multi-objective analysis to control ozone exposure

27
DEA - Università degli Studi di Brescia Multi-objective analysis to control ozone exposure C. Carnevale, G. Finzi, E. Pisoni, M. Volta Dipartimento di Elettronica per l’Automazione Università degli Studi di Brescia, Italy

Upload: gudrun

Post on 20-Jan-2016

32 views

Category:

Documents


0 download

DESCRIPTION

Multi-objective analysis to control ozone exposure. C. Carnevale, G. Finzi, E. Pisoni, M. Volta Dipartimento di Elettronica per l’Automazione Università degli Studi di Brescia, Italy. Research aim. To develop a secondary pollution control plan: Multi-objective optimization: - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

Multi-objective analysis to control ozone exposure

C. Carnevale, G. Finzi, E. Pisoni, M. VoltaDipartimento di Elettronica per l’Automazione

Università degli Studi di Brescia, Italy

Page 2: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

Research aim

To develop a secondary pollution control plan:• Multi-objective optimization:

– Objective 1: Air Quality Index (AQI)– Objective 2: Internal Costs (C)– Objective 2: External Costs (ExC)

• for a mesoscale domain– Milan CityDelta domain (Northern Italy)

Page 3: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

Problem formulation: objective 1 the Air Quality Indicator (AQI)

)])1()(),1()((40[min)min(, 1

,,,

ji

D

d

Vs

sji

Ns

sjiji rdVrdNAOTAQI

)d(V),d(N sj,i

sj,i

daily cell NOx and VOC emissions in the reference case for CORINAIR sector s;

111,...,sVs

Ns )r,r( decision variable set: CORINAIR sector

precursor emission reductions;

Page 4: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

Problem formulation : objective 2 the emission reduction cost (C)

))r(c)r(V)r(c)r(N(min)Cmin( Vs

Vs

Vs

sNs

s

Ns

Ns

s

1111

1

)r(c),r(c Vs

Vs

Ns

Ns

unit costs related respectively to NOx and VOC emission reduction;

111,...,sVs

Ns )r,r( decision variable set: CORINAIR sector

precursor emission reductions;

Page 5: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

Study domain

300x300km2

400 450 500 550 600 650

4900

4950

5000

5050

5100

5150

TORI NO

MI LANO

GENOVA

TRENTO

VERONA

PI ACENZA

MODENA

BRESCI A

VARESE

BERGAMO

SONDRI O

PARMA

NOVARA

ALESSANDRI A

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

(m )

Milan domain

Page 6: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

AQI model identification

• Pollutant concentration are computed by 3D deterministic chemical transport multiphase modelling system – Time consuming

• Identification of source-receptor models (Neural Networks), describing the nonlinear relation between decision variables (emission reduction) and air quality objective, processing the simulations of TCAM

Page 7: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

TCAM model

• Gas phase chemical mechanisms: SAPRC90, SAPRC97, COCOH97, CBIV

• 21 aerosol chemical species• 10 Size classes

– Size varying during the simulation– Fixed-Moving approach

• Processes involved:– Condensation/Evaporation– Nucleation– Aqueous Chemistry

Shell

Core

Page 8: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

TCAM simulations

• base case simulation:– 300 x 300 km2, 60 x 60 cells, cell resolution: 5x5 km2 – 11 vertical layers– emission and meteorological fields: JRC (CityDelta Project)– initial and boundary conditions: EMEP– the run of such a simulation takes about 12 days of CPU time– simulation period: 1999 april to september

• alternative scenario simulations:– CLE: current legislation– MFR: most feasible reduction

O3 precursor CLE % MFR %

NOx -29.79 -44.50

VOC -38.16 -58.74

Page 9: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

Source-receptor models (NN)

• Elman NN architecture:– Nodes of input layer: 2– Nodes of output layer: 1– Nodes of hidden layer: 8

• One neural network for each group of 2x2 (10x10 km2) domain cells

• Input data: daily NOx and VOC emissions

• Target data: cell AOT40 daily values computed by the GAMES system

IW

g

FW

OW

b

+ AF1

AF2+[MxQ]

[Mx1]

[LxM]

[Lx1]

Delay

1

vn

an

an-1

1

[MxM]

f(vn)

Page 10: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

Source-receptor models (NN)

• Identification and validation dataset:– 3 TCAM seasonal simulations

• Base Case;• Current LEgislation;• Most Feasible Reduction.

