multi‐trait genomic selection for weevil resistance...

19
Evolutionary Applications. 2019;00:1–19. | 1 wileyonlinelibrary.com/journal/eva Received: 7 November 2018 | Revised: 18 April 2019 | Accepted: 15 May 2019 DOI: 10.1111/eva.12823 SPECIAL ISSUE ORIGINAL ARTICLE Multi‐trait genomic selection for weevil resistance, growth, and wood quality in Norway spruce Patrick R. N. Lenz 1,2 | Simon Nadeau 1 | Marie‐Josée Mottet 3 | Martin Perron 2,3 | Nathalie Isabel 2,4 | Jean Beaulieu 2 | Jean Bousquet 2 This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2019 Her Majesty the Queen in Right of Canada. Environmental DNA published by John Wiley & Sons Ltd. Lenz and Nadeau authors contributed equally to this work. Reproduced with the permission of the Minister of Natural Resources Canada. 1 Canadian Wood Fibre Centre, Natural Resources Canada, Québec, Québec, Canada 2 Canada Research Chair in Forest Genomics, Institute of Integrative Biology and Systems, Centre for Forest Research, Université Laval, Québec, Québec, Canada 3 Ministère des Forêts, de la Faune et des Parcs, Gouvernement du Québec, Direction de la recherche forestière, Québec, Québec, Canada 4 Laurentian Forestry Centre, Natural Resources Canada, Québec, Québec, Canada Correspondence Patrick R. N. Lenz, Natural Resources Canada, Canadian Wood Fibre Centre, 1055 du PEPS, PO Box 10380, Québec, QC G1V 4C7, Canada. Email: [email protected] Funding information Genome Canada, Grant/Award Number: 6503 Abstract Plantation‐grown trees have to cope with an increasing pressure of pest and disease in the context of climate change, and breeding approaches using genomics may offer efficient and flexible tools to face this pressure. In the present study, we targeted ge‐ netic improvement of resistance of an introduced conifer species in Canada, Norway spruce (Picea abies (L.) Karst.), to the native white pine weevil (Pissodes strobi Peck). We developed single‐ and multi‐trait genomic selection (GS) models and selection indices considering the relationships between weevil resistance, intrinsic wood qual‐ ity, and growth traits. Weevil resistance, acoustic velocity as a proxy for mechani‐ cal wood stiffness, and average wood density showed moderate‐to‐high heritability and low genotype‐by‐environment interactions. Weevil resistance was genetically positively correlated with tree height, height‐to‐diameter at breast height (DBH) ratio, and acoustic velocity. The accuracy of the different GS models tested (GBLUP, threshold GBLUP, Bayesian ridge regression, BayesCπ) was high and did not differ among each other. Multi‐trait models performed similarly as single‐trait models when all trees were phenotyped. However, when weevil attack data were not available for all trees, weevil resistance was more accurately predicted by integrating genetically correlated growth traits into multi‐trait GS models. A GS index that corresponded to the breeders’ priorities achieved near maximum gains for weevil resistance, acoustic velocity, and height growth, but a small decrease for DBH. The results of this study indicate that it is possible to breed for high‐quality, weevil‐resistant Norway spruce reforestation stock with high accuracy achieved from single‐trait or multi‐trait GS. KEYWORDS breeding, conifers, index selection, insect resistance, multi‐trait genomic selection, Norway spruce, white pine weevil, wood quality

Upload: others

Post on 17-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Multi‐trait genomic selection for weevil resistance ...fasttracproject.ca/wp-content/uploads/2019/06/Lenz... · ple the Bayesian generalized linear regression models that support

Evolutionary Applications. 2019;00:1–19.  | 1wileyonlinelibrary.com/journal/eva

Received:7November2018  |  Revised:18April2019  |  Accepted:15May2019DOI: 10.1111/eva.12823

S P E C I A L I S S U E O R I G I N A L A R T I C L E

Multi‐trait genomic selection for weevil resistance, growth, and wood quality in Norway spruce

Patrick R. N. Lenz1,2  | Simon Nadeau1 | Marie‐Josée Mottet3 | Martin Perron2,3 | Nathalie Isabel2,4 | Jean Beaulieu2 | Jean Bousquet2

ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,providedtheoriginalworkisproperlycited.©2019HerMajestytheQueeninRightofCanada.Environmental DNA publishedbyJohnWiley&SonsLtd.

LenzandNadeauauthorscontributedequallytothiswork.ReproducedwiththepermissionoftheMinisterofNaturalResourcesCanada.

