns may have re-qu i rements for membrane i ntegrat i on d i st i nct f rom those ofso l ub l e preprotei ns (such as prepro - a- factor whose preprosequence was used i n the sel ect i on for sec6 l , sec62 , andsec63) we engaged i n a genet i c search for mutants that wou l db l ock membrane protei n i ntegrat i on . Our genet i c sel ect i onmi mi cked the sel ect i on used to i dent i fy mutants i n SEC61 ,SEC62 , and SEC63 i n that we used fus i on protei ns that em-p l oyed HD as the reporter domai n. Our approach d i f fered ,however , i n that we used an i ntegral membrane protei n as thetarget i ng domai n . As shown i n th i s report , we i dent i f i edthree novel comp l ementat i on groups that show p l ei otrop i ctrans l ocat i on defects . Mutants that fal l i nto these groupsshow a surpr i s i ng degree of substrate speci f i ci ty . Further -more, we show that the sel ect i on was not exhaust i ve . I t i stherefore l i kel y that other genes i nvo l ved i n the process re-mai n to be i dent i f i ed .

Mater i al s and Methods

Ant i bod i es , Reagents , and Med i aant i - Bi P was obtai ned f rom Mark Rose (Pr i nceton Un i vers i ty , Pr i nceton ,NJ) , ant i - i nvertase f rom Johnny Ngsee (Stanford Un i vers i ty , Stanford , CA) ,ant i - a- factor f rom Wi l l i am Hansen ( th i s l ab) , and ant i - carboxypept i dase Yf rom Randy Schekman (Un i vers i ty of Cal i forn i a, Berkel ey , CA) . The prep -

arat i on of ant i - HD i s descr i bed el sewhere (Green and Wal ter , 1991) .H i st i d i no l was obtai ned f rom S i gma Chemi cal Co . (St . Lou i s , MO) andused at a concentrat i on of 10 mM on agar p l ates . For test i ng the growth ofcel l s i n the presence of 10 mM h i st i d i no l , agar p l ates contai ned SD med i um(0 . 67% yeast n i trogen base wi thout ami no aci ds , 20 g / l i ter agar , 20 g / l i terg l ucose) . Supp l ements i ncl uded 0. 1 mg / ml l euci ne, 0. 1 mg / ml aden i ne, 0. 1mg / ml tryptophan , and 0 . 1 mg / ml uraci l . Trasy l o l was obtai ned f rom Mo -bay Corp. (New York) . [35 S]Meth i on i ne was obtai ned f rom ICN Bi omed i -cal s Inc. ( I rv i ne, CA) .

SD - CAS med i um was used for the growth of cel l s contai n i ng p l asmi dsmarked wi th URA3. SD - CAS contai ns the same i ngred i ents as SD med i um

The Journal of Cel l Bi o l ogy , Vo l ume 116 , 1992

p l us casami no aci ds (0. 7 %) , tryptophan , and aden i ne (0. 1 mg / ml each) . Thecasami no aci d supp l ement contai ns l euci ne and h i st i d i ne, but the uraci l con -centrat i on i s too l ow for normal cel l growth of ura3 mutants . We took ad -vantage of the l ow uraci l concentrat i on i n SD - CAS to detect cel l s l acki ngp l asmi ds marked wi th URA3 wh i ch grew to very smal l co l on i es . Thesesmal l co l on i es were then tested for normal growth on SD - CAS agar p l atesp l us uraci l (0. 1 mg / ml ) .

Comp l ementat i on Anal ys i sFor some of the comp l ementat i on anal yses two procedures were used wh i chwere based on two d i f ferent phenotypes exh i b i ted by the SEC70 , SEC71 ,and SEC72 mutants . In the f i rst , a p l asmi d contai n i ng LEU2 and ei therSEC61 , SEC62 , SEC63 , or KAR2 was transformed i nto strai ns NG30(sec70 - 3) / PA255 i nvHD , NG31 (sec71 - 1) / pA255 i nvHD , and NG32 (sec72 - 1) /pA 25s i nvHD . Transformed cel l s were detected on agar p l ates contai n i ngaden i ne, h i st i d i ne, and tryptophan (0. 1 mg / ml each) as descr i bed (Greenand Wal ter , 1992) . Cel l s were then streaked on s i mi l ar agar p l ates exceptthat 10 mM h i st i d i no l was subst i tuted for h i st i d i ne . Conf l uent growth onagar p l ates contai n i ng h i st i d i no l was scored as a fai l ure to comp l ement asec70 , sec71 , and sec72 mutat i on . The p l asmi ds used for th i s anal ys i s aredescr i bed i n Tab l e I .

Reduced cel l growth rates wh i ch are character i st i c of SRP54 mutants(Hann and Wal ter , 1991) and SEC70 , SEC71 , and SEC72 mutants were al soused as a phenotype to test for comp l ementat i on . Th i s was done by cross i ngstrai n BHY147 wi th strai ns NG22 , NG27 , NG28 , and the parent strai n JCl -3C . Cel l s were then cured of pSRP54 (see above) . The cel l s obtai ned f romal l four crosses grew at s i mi l ar rates , i nd i cat i ng that the new mutants werenot al l el es of SRP54 . The strai ns and p l asmi ds used for th i s anal ys i s aredescr i bed i n Tab l e I .

Pu l se- l abel i ng and Immunopreci p i tat i onand Western Bl ot Anal ys i sCel l s were pu l se- l abel ed wi th [ 35S]meth i on i ne for 5 mi n at 30°C as de-scr i bed el sewhere (Green and Wal ter , 1992) . CSa42 (sec61") , RDMY20(sec62 ` 5) , and D8 (sec63") cel l s were pu l se l abel ed at the permi ss i ve tem-perature (22°C) . Immunopreci p i tat i ons and anal ys i s by SDS - PAGE were asdescr i bed (Green and Wal ter , 1992) . Prepro - « - factor was detected by West -ern b l ot anal ys i s . Cel l extracts f rom NG30 (sec70 - 3) , NG31 (sec71) , NG32(sec72) , or IG27 - 1 (Sec ' ) cel l s were prepared f rom cel l s grown to ODboo= 1 ml cel l s were resuspended i n 0. 2 ml of 10% TCA and broken by vor -tex i ng wi th g l ass beads . The preci p i tated protei n was f ract i onated bySDS - PAGE , b l otted onto n i trocel l u l ose, and detected wi th ant i - a- factor an -t i bod i es fo l l owed by al kal i ne phosphatase- l abel ed secondary ant i bod i es(purchased f rom Bi o - Rad , R i chmond , CA) .

Fus i on Protei n ConstructsThe construct i on of the p l asmi ds contai n i ng gene fus i ons A ' s 9 i nvHD andA255 i nvHD were descr i bed el sewhere (Green and Wal ter , 1992) . Sec62p -Invertase contai ns an N - termi nal f ragment (187 res i dues) of Sec62p fusedto an i nvertase f ragment that contai ns al l of the mature i nvertase sequenceexcept for two res i dues f rom i ts N - termi nus (Deshai es and Schekman ,1990) . Sec63p - Invertase contai ns an N - termi nal f ragment (133 res i dues) ofSec63p fused to an i nvertase f ragment that contai ns al l of the mature i nver -tase except for two res i dues f rom i ts N - termi nus (D . Fel dhei m, personalcommun i cat i on ; Sad l er et al . , 1989) .