• Validation dataset (126 values):– Third week of each month.

• Identification dataset (423 values):– Remaining patterns

Page 11: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

Source-receptor models (NN)

400 450 500 550 600 650

4900

4950

5000

5050

5100

5150

MI LANO

GENOVA

TRENTO

VERONA

PI ACENZA

MODENA

BRESCI A

VARESE

BERGAMO

SONDRI O

PARMA

NOVARA

ALESSANDRI A

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

NBIAS

=0.97

Page 12: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

Cost functions

• Cost curves used are estimated on the basis of RAINS-IIASA database (http://www.iiasa.ac.at)

• An emission reduction cost curve has been assessed for each CORINAIR sector.

• Decision variables = emission reduction for sectors:– VOC: 2, 3, 4 ,5, 6, 7, 8, 9– NOx: 2, 3, 4, 7, 8

Page 13: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

Cost functions

• Fitting the costs of the available technologies:

– considering 2nd order polynomial functions– with the constraint of estimating a monotonically increasing

and convex function.

y = 11419x2 - 182,13x + 380,88

0

500

1000

1500

2000

2500

0% 10% 20% 30% 40%

un

it c

os

t (K

€)

NOx, sector 3:

Page 14: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

Optimization problem solution

• Weighted Sum Method

• Constraints1. Maximum Feasible Reductions

2. Technologies reducing both precursors

))(C)()(AQI(min

1

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

0 0.39 0.33 0.80 0 0 0.28 0.25 0 0 0

0 0.68 0.60 0.32 0.33 0.27 0.47 0.67 0.06 0 0

VsR

NsR

Page 15: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

Results

• Pareto boundaries

1,5E+07

1,7E+07

1,9E+07

2,1E+07

2,3E+07

2,5E+07

2,7E+07

2,9E+07

3,1E+07

0,E+00 8,E+04 2,E+05 2,E+05 3,E+05 4,E+05

Cost reduction (Keuro)

AO

T r

ed

uc

tio

n (

pp

m)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Cost reduction (% max)

AO

T4

0 r

ed

uc

tio

n (

% m

ax

)

Utopia

Page 16: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

AOT reduction (% max)

VOC

em

issi

on re

duct

ion

(%)

S2S4S5S6S7S8S9

Results

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

AOT reduction (% max)

NO

x em

issi

on r

educ

tion

(%)

S2S3S4S7S8

VOC reductions NOx reductions

Page 17: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

Results

VOC emissions

0

50000

100000

150000

200000

250000

300000

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

AOT40 reduction (% max)

VO

C e

mis

sion

s (t

on/y

ear)

2456789

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

AOT40 reduction (% max)

NO

X e

mis

sion

s (t

on/y

ear)

23478

NOx emissions

Page 18: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

Conclusions

– A procedure to formulate a multi-objective analysis to control ozone exposure has been presented

– The procedure implements Elman neural networks tuned by the outputs of a deterministic 3D modelling system

– The methodology has been applied over Milan CityDelta domain (Northern Italy): a strong reduction of ozone exposure (60% of the maximum air quality improvement) can be attained with a small fraction of the emission reduction technology costs (about 12%)

Page 19: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

Current activities

– Uncertainty analysis:• Source-receptor models• Cost curves• VOC/NOx reduction functions for transport sectors

– CityDeltaIII simulations to extend source-receptor model calibration and validation sets;

– source-receptor models for SOMO35, AOT60, max8h, mean PM10 and PM2.5 concentrations;

– PM10 and PM2.5 precursor (NOx, VOC, primary PM10, NH3, SO2) cost curves;

– PM10 and PM2.5 two-objective optimization

Page 20: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

Thanks to…

• This research has been partially supported by MIUR (Italian Ministry of University and Research).