1CanadianWoodFibreCentre,NaturalResourcesCanada,Québec,Québec,Canada2CanadaResearchChairinForestGenomics,InstituteofIntegrativeBiologyandSystems,CentreforForestResearch,UniversitéLaval,Québec,Québec,Canada3MinistèredesForêts,delaFauneetdesParcs,GouvernementduQuébec,Directiondelarechercheforestière,Québec,Québec,Canada4LaurentianForestryCentre,NaturalResourcesCanada,Québec,Québec,Canada

CorrespondencePatrickR.N.Lenz,NaturalResourcesCanada,CanadianWoodFibreCentre,1055duPEPS,POBox10380,Québec,QCG1V4C7,Canada.Email:[email protected]

Funding informationGenomeCanada,Grant/AwardNumber:6503

AbstractPlantation‐growntreeshavetocopewithanincreasingpressureofpestanddiseaseinthecontextofclimatechange,andbreedingapproachesusinggenomicsmayofferefficientandflexibletoolstofacethispressure.Inthepresentstudy,wetargetedge‐neticimprovementofresistanceofanintroducedconiferspeciesinCanada,Norwayspruce(Picea abies(L.)Karst.),tothenativewhitepineweevil(Pissodes strobiPeck).Wedevelopedsingle‐andmulti‐traitgenomicselection (GS)modelsandselectionindicesconsideringtherelationshipsbetweenweevilresistance,intrinsicwoodqual‐ity,andgrowthtraits.Weevilresistance,acousticvelocityasaproxyformechani‐calwoodstiffness,andaveragewooddensityshowedmoderate‐to‐highheritabilityand lowgenotype‐by‐environment interactions.Weevil resistancewas geneticallypositively correlated with tree height, height‐to‐diameter at breast height (DBH)ratio,andacousticvelocity.TheaccuracyofthedifferentGSmodelstested(GBLUP,thresholdGBLUP,Bayesianridgeregression,BayesCπ)washighanddidnotdifferamongeachother.Multi‐traitmodelsperformedsimilarlyassingle‐traitmodelswhenalltreeswerephenotyped.However,whenweevilattackdatawerenotavailableforalltrees,weevilresistancewasmoreaccuratelypredictedbyintegratinggeneticallycorrelatedgrowthtraitsintomulti‐traitGSmodels.AGSindexthatcorrespondedtothebreeders’prioritiesachievednearmaximumgainsforweevilresistance,acousticvelocity,andheightgrowth,butasmalldecreaseforDBH.Theresultsofthisstudyindicatethatitispossibletobreedforhigh‐quality,weevil‐resistantNorwaysprucereforestationstockwithhighaccuracyachievedfromsingle‐traitormulti‐traitGS.

K E Y W O R D S

breeding,conifers,indexselection,insectresistance,multi‐traitgenomicselection,Norwayspruce,whitepineweevil,woodquality

Page 2: Multi‐trait genomic selection for weevil resistance ...fasttracproject.ca/wp-content/uploads/2019/06/Lenz... · ple the Bayesian generalized linear regression models that support

2  |     LENZ Et aL.

1  | INTRODUC TION

Treesare long‐livedstationaryorganisms thathave towithstandpests and diseases during their lifetime.Host–pest relationshipsmay constantly coevolve over time when organisms share thesame environment (Núñez‐Farfán, Fornoni, & Valverde, 2007;Strauss&Agrawal, 1999).However, exotic speciesmaybemoreexposedtodamagebypestinsectsnativetotheareawheretheyare introduced (Brockerhoff, Liebhold, & Jactel, 2006) becauseresistance mechanisms have usually not evolved in response tothe selective pressure imposed by native insects, which couldpotentially compromise the productivity of exotic tree planta‐tions(Branco,Brockerhoff,Castagneyrol,Orazio,&Jactel,2015).While studies comparing the relative vulnerability of native andexoticconiferstonativeinsectsreportedmixedresults(Fraser&Lawton, 1994; Langström, Lieutier, Hellqvist, & Vouland, 1995;Lombardero, Alonso‐Rodríguez, & Roca‐Posada, 2012; Roques,Auger‐Rozenberg, & Boivin, 2006; Zas, Moreira, & Sampedro,2011),inthemajorityofcases,exoticconifersweremoredamagedthannativeones.