Resu l ts

Iso l at i on of MutantsTo i so l ate mutants defect i ve i n membrane protei n i ntegra-t i on , we used a gene fus i on , A255 i nvHD , wh i ch encodes theNH2 - termi nal 255 ami no aci ds of arg i n i ne permease fusedto a spacer compr i sed of a f ragment of cytop l asmi c i nver -tase, wh i ch i n turn was fused to h i st i d i no l dehydrogenase(HD) (Green and Wal ter , 1992) . As dep i cted i n Fi g . 1 , theNH2 - termi nal 255 ami no aci ds of arg i n i ne permease con -tai n at l east three putat i ve transmembrane segments (al so seeGreen and Wal ter , 1992) . HD catal yses the l ast step i n the

598

on March 17, 2006

www.jcb.orgDownloaded from

Page 3: Mu tan ts in Th ree Nove l Comp lemen ta t ion G roup s ...walterlab.ucsf.edu/wp-content/uploads/2015/04/Green_JCB_1992.pdf · ac ross the mamma lian ER memb rane in v itro (Wa lte

Tab l e L Strai ns and Pl asmi ds Used i n Th i s Study

Strai n

JC 1 - 3C

FC2 - 12BIH27 - 1

CSa42

RDMY- 20D8BHY147

NG21NG22NG23NG27NG28NG30NG31NG32

Pl asmi d

pA ' e ' i nvHDpAz55 i nvHDpCS15

pRD 15pDF26pMR713pDF13pRD33pDF14pSRP54

Genotype

MATa, ade5 - 1 , trp - 1 - 1 , h i s4 - 401 , ura3 - 52 , l eu2 - 1 , HOL1 - 1

MATa, trp l - 1 , l eu2 - 1 , ura3 - 52 , h i s4 - 401 , HOLI - 1 , can l - 1MATa, h i s4 - 401 , trp l , ura3 , can l , HMRa, HMLa

MATa, sec61 - 3 , h i s4 - 401 , ura3 - 52 , HOLI - 1 , trp l - 1 , l eu2 - 3 , - 112

MATa, sec62 - 1 , h i s4 - 401 , ura3 - 52 , HOLI - 1 , trp l - 1 , l eu2 - 3 , - 112MATa, sec63 - 1 , h i s4 - 401 , ura3 - 52 , HOLIA, trp l - 1 , l eu2 - 3 , - 112MATa, trp l , l ys2 , h i s3 , ura3 , ade2 , srp54: : LYS2 + [pSRP54]

MATa, ade5 - 1 , trp - 1 , h i s4 - 401 , ura3 - 52 , l eu2 - 1 , HOLI - 1 , sec70 - 2MATa, ade5 - 1 , trp - 1 , h i s4 - 401 , ura3 - 52 , l eu2 - 1 , HOLI - 1 , sec70 - 3MATa, ade5 - 1 , trp - 1 , h i s4 - 401 , ura3 - 52 , l eu2 - 1 , HOLI - 1 , sec70 - 4MATa, ade5 - 1 , trp - 1 , h i s4 - 401 , ura3 - 52 , l eu2 - 1 , HOLI - 1 , sec7 l - 1MATa, ade5 - 1 , trp - 1 , h i s4 - 401 , ura3 - 52 , l eu2 - 1 , HOLI - 1 , sec72 - 1MATa, trp l , h i s4 , ura3 , ade5 - 1 , sec70 - 3 , HOLI - IMATa, trp l , h i s4 - 401 , ura3 , l eu2 , sec71 - 1 , HOLI - IMATa, trp l , h i s4 , ura3 , l eu2 , sec72 - 1 , HOLI - I

Markers

CANI : : HIS4 , URA3 , 2pCANI : : HIS4 , URA3 , 2pSEC61 , LEU2 , CEN6 , ARSH4

SEC62 , LEU2 , CEN6 , ARSH4SEC63 , LEU2 , CEN6 , ARSH4KAR2 , LEU2 , CEN4 , ARS1SEC63 : : SUC2 , URA3 , 2 , uSEC62 : : SUC2 , URA3 , 2uSEC63 , LEU2 , 211SRP54 , URA3 , CEN6 , ARSH4

b i osynthes i s of h i st i d i ne . When HD i s expressed i n thecytop l asm of h i s4 mutant cel l s i t al l ows for growth onh i st i d i no l , a metabo l i c precursor to h i st i d i ne . A255 i nvHD ,however , d i d not al l ow h i s4 mutant cel l s to grow

Green et al . Mutat i ons i n SEC70 , SEC71 , and SEC72

on

Fi gure 1. Schemat i c presentat i on of the proposed topo l og i es of themembrane fus i on protei ns . The proposed topo l og i es of A ' 89 i nv -HD , A255 i nvHD , Sec62p - Invertase, and Sec63p - Invertase i n theER membrane are schemat i cal l y i nd i cated (see Mater i al s andMethods) . Árg i n i ne permease, Sec62p , and Sec63p der i ved se-quences are drawn as so l i d l i nes . The i nvertase spacer f ragment i si nd i cated as a str i ped box , the i nvertase f ragment contai ned i nSec62p - Invertase and Sec63p - Invertase i s substant i al l y l arger . TheHD domai n i s i nd i cated as a shaded sp i ral . Core g l ycosy l at i on i si nd i cated by b l ack d i amonds . The cartoon attempts to i l l ustrate therel at i ve transmembrane conf i gurat i ons . An arb i trary number ofcore- g l ycosy l at i on un i ts i s shown .

h i st i d i no l (Green and Wal ter , 1992) because upon membranei ntegrat i on of the fus i on protei n HD became l ocal i zed to thel umen of the ER (see Fi g . 1) where i t was enzymat i cal l y i nac-t i ve i n v i vo .

We used the A255 i nvHD fus i on construct i n a sel ect i onfor mutants that wou l d be defect i ve i n the proper i ntegrat i onof th i s membrane protei n . Such mutants wou l d be expectedto retai n a suf f i ci ent amount of the HD mo i ety of the fus i onprotei n i n the cytop l asm to al l ow for growth of h i s4 mutantcel l s on h i st i d i no l . For th i s sel ect i on we used the strai n JCl -3C (h i s4) (Tab l e I ) bear i ng Az55 i nvHD on a p l asmi d . Fi vei ndependent JCl - 3C (h i s4) / pAz 55 i nvHD cel l cu l tures were

mutagen i zed wi th ethanemethy l su l fonate (Deshai es andSchekman , 1987) . One hal f of the cel l s were ki l l ed by themutagenes i s . Approx i matel y 106 cel l s f rom each cu l turewere p l ated on agar p l ates contai n i ng h i st i d i no l (seeMater i al s and Methods ; Parker and Guthr i e, 1985) . Twentymutant co l on i es appeared af ter f i ve to seven days (4 x 10- 6mutat i onal f requency) .