• The authors are grateful to the CityDelta community.

• The work has been developed in the frame of NoE ACCENT.

Page 21: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

References

• Finzi, G., Guariso, G., 1992. Optimal air pollution control strategies: a case study. Ecological Modelling 64, 221–239.

• Barazzetta, S., Corani, G., Guariso, G., 2002. A neural emission-receptor model for ozone reduction planning. In: Proc. iEMSs 2002.

• Volta, M. 2003. Neuro-fuzzy models for air quality planing. The case study of ozone in Northern Italy. European Control Conference.

• Guariso, G., Pirovano, G., Volta, M., 2004. Multi-objective analysis of ground level ozone concentration control. Journal of Environmental Management 71, 25–33.

• Carnevale C., Finzi G., Pisoni E., Volta M., 2006. Identification of source-receptor models for secondary tropospheric pollution control. 14th IFAC Symposium on System Identification. 29-31 march, 2006 (pp. 762-767). IFAC Ed., CDROM published by Causal Productions.

• M Carnevale C., Finzi G., Pisoni E., Volta M., 2006. Multi-objective analysis to control ozone exposure, 28th ITM-NATO.

Page 22: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

Constraints

• Maximum feasible reductions allowed by technologies for macrosector s:

• Technologies reducing both NOx and VOC emissions

Vs

Vs

Ns

Ns

Rr

Rr

0

0

Page 23: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

Optimization problem solution

NOx reduction NOx reduction]

VO

C r

edu

ctio

n

VO

C r

edu

ctio

n

macrosector 7 macrosector 8

Constraints (2): technologies reducing both precursors

Page 24: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

scenario A

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Cost reduction (% max)

AO

T4

0 r

ed

uc

tio

n (

% m

ax

)

A

Utopia

Page 25: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

basecase emission scenario

s45,0%

s55,5%

s629,6%

s746,5%

s11,6%

s21,8% s3

0,0%

s89,0%

s90,2%

s100,0%

s110,7%

VOC emissions

s415,8%

s50,0%

s60,0%

s735,2%

s120,8%

s24,0%

s37,4%

s814,8%

s91,7%

s100,0%

s110,4%

NOx emissions

Page 26: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

AOT40 scenarios

basecase Scenario A

source-receptor model simulations

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

5 1 0 1 5 2 0 2 5 3 0

5

1 0

1 5

2 0

2 5

3 0

400 450 500 550 600 650

4900

4950

5000

5050

5100

5150

MI LANO

GENOVA

TRENTO

VERONA

PI ACENZA

MODENA

BRESCI A

VARESE

BERGAMO

SONDRI O

PARMA

NOVARA

ALESSANDRI A

5 1 0 1 5 2 0 2 5 3 0

5

1 0

1 5

2 0

2 5

3 0

400 450 500 550 600 650

4900

4950

5000

5050

5100

5150

MI LANO

GENOVA

TRENTO

VERONA

PI ACENZA

MODENA

BRESCI A

VARESE

BERGAMO

SONDRI O

PARMA

NOVARA

ALESSANDRI A

ppb*h

Page 27: Multi-objective analysis to control ozone exposure

DEA - Università degli Studi di Brescia

scenario A: emissions

-60%

-50%

-40%

-30%

-20%

-10%

0%

s2 s3 s4 s5 s6 s7 s8 s9

NOx

VOC1

2

1

2

3 control priorities

-140000

-120000

-100000

-80000

-60000

-40000

-20000

0

s2 s3 s4 s5 s6 s7 s8 s9

NOx

VOC1

21

23

emission reductions(ton/year)