Norway spruce (Picea abies [L.] Karst) is a conifer native toScandinavia,EasternEurope,andthemountainousregionsofcen‐tral Europe. Being the most important commercial softwood forlumber and pulp and paper production in Europe (Hannrup et al.,2004),thespecieswasfoundtobealsohighlyproductiveinEasternNorthAmerica andoneof themost productive conifer in planta‐tioninQuebec,Canada(Thiffaultetal.,2003).However,itishighlysusceptible to the indigenous white pine weevil (Pissodes strobi Peck), awood‐boring insect found in the temperateand southernboreal forests across the North American continent. Larvae feedonleadershoots,causingdieback;eventuallylateralbranchestake

over,causingkinkandcrookedstemsofattackedtrees.Besidesitsprincipalhosteasternwhitepine(Pinus strobusL.),theweevilattacksdifferent native spruces across the North American continent. InNorwayspruce,moderateweevildamageleadstosignificantmon‐etary loss due to stemdefects and the resulting losses in lumbervolumeandquality(Daoust&Mottet,2006).

ThefirstNorwayspruceplantationswereestablishedinNorthAmericainthe19thcenturyandCanadianearlygenetictestingef‐fortsofthisspeciesdatebacktothe1920satthePetawawaNationalResearchForest(Holst,1955).Besidesthescreeningforbestgrow‐ing and frost hardy seed sources, it was quickly recognized thatbreedingeffortsneededtoincludeweevilresistance(Holst,1963).ThegeneticvariationinweevilresistancehasbeendocumentedinNorthAmericansprucespecies,includingSitkaspruce(Picea stichen‐sis[Bong.]Carr.)(Alfaro,King,&VanAkker,2013;Alfaro,VanAkker,Jaquish,&King,2004;King,2004)andinteriorspruce(Picea glauca [Moench] Voss × engelmannii Parry ex Engelm.; white spruce,Engelmann spruce, and their hybrids) (Alfaro et al., 2004; King,Yanchuk,Kiss,&Alfaro,1997).AlthoughNorwaysprucedidnotco‐evolvewiththewhitepineweevilinitsnativeEuropeanrange,mod‐erate‐to‐highgeneticvariationandheritability for resistancewerereported for this species (Holst, 1955;Mottet,DeBlois,&Perron,2015). Current Canadian Norway spruce breeding programs arelargelybasedonresistantselectionsmadebytheCanadianForestService in thepast (Daoust&Mottet, 2006).However, selectionsweremadefollowingconventionalphenotypicevaluationsofmaturetreesandpedigree‐basedapproaches,thusrequiringmanyyearsoftestingingeneticexperiments.Recentdevelopmentsinquantitativegenomicsandbreedingsuchaswhole‐genomepredictionsmayhelpshortentheevaluationstageandbreedingcycles(Park,Beaulieu,&Bousquet,2016).

Box 1 Genomic selection: principles and application in tree breedingGenome‐widepredictionorgenomicselection(GS;Meuwissenetal.,2001)reliesonsimultaneouslyestimatingeffectsofmanythou‐sandmarkers,withsomethatareinlinkagedisequilibrium(LD)withquantitativetraitloci(QTL),inordertoestimatethegeneticmeritofanindividual.AnotherGSapproachreliesonusinggeneticmarkerstoestimatetherealizedgenomicrelationships(G)betweentreestoobtainpredictions(GBLUPs)oftheirgeneticvalue(VanRaden,2008),asopposedtoconventionalmethodsrelyingontheregisteredpedigreetomakesuchpredictions.Genomicselectionmodelsarebuiltusinggenomicprofilesandphenotypicmeasurementsofthesametreesinabreedingpopulation(i.e.,trainingpopulation,Figure1a).Usingthesemodels,thepredictionofgeneticmeritcanbemadebasedonmultilocusgenotypes,thuseliminatingtheneedtophenotypeandevaluatetheperformanceofcandidatesforselection(Figure1b).Whenpredictivemodelshavebeenvalidatedandaresufficientlyaccurate,genomicselectioncanoutperformconventionalpedigree‐basedselectiongiventhatgenomicprofilesfromyoungmaterial(seed,seedling,orembryo)canbeobtainedtopredictgeneticvaluesandmakeselectionsataveryearlystage,thusincreasingdramaticallygeneticgainsperunitoftime(Figure2).Thisisparticularlymoresoforspruces,whichcanbevegetativelypropagatedinanefficientfashionfromselectionsmadeatthejuvenilestage(Parketal.,2016).GSisparticularlyefficientfor(sub‐)borealconifers,whereconventionalbreedingcyclestakeupto30yearsorlonger,largelyduetotheevaluationstagethatcantakeupto25years(Mullinetal.,2011).Hence,undertheapplicationofGS,theroleofphenotypingissignificantlychangedandisonlyneededformodelconstructionandvalidation.Also,withsamegenomicprofiles,modelscanberecalibratedwithlittleeffortfordifferenttraitsaccordingtochangingbreedingpriorities.Selectionintensitycanalsobeincreasedbyscreeninglargenumbersofcandidateswithoutphenotypingcosts,whichisparticularlyrelevantinthecontextofmulti‐traitselection.GSiscurrentlybeingincorporatedintodifferentsprucebreedingprogramsineasternCanada.