S i nce we were i nterested i n mutat i ons i n the cel l u l ar mem-brane protei n i ntegrat i on apparatus , we wi shed to el i mi natep l asmi d - l i nked mutat i ons . Mutat i ons l i nked to pAz 55 i nvHDwou l d be expected to show a domi nant phenotype i n d i p l o i dcel l s . To i dent i fy domi nant mutat i ons , cel l s f rom each of thetwenty co l on i es were crossed wi th FC2 - 12B (h i s4) cel l s (Ta-b l e I ) . We found that ei ght of the mutants were recess i ve,

599

Source

Chr i st i ne Guthr i e (Un i vers i ty of Cal i forn i a,San Franci sco , CA)

Chr i st i ne Guthr i eJohn Chant (Un i vers i ty of Cal i forn i a,

San Franci sco , CA)Co l i n St i r l i ng (Un i vers i ty of Cal i forn i a,

Berkel ey , CA)Co l i n St i r l i ngCo l i n St i r l i ngByron Hann (Un i vers i ty of Cal i forn i a,

San Franci sco , CA)Th i s studyTh i s studyTh i s studyTh i s studyTh i s studyTh i s studyTh i s studyTh i s study

Source

Green and Wal ter (1992)Green and Wal ter (1992)Dave Fel dhei m and Randy Schekman (Un i vers i ty of Cal i forn i a,

Berkel ey , CA)Dave Fel dhei m and Randy SchekmanDave Fel dhei m and Randy SchekmanMark Rose (Pr i nceton Un i vers i ty , Pr i nceton , NJ)Dave Fel dhei m and Randy SchekmanDave Fel dhei m and Randy SchekmanDave Fel dhei m and Randy SchekmanByron Hann (Un i vers i ty of Cal i forn i a, San Franci sco , CA)

on March 17, 2006

www.jcb.orgDownloaded from

Page 4: Mu tan ts in Th ree Nove l Comp lemen ta t ion G roup s ...walterlab.ucsf.edu/wp-content/uploads/2015/04/Green_JCB_1992.pdf · ac ross the mamma lian ER memb rane in v itro (Wa lte

s i nce the d i p l o i d cel l s der i ved f rom the cross d i d not growi n the presence of h i st i d i no l , but grew when h i st i d i ne wasadded . The other 12 mutants were not exami ned further .The hap l o i d cel l s of the ei ght recess i ve mutants were curedof pA255 i nvHD (see Mater i al s and Methods) and retrans -formed wi th pA255 i nvHD . Al l ei ght mutants grew on me-d i um contai n i ng h i st i d i no l , conf i rmi ng that the recess i vemutat i ons were i ndeed un l i nked to pA255 i nvHD . Two of themutants showed a s l i ght temperature- sens i t i ve growth phe-notype at 37 ° C ; however , none of the mutat i ons was l ethalat el evated or reduced temperature .

Comp l ementat i on Anal ys i sTo group the mutat i ons by comp l ementat i on anal ys i s , eachof the ei ght mutants was crossed wi th strai n IH27 - 1 (h i s4) .Strai n IH27 - 1 was used because d i p l o i d cel l s were found tosporu l ate wi th h i gh f requency . Af ter sporu l at i on , tetradswere d i ssected and then germi nated . Each mutat i on seg -regated 2 : 2 (wi l d - type : mutant ) f rom at l east three of fourtetrads suggest i ng that a s i ng l e mutant gene was respons i b l efor cel l growth on h i st i d i no l . Af ter the cross , each of the

ei ght mutat i ons was obtai ned i n both MATce and MATastrai ns . Thus , we were ab l e to cross each mutant wi th theother seven mutants so that al l poss i b l e comb i nat i ons wereobtai ned i n d i p l o i d cel l s , wh i ch we tested for growth on agarp l ates contai n i ng h i st i d i no l . S i x mutants were al l el i c s i ncethe d i p l o i d cel l s grew on agar p l ates contai n i ng h i st i d i no l .The remai n i ng two mutants were not al l el i c to each other orto the other s i x mutants . Thus , the ei ght i so l ated mutat i onsfal l i nto three comp l ementat i on groups wh i ch we namedSEC70 , SEC71 , and SEC72 . Dur i ng the mutant sel ect i onsome of the p l ates contai ned more than one SEC70 mutant .Three of the s i x i so l ated mutants of SEC70 , sec70 - 2 (strai nNG21 ; Tab l e I ) , sec70 - 3 (strai n NG22) , and sec70 - 4 (strai nNG23) , were i so l ated f rom i ndependent l y mutagen i zed cel lpoo l s . The SEC71 - 1 mutant and sec72 - 1 mutant were namedstrai ns NG27 and NG28 (Tab l e I ) . The hap l o i d strai ns of theoppos i te mat i ng type, NG30 (sec70 - 3) , NG31 (sec71 - 1) , andNG32 (sec72 - 1) (Tab l e I ) , were obtai ned by tetrad d i ssect i onf rom crosses between strai ns IH27 - 1 and NG22 , NG27 , andNG28 , respect i vel y . To further estab l i sh that a s i ng l e muta-t i on was respons i b l e for growth on h i st i d i no l , strai ns NG30 ,NG31 , and NG32 were backcrossed wi th strai n JCl - 3C / pA2" -i nvHD . 10 tetrads were exami ned f rom each cross and testedfor growth on h i st i d i no l . Each of the 30 tetrads y i el ded twogermi nated spores wh i ch grew on agar p l ates contai n i ngh i st i d i no l and two wh i ch fai l ed to grow on agar p l ates con -tai n i ng h i st i d i no l . Interest i ng l y , we found that the sec70 - 3 ,sec71 - l , and sec72 - 1 mutat i ons cosegregated wi th a cel lgrowth defect . For sec70 - 3 th i s defect resu l ted i n co l on i es onagar p l ates that were about one- th i rd the s i ze of the Sec+strai ns . Th i s growth defect was about one- hal f for strai nscontai n i ng ei ther sec71 - 1 or sec72 - 1 .

To determi ne whether the newl y def i ned comp l ementat i ongroups are al l el i c to known trans l ocat i on mutants , we nexttested whether mutat i ons i n SEC61 , SEC62 , and SEC63 ,wh i ch b l ock the trans l ocat i on of so l ub l e protei ns acrossthe ER membrane, wou l d al so b l ock the i ntegrat i on of A"5 -i nvHD and thus al l ow h i s4 mutant cel l s express i ng the fus i on

protei n to grow on h i st i d i no l . I t was prev i ous l y shown thatsec6 l , , , sec62u , and sec63 mutant cel l s show protei n trans -

The Journal of Cel l Bi o l ogy , Vo l ume 116 , 1992

l ocat i on defects even when grown at permi ss i ve temperature(Deshai es and Schekman , 1987 ; Rothb l att et al . , 1989) . Wetherefore transformed sec61 , sec62 , and sec63 mutant cel l swi th p l asmi d pA25s i nvHD and tested for growth on agarp l ates contai n i ng h i st i d i no l . Strai ns CSa42 (sec61 , h i s4) /pA2 55 i nvHD , and D8 (sec63 , h i s4) / pA 255 i nvHD , but not thecontro l strai n JCl - 3C (Sec+ , h i s4) / pA 255 i nvHD grew at 22*Con agar p l ates contai n i ng h i st i d i no l . Interest i ng l y , strai nRDMY20 (sec62 , h i s4) / pA255 i nvHD d i d not grow underthese cond i t i ons. Th i s i nd i cated that the tested mutant al l el esof SEC61 and SEC63 , but not that of SEC62 were defect i vei n the membrane i ntegrat i on of A255 i nvHD .

