multi-hypothesis projection-based shift estimation for sweeping panorama reconstruction

14
CANON CONFIDENTIAL Multi hypothesis projectionbased shift estimation for sweeping panorama reconstruction Tuan Pham and Philip Cox Canon Information Systems Research Australia Paper 366 Session OT4 10:50PM-11:10AM on Tue 10 July 2012

Upload: tuan-q-pham

Post on 04-Jul-2015

340 views

Category:

Technology


1 download

DESCRIPTION

oral presentation at ICME'2012 conference, Melbourne, Australia

TRANSCRIPT

Page 1: Multi-hypothesis projection-based shift estimation for sweeping panorama reconstruction

C A N O N  C O N F I D E N T I A L

Multi‐hypothesis projection‐based shift estimation for sweeping panorama reconstruction

Tuan Pham and Philip CoxCanon Information Systems Research Australia

Paper 366 Session OT4 10:50PM-11:10AM on Tue 10 July 2012

Page 2: Multi-hypothesis projection-based shift estimation for sweeping panorama reconstruction

Overview

2

1. How correlation can estimate shift incorrectly 

2. Multi‐hypothesis projection‐based shift estimation

3. Sweep panorama application

Page 3: Multi-hypothesis projection-based shift estimation for sweeping panorama reconstruction

Shift estimation

3

Why do it?

Common techniquesFeature‐based:       faster but less accurate

Point matching e.g., Harris corners, SIFT

Area‐based:            slower but very accurateGradient‐based e.g., Lucas‐KanadeCorrelation can be applied to 1D image projections for speed

Page 4: Multi-hypothesis projection-based shift estimation for sweeping panorama reconstruction

1. Correlation‐based shift estimation: good case

4

Correlation works for small shift (e.g. 81/512 pixels = 15% image width)

correlation peak at offset [81  ‐1] aligned images (superimposed on R and G channels)

Frame 1 (512x340) Frame 8

Page 5: Multi-hypothesis projection-based shift estimation for sweeping panorama reconstruction

1. Correlation‐based shift estimation: bad case

5

Correlation fails for shift as small as 25% of image width*

correlation peak at offset [‐191  ‐164] misaligned images. Correct shift is [123  ‐6]

Frame 1 (512x340) Frame 11

* Phase correlation can handle shifts up to 50% of image width

Page 6: Multi-hypothesis projection-based shift estimation for sweeping panorama reconstruction

1. Correlation‐based shift estimation: key finding

6

True shift may correspond to a local correlation peak instead

correlation peak at offset [‐191  ‐164]

Frame 1 (512x340) Frame 11True shift appears as a local maximum

stitched image using the correct shift of [123  ‐6]

Page 7: Multi-hypothesis projection-based shift estimation for sweeping panorama reconstruction

2. Multi‐hypothesis projection‐based shift estimation

7

Page 8: Multi-hypothesis projection-based shift estimation for sweeping panorama reconstruction

2. How testing multiple shift hypotheses helps

8

Various non‐ideal factors corrupt the correlation surface, reducing the global peak of a true shift to a local peak. Robust against large motion in x or y (up to 90% image width): 

Nonoverlapping area corrupts correlation surface, causing false peaks

Robust against small rotation (up to 9° under no translation):Rotation also corrupts correlation, reducing strength of the true peak

0 50 100 150 200 250 300 350 400 450 500-500

0

5002D correlation

txty

ground-truth shift tx

Estimated shift by 2D correlation

Simulated shift tx

0 50 100 150 200 250 300 350 400 450 500-500

0

500

ground-truth shift tx

multi-hypothesis projection-based alignment (this paper)Estimated shift by this paper*

Simulated shift tx

-10 -8 -6 -4 -2 0 2 4 6 8 10-20

0

202D correlation

txty

-10 -8 -6 -4 -2 0 2 4 6 8 10-20

0

20

Simulated rotation angle (degrees) Simulated rotation angle (degrees)

Estimated shift by 2D correlation Estimated shift by this paper*

* Experiments performed on the 512x340 images shown earlier

Page 9: Multi-hypothesis projection-based shift estimation for sweeping panorama reconstruction

2. Our algorithm is also fast: 20 fps for VGA video under Matlab

9

Competitive speed compared to viewfinder alignment* due to:image subsampling to roughly 256x256 pixels prior to alignmentprojections to 2 directions (x‐ and y‐) instead of 4 (0°,45°,90°,135°)don’t need corner matching step to be robust against small rotation

* Adams, et al., Viewfinder alignment, Eurographics 2008.

-2 0 2 4 6 8 10 12 14 160

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

image size (Mega-Pixels)

alig

nmen

t tim

e in

Mat

lab

(sec

onds

)

Shift estimation run-time versus image size

2D correlation: y=0.132*x+0.008 Adams et.al.: y=0.007*x+0.132 this paper: y=0.010*x+0.023

Page 10: Multi-hypothesis projection-based shift estimation for sweeping panorama reconstruction

3. Application: panorama capture from camera sweeping motion

10

frame 1 frame 11 frame 21

The alignment algorithm in this paper is robust against perspective change. The irregular seam stitching* further helps hiding these perspective change artefacts.

* Avidan et al., Seam carving for content‐aware image resizing, SIGGRAPH, 2007.

Page 11: Multi-hypothesis projection-based shift estimation for sweeping panorama reconstruction

3. Good alignment is crucial in panorama creation

11

Robust against motion blur:

panorama (3456×704) reconstructed from 12 images (1024×680) under camera motion blur

180° panorama (4000×704) of a busy shopping centre from 9 images (972×648)

Robust against moving objects and large perspective change:

Page 12: Multi-hypothesis projection-based shift estimation for sweeping panorama reconstruction

Summary

12

Correlation peak due to image translation may be reduced to a local peak

We proposed testing multiple correlation peaks for a solution 

Our multi‐hypothesis projection‐based shift estimation is fast and robust against large translation and some rotation

Our shift estimation technique can be used for panorama stitching under variety of real‐life challenging conditions

Page 13: Multi-hypothesis projection-based shift estimation for sweeping panorama reconstruction

13

Thank you

[email protected]

Page 14: Multi-hypothesis projection-based shift estimation for sweeping panorama reconstruction

2. Multi‐hypothesis projection‐based shift estimation: the details

14

To improve efficiency:1. Input images are subsampled to roughly 256x256 pixels2. Absolute gradient projection, e.g.,  To improve robustness to large translation, for each dimension:3. Find k shift hypotheses from k strongest correlation peaks (k=5)4. Shift hypothesis with dominant correlation score is the final shift 5. Crop images by the dominant shift to improve overlap6. Test a  full set of k2 2D shift hypotheses in case of no dominant shift