Page 3: Multi‐trait genomic selection for weevil resistance ...fasttracproject.ca/wp-content/uploads/2019/06/Lenz... · ple the Bayesian generalized linear regression models that support

     |  3LENZ Et aL.

Theapplicationofgenomicstoforesttreeshasgainedinterestto hasten breeding and better understand the genetic control ofpestresistanceaswellaseconomicallyimportantgrowthandwoodqualitytraits(Plomion,Bousquet,&Kole,2011).Withthecommonlimitationofconventionalmarkerassociationstudiestopredictlargeparts of quantitative genetic variation (e.g., Beaulieu et al., 2011;Gonzalez‐Martinez,Wheeler, Ersoz,Nelson,&Neale, 2007;Porthetal.,2013),effortsintreebreedinghavebeenturningtogenomicpredictionusingdensemarkerpanels.Genomicselection (GS,Box1)approachesrelyonestimatingeffectsofmanythousandmarkers(Meuwissen,Hayes,&Goddard,2001)orusingtherealizedgenomicrelationships(G)betweentreestoobtainpredictionsofgeneticval‐ues (GBLUPs; VanRaden, 2008). Both GS approaches have beensuccessfullytestedinproof‐of‐conceptstudiesinforesttreestopre‐dictgrowthandwoodquality,forexample,inEucalyptus(Resende,Munoz,etal.,2012;Resende,Resende,etal.,2012),pines(Isiketal.,2016;Resende,Munoz,etal.,2012;Resende,Resende,etal.,2012;Zapata‐Valenzuela, Whetten, Neale, McKeand, & Isik, 2013), andspruces(Beaulieu,Doerksen,Clément,MacKay,&Bousquet,2014;Beaulieu,Doerksen,MacKay,Rainville,&Bousquet,2014;Chenetal.,2018;Lenzetal.,2017;Ratcliffeetal.,2015).

Mostofthegenomicselectionstudiesintreespeciesfocusedonmodelinggrowthandwoodtraits,whicharequantitativetraitslikelytobecontrolledbyalargenumberofgenesofsmalleffects(Namkoong,Kang,&Brouard,1988).Despite the fact thatmanytreebreedingprogramsscreenforbioticresistanceagainstpestsordisease(Mullinetal.,2011),toourknowledge,thereisnostudyon the accuracy ofGS for insect resistance in trees.One studytested different GSmodels to predict resistance to a pathogenin loblolly pine (Pinus taeda L.) (Resende, Munoz, et al., 2012;Resende,Resende, et al., 2012). Theauthors reported that fusi‐formrustresistancewaslikelycontrolledbyafewgenesoflargeeffectssinceitwasbestpredictedwithBayesianregressionmod‐elsthatallowedfordifferentvarianceofmarkereffects.Notonlyisthegeneticarchitectureofthetraitanimportantconsideration

inthechoiceofGSmodel,butonemustalsodealwiththenatureofthephenotypicdata.Screeningdataforpestresistanceismostoften qualitative or semiquantitative, which needs appropriatestatisticalapproachesthatcanhandlenon‐normalityofmodelingerrors.Thus,there isanopportunityfortestingdifferentGSap‐proacheswithweevilresistancedatainNorwayspruce,forexam‐pletheBayesiangeneralizedlinearregressionmodelsthatsupportbinaryorordinaldata(Perez&delosCampos,2014)orthethresh‐oldGBLUPmodeldevelopedforordinaldata (Montesinos‐Lópezetal.,2015).