These resu l ts were conf i rmed by a b i ochemi cal anal ys i s .A 255 i nvHD has been shown to become core g l ycosy l atedupon l ocal i zat i on of the HD domai n to the ER l umen (Greenand Wal ter , 1992) . We used the mo l ecu l ar wei ght sh i f t as -soci ated wi th the g l ycosy l at i on of A 25s i nvHD as an i nd i ca-tor of membrane i ntegrat i on . Sec+ and sec61 , sec62 , andsec63 mutant cel l s bear i ng pA255 i nvHD were pu l se l abel edwi th [35 S]meth i on i ne, and A255 i nvHD was i mmunopreci p i -tated wi th ant i - HD ant i bod i es (Green and Wal ter , 1992) . Inagreement wi th the genet i c data descr i bed above, a fastermi grat i ng band correspond i ng to ung l ycosy l ated A255 i nvHDwas obtai ned i n the sec61 and sec63 mutant strai ns (Fi g . 2 ,l anes 2 and 4) . Th i s band comi grated exact l y wi th i n v i tro

trans l ated A255 i nvHD (not shown ; Green and Wal ter , 1992) .Note that a smal l amount of ung l ycosy l ated A25s i nvHD wasal so detected i n the Sec+ contro l strai n and the sec62 mu -tant strai n (Fi g . 2 , l anes 1 and 3) . Th i s i nd i cated that someHD was present i n the cytop l asm i n the Sec+ contro l cel l s ,

Fi gure 2. Anal ys i s of A255 i nvHD i n sec61 , sec62 , and sec63 cel l s .JCl - 3C (Sec+) / pA255 i nvHD cel l s ( l ane 1) , CSa42 (sec61 - 3) lpA255 i nvHD cel l s ( l ane 2) , RDMY20 (sec621) / pA255 i nvHD cel l s( l ane 3) , and D8 (sec631) / pA 255 i nvHD cel l s ( l ane 4) were pu l sel abel ed wi th [35 S]meth i on i ne at the permi ss i ve temperature as de-scr i bed (see Mater i al s and Methods and Green and Wal ter , 1992) .Protei ns were preci p i tated wi th ant i - HD ant i bod i es and d i sp l ayedby SDS - PAGE . The pos i t i on of A 255 i nvHD and g l ycosy l atedA 255 i nvHD (A2.ss i nvHD*CHO) are i nd i cated .

600

on March 17, 2006

www.jcb.orgDownloaded from

Page 5: Mu tan ts in Th ree Nove l Comp lemen ta t ion G roup s ...walterlab.ucsf.edu/wp-content/uploads/2015/04/Green_JCB_1992.pdf · ac ross the mamma lian ER memb rane in v itro (Wa lte

Fi gure 3 Anal ys i s of Az 55 i nvHD i n sec70 , sec71 , and sec72 cel l s.As descr i bed i n Fi g . 2 , Az55 i nvHD was i mmunopreci p i tated f rompu l se- l abel ed NG22 (sec70 - 3) / pAz 55 i nvHD cel l s ( l ane 3) , NG27(sec71 - 1) / pAz 55 i nvHD cel l s ( l ane 4) , and NG28 (sec72 - 1) / pAz 55 -i nvHD cel l s ( l ane S) , and as contro l s , f rom CSa42 (sec61 - 3) lpA 255 i nvHD cel l s ( l ane 6) , JCl - 3C (Sec+) / pAz55 i nvHD cel l s ( l ane2) , and JCl - 3C (Sec ' ) cel l s that d i d not contai n a p l asmi d ( l ane 1) .Protei ns were preci p i tated wi th ant i - HD ant i bod i es and d i sp l ayedby SDS - PAGE . The pos i t i on of Az 55 i nvHD and g l ycosy l ated Az55 -i nvHD (A2 s 5 i nvHD*CHO) are i nd i cated .

al though the genet i c data i nd i cated that th i s l evel wasi nsuf f i ci ent to support growth on h i st i d i no l .

S i nce the membrane i ntegrat i on of Az 55 i nvHD was i m-pai red i n sec61 and sec63 mutant strai ns , i t was i mportantto test whether any of the newl y i dent i f i ed mutants were al -l el i c to the known trans l ocat i on mutants . CSa42 (sec6 l ,h i s4) was crossed wi th strai ns NG30 (sec70 , h i s4) / pAz55 -i nvHD , NG31 (sec71 , h i s4) / pAz55 i nvHD , and NG32 (sec72 ,h i s4) / pAz55 i nvHD and , anal ogous l y , strai n D8 (sec63 , h i s4)was crossed wi th strai ns NG21 (sec70 , h i s4) / pA"5 i nvHD ,NG27 (sec71 , h i s4) / pAz55 i nvHD , and NG28 (sec72 , h i s4) /pAz55 i nvHD . None of the d i p l o i d cel l s der i ved f rom thesecrosses grew on agar p l ates contai n i ng h i st i d i no l , thus i nd i -cat i ng that the mutants comp l emented each other. We cantherefore concl ude that sec70 - 3 , sec71 - 1 , and sec72 - 1 are notal l el i c to sec61 - 3 and sec63 - 1 . The sec62 mutant strai n cou l dnot be s i mi l ar l y tested , s i nce the i ntegrat i on of Az 55 i nvHDwas not i mpai red i n sec62 cel l s (see above and Fi g . 2 ,l ane 3) .

In the second test , sec70 , sec71 , and sec72 mutant cel l swere transformed wi th l ow copy number p l asmi ds (CEN)bear i ng the wi l d - type genes of SEC61 , SEC62 , and SEC63and were tested for growth on h i st i d i no l (see Mater i al s andMethods) . Each of the transformed mutants grew on agarp l ates contai n i ng h i st i d i no l , i nd i cat i ng that SEC61 , SEC62 ,and SEC63 d i d not comp l ement the sec70 , sec71 , and sec72defects . Furthermore, the transformed mutants exh i b i ted areduced growth rate, descr i bed above, that i s character i st i cof the sec70 , sec71 , and sec72 defects . A mu l t i - copy p l asmi d

Green et al . Mutat i ons i n SEC70 , SEC71 , and SEC72

contai n i ng SEC63 , pDF14 , was transformed i nto strai nNG31(sec71 - 1) / pAz 55 i nvHD , and cel l s were tested for growthon agar p l ates contai n i ng h i st i d i no l . These cel l s grew tosmal l co l on i es compared to cel l s that were p l aced on agarp l ates contai n i ng h i st i d i ne, i nd i cat i ng that the overproduc-t i on of SEC63 may have part i al l y compensated for the defec-t i ve i nsert i on of Az55 i nvHD i nto the ER membrane . In s i mi -l ar exper i ments we determi ned that none of the three newcomp l ementat i on groups was al l el i c to SRP54 or to KAR2encod i ng Bi P, wh i ch was recent l y shown (Rose et al . , 1989)to p l ay a ro l e i n ER protei n trans l ocat i on (see Mater i al s andMethods) .