Inpractice,breedersgenerallyneedtoconsidermultipletraitssi‐multaneouslyintheirselectionsforimprovedgeneticstock.Besidesreducinginsectattack,improvinggrowthandwoodvolumearemajorgoalsforNorwayspruce,asitisforseveralplantation‐grownconi‐fers (Mullinetal.,2011).However, reductionofwoodqualitywasobservedinthepastunderselectionforacceleratedgrowth(Chen

F I G U R E 1   [Box1].Genomicselectionmodelingandintegrationintreebreeding (a) Build GS models

(b) Apply GS models

1∑=

Genomic profileTrees in genetic trials

Treegeneticvalue

GS model

DNA

Assesstrait

DNA

Seedling,seed,embryo Genomic profile

Predictedgenetic value

Select andpropagate

nb markers

Marker effect

F I G U R E 2   [Box1].Estimatedtimeforcompletingabreedingcyclein(sub‐)borealconiferssuchasspruces

4years

20 to 25

years

Crosses

fo noitaruD

gnideerbcy

cle 4

1 to 2 yearsEvaluation

Conventionalbreeding

Genomicselection

4

4Propaga�on

<10 years

>28 years

years

years

years

Page 4: Multi‐trait genomic selection for weevil resistance ...fasttracproject.ca/wp-content/uploads/2019/06/Lenz... · ple the Bayesian generalized linear regression models that support

4  |     LENZ Et aL.

etal.,2014;Lenz,Cloutier,MacKay,&Beaulieu,2010).Therefore,important wood traits for mechanical applications such as woodstiffness should be consideredwhen performing selections (Lenz,Auty,Achim,Beaulieu,&Mackay,2013).Mottetetal. (2015)con‐cludedthatselectionforweevilresistancewouldnotreduceheightgrowth,butcouldaffectdiameterandthereforevolume.However,the genetic relationships between weevil resistance and intrinsicwood properties such as wood density and stiffness have neverbeeninvestigated.Thus,thereisaneedtounderstandthegeneticcorrelationsbetweenweevil resistance,woodquality, and growthtraitsandtolookatthepossibilitytocombinetheminamulti‐traitgenomicselectionframework.

Multivariate genomic selection models can improve the accu‐racyofpredictionsbytakingadvantageofthegeneticcorrelationsbetween traits (Calus&Veerkamp,2011).Thisability isespeciallyadvantageous forpredictionof traits thatarecostlyordifficult tomeasure by conventional means on a large number of candidatetrees,suchasweevilresistanceorwoodquality,byusingavailablecorrelatedindicatortraits.Simulationstudiesshowedthatmulti‐traitmodelscanincreasetheaccuracyofatargettraitof lowheritabil‐itywhen it ismodeledtogetherwithgeneticallycorrelated indica‐tortraitsharboringhighheritability(Guoetal.,2014;Jia&Jannink,2012). In addition, thebenefitsofmulti‐traitGSare increased fortargettraitswithscarcephenotypicrecordswhentheyarecoupledwithintensivelyphenotypedindicatortraits(Guoetal.,2014;Jia&Jannink, 2012; Schulthess et al., 2016). Few studies have appliedmulti‐traitgenomicselectionmethods to realplantbreedingdata‐sets (e.g., Bao, Kurle, Anderson, & Young, 2015; Fernandes,Dias,Ferreira, &Brown, 2018; Schulthess et al., 2016). In tree species,the accuracy ofmulti‐trait versus single‐traitGSmodelswas only

testedonafewtraitsusingbivariatemodelsinloblollypine(Cheng,Kizilkaya,Zeng,Garrick,&Fernando,2018;Jia&Jannink,2012)andin Eucalyptus (Cappaetal.,2018),andthesestudiesdidnot inves‐tigate theeffectsofmissingphenotypicdata.Given theobservedpositivegeneticcorrelationsbetweenweevilresistanceandheightgrowth(Mottetetal.,2015),andthepossiblecorrelationswithwoodqualitytraits,multi‐traitGSmodelscould improvetheaccuracyofpredictionsfortraitsthataredifficultandexpensivetoassessonalargenumberoftrees.

Onceaccurategenomic‐estimatedbreedingvaluesforeachtraithavebeenobtainedfromeithersingle‐traitormulti‐traitmodels,itispossibletocombinethemintoaselectionindex(SI;Hazel,1943)andtorankindividualsbasedontheiroverallperformanceacrossalltraits.Thisstrategyisespeciallyusefulinthepresenceofnegativegeneticcorrelationsinordertoselectmaterialthatachieveagoodbalanceintheirperformanceforalltraitsofinterest.Inaddition,GSisespeciallywellsuitedtoallowidentifyingcorrelationbreakersinsufficient number, given the higher selection intensities that canbe achieved by screening larger numbers of candidates thanwithconventionalmethods(Parketal.,2016).Hence,multi‐traitgenomicselectionmodelsandindexselectionaretwodifferenttoolsthatcanbecombinedtoimproveaccuraciesofbreedingvaluesandoptimizegeneticgains,respectively,inamulti‐traitbreedingprogram.

Here,wepresentacomprehensivegeneticstudyofweevilresis‐tanceinNorwayspruceanditsrelationshipswithgrowthandwoodquality traits in the context of establishing a multi‐trait genomicselectionbreedingprogram.Ourobjectiveswere to (a) betterun‐derstandthegeneticrelationshipsbetweenweevilattackandothergrowthandwoodtraits,inparticularintrinsicwoodqualitytraits;(b)evaluatetheperformanceofdifferentsingle‐traitgenomicselectionmodels, especially for weevil resistance; (c) test the performanceofmulti‐traitgenomicselectionmodelsforpredictingatargettrait(weevil resistanceorwoodquality)whencoupledwithgeneticallycorrelatedindicatortraits(e.g.,heightgrowth);and(d)developmulti‐traitgenomicselectionindicesfortheproductionofhigh‐qualityandweevil‐resistantseedlingstockinNorwayspruce.

2  | MATERIAL AND METHODS

2.1 | Genetic material and phenotyping

Thedataanalyzedinthisstudyareasubsetofalargerbreedingpopu‐lationderived fromapartialdiallelmatingdesign (seeMottetet al.,2015formoredetails).WefocusedourphenotypingandgenotypingeffortsonthetreesplantedontwositesaffectedbywhitepineweevilinQuebec,thatis,Saint‐Modeste(47.85°N;69.38°W;elevation:140m;abbreviated STM) andGrandes‐Piles (46.68°N; 72.68°W; elevation:150m;abbreviatedGPI),respectively,locatedinthebalsamfir–yellowbirchandthesugarmaple–yellowbirchbioclimaticdomains(Figure3).Bothtestsweresetupinyear2000.TheGrandes‐Pilesplantationwasheavilyaffectedbyweevilswith~70%ofthetreesattackedat leastoncebyage16,whiletheSaint‐Modesteplantationwasmoderatelyaffected(~47%ofthetreesattackedbyage16).Todevelopgenomic

F I G U R E 3  LocationofthetestsitesSaint‐Modeste(STM)andGrandes‐Piles(GPI)intheprovinceofQuébec,Canada

_

_

Québec

Montréal

STM

GPI

64°W68°W72°W50°N

46°N

±

0 200 Km

Maine(U.S.A.)

Provinceof Quebec

NewBrunswick

Page 5: Multi‐trait genomic selection for weevil resistance ...fasttracproject.ca/wp-content/uploads/2019/06/Lenz... · ple the Bayesian generalized linear regression models that support

     |  5LENZ Et aL.

selectionmodelsforweevilresistance,weselected40full‐sibfamilies(35parents),20ofwhichwereratedresistantand20ratedsusceptiblebasedonweevilattacksurveysatages10and15onthesetwosites.Atotalof726trees(14to20perfamily,mean=17.85)weresampled.Eachparentwascrossedonaverage2.3times(FigureS1).Thetwotri‐alswereestablishedaccordingtoarandomizedcompleteblockdesign,eachwith fiveblocksand three‐tree rowplots foreach family (treespacing:2.5m×2m).Becauseoftreemortality,notallfamilieswererepresentedineveryblock(i.e.,incompleteblockdesign).

Tree height (Height15) and diameter at breast height (DBH15)weremeasured at age15.Theheight‐to‐diameter ratio (Height15/DBH15)wascalculatedasaproxyofstemtaper.Threewoodqualitytraitsrelatedtomechanicalpropertieswereassessed:averagewooddensityandcellulosemicrofibrilangleweredeterminedfromwoodincrementcoresusingX‐raydensitometryanddiffractometryatage15(Density15andMFA15)asdescribedinLenzetal.(2017);acousticvelocitywasmeasuredatage16(Velocity16)withtheST300Hitmantool.Acousticvelocity isaproxyforwoodstiffnessormodulusofelasticitymeasuredatstandingtrees(Chenetal.,2015;Desponts,Perron,&DeBlois,2017;Lenzetal.,2013).