Anal ys i s of Membrane Protei n Integrat i oni n sec70 , sec71 , and sec72 Cel l sTo corroborate the genet i cal l y i nferred membrane protei ni ntegrat i on defect of sec70 , sec71 , and sec72 cel l s , we assayedthe i ntegrat i on of Az55 i nvHD d i rect l y by i mmunopreci p i ta-t i on . As shown i n Fi g . 3 , JCl - 3C (Sec+) / pA"5 i nvHD cel l scontai ned predomi nant l y the g l ycosy l ated form of Az 55 i nvHD(Fi g . 3 , l ane 2) and , as expected , no i mmunoreact i ve bandwas detected i n JCl - 3C contro l cel l s l acki ng the p l asmi d(Fi g . 3 , l ane 1) . As descr i bed above, a smal l amount of ung l y -cosy l ated Az55 i nvHD was al so present i n JCl - 3C (Sec+) /pA255 i nvHD cel l s (Fi g . 3 , l ane 2) . In contrast , however , sec70 ,sec71 , and sec72 mutant cel l s contai ned marked l y i ncreasedamounts of the ung l ycosy l ated form of Az 55 i nvHD (Fi g . 3 ,l anes 3 , 4 , and 5 , respect i vel y) . As shown above, sec61 cel l saccumu l ated al most excl us i vel y the non - g l ycosy l ated form ofAz55 i nvHD (Fi g . 3 , l ane 6) . These resu l ts l end strong supportto the not i on that sec70 , sec71 , and sec72 mutant cel l s are i n -deed defect i ve i n the membrane i ntegrat i on of Az 55 i nvHD .We repeated the i mmunopreci p i tat i on of A215 i nvHD f rommutant strai ns obtai ned f rom two backcrosses agai nst Sec+strai ns (see above) , and s i mi l ar resu l ts were obtai ned (datanot shown) .

We next tested whether a s i mi l ar defect cou l d al so be ob -served for other membrane protei n constructs . Fi rst wetested A ' g9 i nvHD (Fi g. 1) wh i ch i s s i mi l ar to Az55 i nvHD ,but on l y contai ns the NH2 - termi nal 189 ami no aci ds of ar -g i n i ne permease. As i nd i cated i n Fi g . 1 , A 119 i nvHD l ackstwo putat i ve transmembrane segments wh i ch are present i nAz55 i nvHD . Both A ' 89 i nvHD and Az55 i nvHD p l ace the HDdomai n on the l umenal s i de of the ER membrane (Green andWal ter , 1992) . A ' 89 i nvHD products synthes i zed i n v i vowere anal yzed as above by i mmunopreci p i tat i on af ter pu l sel abel i ng of cel l s. As expected , i n Sec+ contro l cel l s al l of

the A 1 a9 i nvHD was i mmunopreci p i tated as the g l ycosy l atedform (Fi g . 4 A, l ane 1) , whereas i n CSa42 (sec61 - 1) /pA ' 89 i nvHD cel l s al l of the A 119 i nvHD was found i n thenon - g l ycosy l ated form (Fi g . 4 A, l ane 5) wh i ch comi gratedwi th the i n v i tro trans l at i on product (not shown) . The corre-spond i ng anal ys i s of NG27 (sec71 - 1) / pA 119 i nvHD and NG28(sec72 - 1) / pA119 i nvHD cel l s (Fi g . 4 A, l anes 3 and 4) showed

that both mutants were severel y i mpai red i n the membranei ntegrat i on of A 189 i nvHD and accumu l ated cons i derab l eamounts of the ung l ycosy l ated form of the protei n . Surpr i s -i ng l y , however , NG22 (sec70 - 3) / pA189 i nvHD cel l s showedno detectab l e defect i n the i ntegrat i on of the fus i on protei n(Fi g. 4 A, l ane 2) . Thus the sec70 - 3 mutat i on appears to i n -h i b i t sel ect i vel y the i ntegrat i on of Az55 i nvHD , but not of A ' 89 -i nvHD (compare Fi g . 3 , l anes 3 wi th Fi g . 4 A, l ane 2) . S i mi -

60 1

on March 17, 2006

www.jcb.orgDownloaded from

Page 6: Mu tan ts in Th ree Nove l Comp lemen ta t ion G roup s ...walterlab.ucsf.edu/wp-content/uploads/2015/04/Green_JCB_1992.pdf · ac ross the mamma lian ER memb rane in v itro (Wa lte

f i gure 4. Anal ys i s of other membrane fus i on protei ns i n sec70 , sec71 , and sec72 cel l s . (A) As descr i bed i n Fi g. 2 , A ' a9 i nvHD was i m-munopreci p i tated f rom pu l se- l abel ed NG22 (sec70 - 3) / pA ' 89 i nvHD cel l s ( l ane 2) , NG27 (sec711) / pA ' 89 i nvHD cel l s ( l ane 3) , and NG28(sec721) / pA ' 89 i nvHD cel l s ( l ane 4) , and as contro l s , f rom CSa42 (sec61 - 3) / pA ' 89 i nvHD cel l s ( l ane S) , and JCl - 3C (Sec+) / pA ' 89 i nvHD

cel l s ( l ane 1) . Protei ns were preci p i tated wi th ant i - HD ant i bod i es and d i sp l ayed by SDS - PAGE . The pos i t i ons of A ' 89 i nvHD and g l y -cosy l ated A ' 89 i nvHD (A 189 i nvHD*CHO) are i nd i cated . (B) Sec63p - Invertase was i nununopreci p i tated f rom pu l se- l abel ed NG22 (sec70 - 3) /pDF13 cel l s (see Tab l e I ) ( l ane 2) , NG27 (sec711) l pDFl 3 cel l s ( l ane 3) , and NG28 (sec721) / pDFl 3 cel l s ( l ane 4) , and as contro l , f romJCl - 3C (Sec+) / pDF13 cel l s ( l ane 1) . Protei ns were preci p i tated wi th ant i - i nvertase ant i bod i es and d i sp l ayed by SDS - PAGE . The pos i t i onsof Sec63p - Invertase and g l ycosy l ated Sec63p - Invertase (Sec63p - Invertase*CHO) are i nd i cated .

l ar l y , the anal ys i s of the other two al l el es of sec70 showedno accumu l at i on of ung l ycosy l ated A ' 89 i nvHD for sec70 - 2and on l y a very mi nor ef fect for sec70 - 4 (data not shown) .

Very s i mi l ar resu l ts were obtai ned when the i ntegrat i on ofa Sec63p - Invertase fus i on protei n (see Mater i al s and Meth -ods) (contai ned on the p l asmi d pDFl 3) (Tab l e I ) was testedi n the mutant strai ns . The membrane topo l ogy of Sec63p -Invertase i s shown i n Fi g . 1 . Note that af ter pu l se l abel i ngthe Sec+ contro l cel l s and NG22 (sec70 - 3) / pDF13 cel l s ac-cumu l ate most l y the g l ycosy l ated , i . e . , i ntegrated form ofSec63p - Invertase (Fi g . 4 B, l anes 1 and 2) . In contrast ,NG27 (sec71 - 1) / pDF13 and NG28 (sec72 - 1) / pDFl 3 cel l s ac-cumu l ate substant i al amounts of the ung l ycosy l ated , i . e . ,non - i ntegrated form of Sec63p - Invertase (Fi g . 4 B, l anes 3and 4) . A fourth membrane protei n tested was a Sec62p -Invertase fus i on (Fi g . 1) , wh i ch , i nterest i ng l y , showed no i n -tegrat i on defect i n NG22 (sec70 - 3) , NG27 (sec71 - 1) , or NG28(sec72 - 1) cel l s (data not shown) .

Thus the i ntegrat i on of the d i f ferent ch i mer i c membraneprotei ns was i mpai red d i f ferent i al l y by the sec70 , sec71 , andsec72 mutat i ons . These data are summar i zed i n Tab l e I I .There i s no obv i ous correl at i on between the presumed mem-brane protei n topo l ogy (Fi g . 1) and the sever i ty of the defecti n the d i f ferent mutant strai ns .

Anal ys i s of Protei n Trans l ocat i on i n sec70 , sec71 ,and sec72 Cel l s

We have shown above that mutat i ons that b l ock the trans l o -

The Journal of Cel l Bi o l ogy , Vo l ume 116 , 1992

cat i on of secretory protei ns across the ER membrane al so i n -h i b i ted the i ntegrat i on of membrane protei ns (Fi g . 2) . Wewere therefore i nterested to test whether , conversel y , the mu -tants i so l ated as membrane protei n i ntegrat i on defect i ve

Tab l e IL Inh i b i t i on of Protei n Insert i on i nto the ER*

* Protei n i nsert i on was detected by i mmunopreci p i tat i ng each protei n f romei ther NG30 , NG31 , or NG32 cel l s , and then test i ng for g l ycosy l at i on or , forBi P, for s i gnal cl eavage af ter a 5 - mi n pu l se of [35S]meth i on i ne . a- Factor wasdetected by Western b l ott i ng as detai l ed i n Mater i al s and Methods and i n Fi g .5 C. Strai ns NG22 , NG27 , and NG28 were used for the i mmunopreci p i tat i onsof A ' 89 i nvHD , Az55 i nvHD , and i nvertase . The membrane protei n i nsert i on as -say for g l ycosy l at i on measured on l y the trans l ocat i on of the extracytop l as -mi c domai ns ; the i nsert i on of other segments were not tested . A ' 89 i nvHD ,A2" i nvHD , Sec63p - Invertase, and Sec62p - Invertase were p l asmi d encoded .The other protei ns were encoded i n s i ng l e copy by chromosomal genes .t (+) i nd i cates i nsert i on was i nh i b i ted by 10% or l ess . (++) Ind i cates i nser -t i on was i nh i b i ted by 10 to 50% . (+++) Ind i cates i nsert i on was i nh i b i ted bymore than 50% .§ In the case of i nvertase, a smal l amount of pre- i nvertase (<10%) was de-tected i n sec70 - 3 cel l s i n two out of three i ndependent exper i ments .

602

Protei n sec70 - 3 sec71 - 1 sec72 - 1

p Az55 i nvHD +++# +++ +++Sec63p - Invertase - + + +pA ' s 1 i nvHD - + + + + +Sec62p - Invertase - - -a- factor + + + +Bi P + + - -CPY + +++ ++Invertase - 3 - -

on March 17, 2006

www.jcb.orgDownloaded from

Page 7: Mu tan ts in Th ree Nove l Comp lemen ta t ion G roup s ...walterlab.ucsf.edu/wp-content/uploads/2015/04/Green_JCB_1992.pdf · ac ross the mamma lian ER memb rane in v itro (Wa lte

wou l d al so b l ock the comp l ete trans l ocat i on of so l ub l e pro -tei ns. We tested for the accumu l at i on of untrans l ocated pro -tei ns i n the strai ns NG30 (sec70 - 3) , NG31 (sec71 - 1) , andNG32 (sec72 - 1) . Fi g . 5 shows the anal ys i s for carboxypept i -dase Y (CPY, a vacuo l ar protei n) , Bi P (encoded by KAR2 ,a so l ub l e ER res i dent protei n) , and pro - a- factor (a secretoryprotei n) . Note that the trans l ocat i on of CPY and pro - a-factor was i mpai red i n al l three mutant strai ns , as apparentf rom the accumu l at i on of ung l ycosy l ated preproCPY (Fi g .5 A, l anes 2 - 4) and ung l ycosy l ated prepro - a- factor (Fi g . 5C, l anes 2 - 4) . S i mi l ar defects were observed i n CSa42(sec61 - 1) cel l s (Fi g . 5 , A and C, l anes 5) , but not i n contro lSec+ cel l s (Fi g. 5 , A and C, l anes 1) . A very d i f ferent resu l twas obtai ned when the trans l ocat i on of Bi P was assessed i nthese cel l s . Bi P i s not g l ycosy l ated and therefore the accu -mu l at i on of a s l ower mi grat i ng form, preBi P, contai n i ngthe uncl eaved s i gnal sequence i s i nd i cat i ve of a trans l ocat i ondefect . Note that on l y NG30 (sec70 - 3) cel l s show an accu -mu l at i on of preBi P (Fi g . 5 B, l ane 2) , whereas Bi P appearedef f i ci ent l y trans l ocated i n NG31 (sec71 - 1) and NG32 (sec72 - 1)cel l s (Fi g . 5 B, l anes 3 and 4) and i n Sec+ contro l cel l s (Fi g.5 B, l ane 1) . A fourth so l ub l e protei n , i nvertase, was not de-tectab l y i mpai red i n sec70 - 3 , sec71 - 1 , and sec72 - 1 mutantcel l s (data not shown) .

D i scuss i onMutat i ons i n SEC70 , SEC71 , and SEC72 were sel ected us i nga strategy des i gned to f i nd mutants that were i mpai red i nthei r ab i l i ty to i ntegrate a membrane protei n . Dur i ng theanal ys i s of the mutant cel l s we found that mutat i ons i n eachof the three new comp l ementat i on groups al so b l ocked thetrans l ocat i on of so l ub l e protei ns across the ER membrane .Th i s shows that the defects observed i n these mutants werenot restr i cted to membrane protei n i ntegrat i on , but more

Green et al . Mutat i ons i n SEC70 , SEC71 , and SEC72

Fi gure 5. Anal ys i s of CPY, Bi P, and pro - a- factor i n sec70 , sec71 , and sec72 cel l s .(A and B) Cel l l abel i ng and i mmunopreci p i tat i ons were per formed as descr i bedi n Fi g . 2 , except that ei ther 1 j t , l of ant i - CPY serum (A) or 0. 5 I1 of ant i - Bi Pserum (B) were used . Anal yses were f rom JCl - 3C (Sec ' ) cel l s ( l anes 1) , NG30(sec70 - 3) cel l s ( l anes 2) , NG31 (sec- 71 - 1) cel l s ( l anes 3) , NG32 (sec721) cel l s( l anes 4) and CSa42 (sec61 - 3) cel l s (A, l ane 5) . The pos i t i ons of prepro - CPY(ppCPY) , g l ycosy l ated proCPY (pCPY*CHO) , pre- Bi P and mature Bi P are i nd i -

cated . (C) Pro - a- factor was detected by Western b l ott i ng as descr i bed i n Ma-ter i al s and Methods i n JCl - 3C (Sec) cel l s ( l ane 1) , NG30 (sec70 - 3) cel l s ( l ane2) , NG31 (sec711) cel l s ( l ane 3) , NG32 (sec721) cel l s ( l ane 4) , and CSa42(sec61 - 3) cel l s ( l ane 5) . The pos i t i ons of cytop l asmi c prepro - a- factor (ppaF)and g l ycosy l ated pro - a- factor (puF*CHO) are i nd i cated .

p l ei otrop i cal l y i mpai red protei n traf f i c across the ER mem-brane . S i nce the so l ub l e protei ns that were mon i tored i n th i sanal ys i s were encoded by thei r endogenous chromosomalgenes , th i s demonstrated that the ef fects of the mutat i onswere not l i mi ted to the membrane protei ns tested wh i ch wereart i f i ci al fus i on protei ns encoded by p l asmi ds .