Foreachoftwosurveysatages10and15,thepresence/absenceofweevil damage in the current year (coded0/1) and in previousyears(coded0/1)wererecorded.Currentyeardamagewasdetectedbyinspectingtheterminalshootforemergenceholesordeathoftheleadershoot.Weevildamageinpreviousyearswasvisiblebyforks,curves,bayonets,ormultiplestems.Wecalculatedthecumulativenumberofattacks(CWA)as:

whereWAcurrent10 andWAcurrent15 are thepresence/absenceofat‐tackatage10and15,respectively;WAprevious10isthepresence/ab‐senceofattackpriortoage10;andWA11–14isthepresence/absenceofattackbetweenages11and14.ThevariableWA11–14,whichwascalculatedtoavoiddouble‐countingpreviousattacks,wasequalto1

(presence)iftherewasanattackpriortoage15,butnoattackatage10orpriortoage10.TheresultingCWAvariableisordinal(orderedcategoriesof0,1,2, and3weevil attacks).Table1andFigureS2providethesummarystatisticsandviolinplots,respectively,forthetraitsassessedinthisstudy.FigureS3showsthespatialdistributionofCWAvaluesinthetestsites.

2.2 | SNP genotyping

The726treesweregenotypedusinganInfiniumiSelectSNParray(Illumina),whichwasassembledfromacatalogofhigh‐confidencegeneSNPsobtainedfromexomecaptureandsequencing(Azaiezetal.,2018).Thegenotypingreproducibilityratewashigh(99.94%),asestimatedfromtwopositivecontrolsreplicatedoneachgenotypingplate.From5,660successfullymanufacturedSNPsrepresentingasmanydistinctgenelociwelldistributedoverthe12sprucelinkagegroups(Pavyetal.,2017),weretainedatotalof3,914SNPswithcallrate≥90%(averagecallrateof99.6%),minorallelefrequency(MAF)≥0.005,andafixationindex|FIS|<0.50.SNPswerewelldistributedacrossMAFclasseswith86%oftheSNPswithMAF≥0.05(FigureS4). Missing genotypes (only 0.4% of genotypes) were imputedusingak‐nearestneighbormethodbasedonlinkagedisequilibrium(LD‐kNNi)withthesoftwareLinkImpute (Moneyetal.,2015).Thesoftwareestimatedanaccuracyof0.83for imputedgenotypesbyrandomlymaskinggenotypes.

2.3 | Relationship matrices and pedigree verification

Allanalyseswereperformed in theRv.3.3.1environment (RCoreTeam,2016).Apedigree‐basedrelationshipmatrix(A)anditsinversewerefirstcomputedbasedontheregisteredpedigree informationusing the function “asreml.Ainverse” of the R package ASReml‐Rv.3.0 (Butler, Cullis, Gilmour, & Gogel, 2007). For use in genomicselection (GS)models, therealizedgenomic relationshipmatrix (G,Figure S5) was computed from themarker data with the “A.mat”

(1)CWA=WAprevious10+WAcurrent10+WA11−14+WAcurrent15

TA B L E 1  Phenotypicmeans,standarddeviations(SD),andcoefficientsofvariation(CV)foreachsiteandacrosssitesforthe714treesretainedforanalyses

Traita Units

GPIb (n = 388) STMb (n = 326) Across sites (n = 714)

Mean SD CV (%) Mean SD CV (%) Mean SD CV (%)

Velocity16 km/s 3.71 0.33 8.96 3.69 0.31 8.54 3.70 0.32 8.77

Density15 kg/m3 344.78 24.77 7.19 395.45 29.30 7.41 367.91 36.91 10.03

MFA15 degrees 10.98 4.59 41.81 13.22 6.47 48.96 12.01 5.64 46.98

DBH15 mm 148.05 20.08 13.56 106.73 20.49 19.19 129.19 28.89 22.36

Height15 cm 908.09 128.12 14.11 788.90 111.64 14.15 853.67 134.61 15.77

Height15/DBH15 — 62.08 10.01 16.13 75.46 11.61 15.39 68.19 12.67 18.57

CWA Numberofattacks 0.99 0.80 80.79 0.63 0.76 121.65 0.83 0.81 97.46

aMeasuredtraitsindescendingorderareacousticvelocityatage16asaproxyforwoodstiffness,averagewooddensityatage15,microfibrilangleatage15,diameteratbreastheightatage15,treeheightatage15,theheight‐to‐diameterratioatage15,andthecumulativenumberofweevilattacks.bExperimentalsitesGrandes‐Piles(GPI)andSaint‐Modeste(STM).