Our data d i d not address the quest i ons of whether the ob -served mutant phenotypes were due to defect i ve target i ng ofthe protei ns to the ER membrane or due to a defect i ve mem-brane i ntegrat i on / trans l ocat i on mach i ne. In v i tro assays us i ngmembrane and so l ub l e f ract i ons of mutant cel l extracts andcharacter i zat i ons of the af fected gene products af ter i dent i -f i cat i on , cl on i ng , and genet i c man i pu l at i on wi l l d i rect l y ad -

dress th i s i ssue . Progress toward th i s goal has been made.We have recent l y cl oned and sequenced a gene that comp l e-ments the sec71 mutant . Th i s gene encodes a 87 - kD hydro -ph i l i c protei n of unknown funct i on .

The mutat i ons i n SEC70 ( i dent i f i ed by three i ndepen -dent l y i so l ated al l el es) conferred a remarkab l e phenotype :cel l s correct l y l ocal i zed the HD mo i ety of A ' 89 i nvHD to theextracytop l asmi c s i de of the ER membrane, but showed ani ncreased mi s l ocal i zat i on of the HD mo i ety of Az55 i nvHD(Fi gs . 3 and 4) . S i nce Az55 i nvHD d i f fers f rom A ' 89 i nvHDon l y by the add i t i onal presence of two putat i ve transmem-brane segments , th i s suggests that SEC70 funct i on may bespeci f i cal l y requ i red to faci l i tate the proper i ntegrat i on ofthese l atter hydrophob i c protei n segments . Thus we wou l dpred i ct that the SEC70 gene product exerts i ts funct i on at theER membrane dur i ng the trans l ocat i on / i ntegrat i on process .Th i s i nterpretat i on appears most p l aus i b l e s i nce A 119 i nvHDwas correct l y targeted to the ER and Az 55 i nvHD contai nedal l the same target i ng s i gnal s contai ned i n A ' 89 i nvHD , i n -cl ud i ng an i nternal s i gnal sequence i dent i f i ed prev i ous l y(Green et al . , 1989) . However , i t st i l l remai ns poss i b l e that ,desp i te these s i mi l ar i t i es , A 189 i nvHD may have been tar -geted to the ER membrane by a d i f ferent pathway than that

60 3

on March 17, 2006

www.jcb.orgDownloaded from

Page 8: Mu tan ts in Th ree Nove l Comp lemen ta t ion G roup s ...walterlab.ucsf.edu/wp-content/uploads/2015/04/Green_JCB_1992.pdf · ac ross the mamma lian ER memb rane in v itro (Wa lte

used by Az55 i nvHD , one that was not i mpai red i n sec70 mu -tants .

Surpr i s i ng l y , d i f ferent membrane and so l ub l e protei nswere i mpai red to d i f ferent degrees dur i ng thei r i ntegrat i oni nto or trans l ocat i on across the ER membrane i n the d i f ferent

mutant strai ns (see Tab l e I I ) . There i s no obv i ous patternemerg i ng that wou l d al l ow us to categor i ze the substrate pro -tei ns and thus to pred i ct whether a g i ven protei n wou l d beaf fected by a part i cu l ar mutat i on . Rather i t appears f romthese data that i nd i v i dual protei ns are d i f ferent i al l y sens i t i veto the mutat i ons . Th i s cou l d i mp l y that d i f ferent cel l u l arcomponents may be used i n d i f ferent pathways that l ead tothe traf f i cki ng of protei ns to and across the ER membrane.For examp l e, our data suggest that Bi P can be trans l ocatedef f i ci ent l y across the ER membrane wi thout SEC71 andSEC72 funct i on , whereas Sec63p - Invertase can be i nsertedi nto the membrane wi thout SEC70 funct i on . Al ternat i vel y ,

al l the gene products def i ned by the mutat i ons co l l aborate i nthe target i ng and trans l ocat i on process of al l protei n sub -strates , but subt l e defects i n the i so l ated al l el es produce morepronounced trans l ocat i on defects for some protei ns , yet ares i l ent for others .

I t i s cl ear f rom these data, that the requ i rements on thetrans l ocat i on mach i ne d i f fer vast l y for d i f ferent trans l ocat i onsubstrates . Whether these d i f ferences are due to d i f ferent s i g -nal sequences or d i f ferent passenger domai ns remai ns to beanal yzed by al ter i ng these parameters systemat i cal l y . Intr i g -u i ng l y , none of the mutat i ons i dent i f i ed to date, i . e . , the mu -tat i ons descr i bed here and mutat i ons i n SEC61 , SEC62 , andSEC63 (Rothb l att et al . , 1989) shows a marked i nh i b i t i on ofpre- i nvertase trans l ocat i on . Thus for unknown reasons , i n -vertase appears to be a part i cu l ar l y permi ss i ve trans l ocat i onsubstrate .

S i nce cel l s mutant i n SEC61 and SEC63 al so showeddefects i n the membrane i ntegrat i on of Az 55 i nvHD , we ex -pected our sel ect i on to y i el d mutat i ons i n these genes . Sur -pr i s i ng l y however , none of our mutants was comp l ementedby SEC61 , SEC62 , and SEC63. S i mi l ar l y , the sel ect i on ap -p l i ed by Schekman and co - workers i n wh i ch sec61 , sec62and sec63 mutants were i so l ated d i d not i dent i fy other geneswh i ch are now known to be i nvo l ved i n protei n target i ng andtrans l ocat i on , such as Bi P (Rose et al . , 1989) and compo -nents i n the SRP- dependent target i ng pathway (Hann andWal ter , 1991 ; S . Ogg , M . Por i tz , and P Wal ter , manuscr i pti n preparat i on) . I t i s poss i b l e that us i ng a d i f ferent trans l oca-t i on substrate or us i ng l ess str i ngent sel ect i on cr i ter i a (e . g . ,we d i d not requ i re our mutants to be cond i t i onal l y l ethal )have al l owed us to i dent i fy new comp l ementat i on groups .G i ven the smal l number of mutants i so l ated and our fai l ureto i so l ate mutat i ons i n SEC61 , SEC62 , and SEC63 , i t i scl ear that th i s sel ect i on has not been exhaust i ve and thatmany as yet un i dent i f i ed genes may al so part i ci pate i n pro -tei n transport across or i ntegrat i on i nto the ER membrane .

We thank those who prov i ded p l asmi ds , ant i bod i es , and strai ns . In part i cu -l ar , we want to thank Dave Fel dhei m and Ray Deshai es for shutt l i ng p l as -mi ds and strai ns between Berkel ey and San Franci sco and I ra Herskowi tzfor h i s gu i dance at cruci al stages i n th i s work .

Th i s work was supported by post - doctoral grants f rom the G i an i nn iFoundat i on of the Bank of Amer i ca and the Nat i onal Inst i tutes of Heal thto N . Green , by funds f rom the Department of Mi crob i o l ogy and Immuno l -ogy at Vanderb i l t Un i vers i ty to H . Fang , by grants f rom the Vanderb i l tUn i vers i ty Research Counci l and the Bi omed i cal Research Support GrantRR - 05424 to N . Green and by grants f rom the Al f red P . S l oan Foundat i onand the Nat i onal Inst i tutes of Heal th to P . Wal ter .

The Journal of Cel l Bi o l ogy , Vo l ume 116 , 1992

Recei ved for pub l i cat i on 11 June 1991 and i n rev i sed form 21 October1991 .

References

Bernstei n , H . D . , M . A . Por i tz , K . Strub , P. J . Hoben , S . Brenner , and P .Wal ter . 1989 . Model for s i gnal sequence recogn i t i on f rom ami no - aci d se-quence of 54k subun i t of s i gnal recogn i t i on part i cl e . Nature (Lond. ) .340 : 482 - 486 .

Deshai es , R . J . , and R . Schekman . 1990 . Structural and funct i onal d i ssect i onof Sec62p , a membrane- bound component of the yeast endop l asmi c ret i cu -l um protei n i mport mach i nery . Mo l . Cel l . Bi o l . 10 : 6024 - 6035 .

Deshai es , R . J . , and R . Schekman . 1987 . A yeast mutant defect i ve at an ear l ystage i n i mport of secretory protei n precursors i nto the endop l asmi c ret i cu -l um . J. Cel l Bi o l . 105 : 633 - 645 .

Deshai es , R . J . , B . D . Koch , M . Werner - Washburne, E . A . Crai g , and R .Schekman . 1988 . 70kD stress protei n homo l ogues faci l i tate trans l ocat i on ofsecretory and mi tochondr i al precursor po l ypept i des . Nature ( tond. ) .332 : 800 - 805 .

Deshai es , R . J . , S . L . Sanders , D . A . Fel dhei m, and R . Schekman . 1991 . As -semb l y of yeast Sec protei ns i nvo l ved i n trans l ocat i on i nto the endop l asmi cret i cu l um i nto a membrane- bound mu l t i subun i t comp l ex . Nature ( tond. ) .349 : 806 - 808 .

Green , N . , and P . Wal ter . 1992 . C- termi nal sequences can i nh i b i t the i nsert i onof membrane protei ns i nto the endop l asmi c ret i cu l um of Saccharomycescerev i s i ae . Mo l . Cel l . Bi o l . I n press .

Green , N . , W . Hansen , and P . Wal ter . 1989 . The use of gene- fus i ons to deter -mi ne membrane protei n topo l ogy i n Saccharomyces cerev i s i ae . J . Cel l Sci .Supp l . 11 : 109 - 113 .

G i l more, R . , P . Wal ter , and G . Bl obel . 1982 . Protei n trans l ocat i on across theendop l asmi c ret i cu l um . I I . Iso l at i on and character i zat i on of the s i gnal recog -n i t i on part i cl e receptor . J . Cel l Bi o l . 95 : 470 - 477 .

Hann , B . C . , and P . Wal ter . 1991 . The s i gnal recogn i t i on part i cl e i n S. cere-v i s i ae . Cel l . 67 : 131 - 144 .

Hann , B . C . , M . A . Por i tz , and P . Wal ter . 1989 . Saccharomyces cerev i s i ae andSch i zosaccharomyces pombe contai n a homo l ogue to the 54 - kd subun i t of thes i gnal recogn i t i on part i cl e that i n S. cerev i s i ae i s essent i al for growth . J. Cel lBi o l . 109 : 3223 - 3230 .

Hansen , W . , P . D . Garci a, and P . Wal ter . 1986 . In v i tro protei n trans l ocat i onacross the yeast endop l asmi c ret i cu l um : ATP- dependent post - trans l at i onaltrans l ocat i on of the prepro - a- factor . Cel l . 45 : 397 - 406 .

Kr i eg , U . C . , A . E . Johnson , and P . Wal ter . 1989 . Protei n trans l ocat i on acrossthe endop l asmi c ret i cu l um membrane : i dent i f i cat i on by photocross l i nki ng ofa 39 - kD i ntegral membrane g l ycoprotei n as part of a putat i ve trans l ocat i ontunnel . J. Cel l Bi o l . 109 : 2033 - 2043 .

Meyer , D . L, E. Krause, and B . Dobberstei n . 1982 . Secretory protei n trans l o -cat i on across membranes - the ro l e of the ` docki ng protei n . ' Nature ( tond. ) .297 : 647 - 650 .

Parker , R . , and C . Guthr i e . 1985 . A po i nt mutat i on i n the conserved hexa-nucl eot i de at a yeast 5 ' sp l i ce j unct i on uncoup l es recogn i t i on , cl eavage, andl i gat i on . Cel l . 41 : 107 - 118 .

Römi sch , K . , l . Webb , J . Herz , S . Prehn , R . Frank, M . Vi ngron , and B . Dob -berstei n . 1989 . Homo l ogy of 54k protei n of s i gnal - recogn i t i on part i cl e,docki ng protei n and two E. co l i protei ns wi th putat i ve GTP- b i nd i ng do -mai ns . Nature ( tond. ) . 340 : 478 - 482 .

Rose, M . D . , L . M . Mi sra, and J . P . Vogel . 1989 . KAR2 , a karyogamy gene,i s the yeast homo l og of the mammal i an Bi P / GRP78 gene . Cel l . 57 : 1211 -1221 .

Rothb l att , J . , and D . Meyer. 1986 . Secret i on i n yeast : trans l ocat i on andg l ycosy l at i on of prepro - a- factor i n v i tro can occur v i a an ATP- dependentpost - trans l at i onal mechan i sm . EMBO (Eur . Mo l . Bi o l . Organ . ) J . 5 : 1031 -1036 .

Rothb l att , J . A . , R . J . Deshai es , S . L . Sanders , G . Daum, and R . Schekman .1989 . Mu l t i p l e genes are requ i red for proper i nsert i on of secretory protei nsi nto the endop l asmi c ret i cu l um i n yeast . J. Cel l Bi o l . 72 : 61 - 68 .

Sad l er , L, A . Ch i ang , T . Kur i hara, J . Rothb l att , J . Way , and P. S i l ver . 1989 .A yeast gene i mportant for protei n assemb l y i nto the endop l asmi c ret i cu l umand the nucl eus has homo l ogy to dnaJ, an Escher i ch i a co l i heat shock pro -tei n . J. Cel l Bi o l . 109 : 2665 - 2675 .

St i r l i ng , C . , J . Rothb l att , N . Hosobuch i , R . Deshai es and R . Schekmann . 1992 .Protei n trans l ocat i on mutant defect i ve i n the i nsert i on of i ntegral membraneprotei ns i nto the endop l asmi c ret i cu l um . Mo l . Bi o l . Cel l . In press .

Wal ter , P . , and G . Bl obel . 1980 . Pur i f i cat i on of a membrane- associ ated protei ncomp l ex requ i red for protei n trans l ocat i on across the endop l asmi c ret i cu l um .Proc . Nat l . Acad . Sci . USA. 77 : 7112 - 7116 .

Wal ter , P . , and G . Bl obel . 1982 . S i gnal recogn i t i on part i cl e contai ns a 7S RNAessent i al for protei n trans l ocat i on across the endop l asmi c ret i cu l um . Nature( tond. ). 299 : 691 - 698 .

Waters , G . , and G . Bl obel . 1986 . Secretory protei n trans l ocat i on i n a yeast cel l -f ree system can occur post - trans l at i onal l y and requ i res ATP hydro l ys i s . J .Cel l Bi o l . 102 : 1543 - 1550 .

Wi edmann , M . , T . V . Kurzchal i a, E . Hartmann , and T . A . Rapoport . 1987 .A s i gnal sequence receptor i n the endop l asmi c ret i cu l um membrane . Nature( tond. ) . 328 : 830 - 833 .

604

on March 17, 2006

www.jcb.orgDownloaded from