Page 6: Multi‐trait genomic selection for weevil resistance ...fasttracproject.ca/wp-content/uploads/2019/06/Lenz... · ple the Bayesian generalized linear regression models that support

6  |     LENZ Et aL.

functionoftheRpackagerrBLUP(Endelman&Jannink,2012)withthedefaultoptions,whichwasequivalenttotheformuladescribedbyVanRaden(2008).AcomparisonoftheA and Gmatricesrevealed11“misclassified”treesthatpresumablydidnotbelongtotheirex‐pectedcross.Inaddition,onetreewasdeemedanoutlierbecauseithadabnormallyhighaveragewooddensity(Density15),aftercheck‐ingmodelresiduals(seeEquation(2)below).Afterremovingmisclas‐sifiedandoutlier trees,714 treesgenotypedon3,914SNPswereused insubsequentanalyses.TheresultingA and GmatriceswerehighlycorrelatedwithaPearson r=0.94 (FigureS6).LargevaluesofGwithineach classofA aremostlydue to two inbred families(FigureS7).

2.4 | Heritability and genotype‐by‐environment interactions

First, variance components, heritability, andbreeding valueswereestimated using the conventional pedigree‐based (ABLUP) or thegenomic‐based(GBLUP)individual‐treemixedmodels(theso‐called“animalmodel”)inASReml‐Rv.3.0:

where yisthephenotype;μistheoverallmean;sisthefixedsiteef‐fect;b(s)istherandomeffectofblockwithinsite,withb (s)∼N(0,�2

bIb);

a is the random additive genetic effect, with a∼N(0,�2

aA); sa is

the random interaction of site with additive genetic effects, withsa∼N(0,𝜎2

saIs⊗A); and e is the residual term, assuming homogene‐

ityacrosssiteswithe∼N(0,�2eIe).FortheABLUPmethod,thematrix

A is the pedigree‐based relationshipmatrix,whichwas replaced bythe realized genomic relationship matrixG for the GBLUP method(a∼N

(0,�2

aG) and sa∼N(0,�2

saIsG)).TheX and Zmatricesareincidence

matricesoftheircorrespondingeffects,andIxisanidentitymatrixofitsproperdimension.Thesymbol⊗referstotheKroneckerproduct.Totestthehypothesisofgreaterthanzerovarianceforeacheffect(H0: σ2=0;H1: σ2>0),weperformedalikelihood‐ratiotestwithonede‐greeoffreedombetweenthefullmodelinEquation(2)andareducedmodelwithouttheeffecttobetested.Thedominanceeffectwasnotincluded inmodelsbecause itwasnotsignificantforall traitsunderstudy (Table S1), and, according to BIC, the fit of models includingdominancewassimilarorworsethanthemodelsincludingtheadditiveeffectonly(TableS2).Wecomparedmodel(1)withamodelfittingadifferentresidualvarianceforeachsiteandfoundthatthelattermodelwasslightlybetterforthreeoutoftheseventraitsstudied(TableS3).However,thebreedingvaluesbetweenbothapproacheswerehighlycorrelatedforalltraits,withr>0.99.Thus,weoptedforthesimplermodelinEquation(2)tokeepABLUPandGBLUPmodelscomparablewithmarker‐basedgenomicselectionmodels.Finally,inspectionoftheresidualsfromEquation(2)versusthedistanceinXandYinthetrialsshowednodetectablespatialpatterns(notshown).

Narrow‐senseindividualheritabilitywasestimatedas:

The sizeof genotype‐by‐environment interaction (GxE), or type‐Bcorrelation(rB),wasestimatedas:

Standarderrorsofheritabilityandtype‐Bcorrelationestimateswereobtainedusingthedeltamethod(pinfunctionfromtheRpackagenadiv;Wolak,2012).

2.5 | Correlations between weevil resistance, wood quality, and growth traits

Toestimatesingle‐sitephenotypicandgeneticcorrelationsbetweentraits, bivariatemodelswere run for all pairs of traits in ASReml.Bivariatemodelswererunforeachsiteseparatelybecauseofcon‐vergenceproblemsofthemulti‐sitemodelduetolargeGxEforsometraits(e.g.,DBH15,seeResults).Thefollowingmodelwasfitted:

where yi and yjarethestackedvectorsofphenotypicobservationsfortrait iandtrait j, respectively;t isthevectoroffixedeffectsoftraits (i.e., thegrandmean foreach trait);b(t) is the randomeffectofblocknestedwithintrait,withb (t)∼N

(0,IbVB

); a(t)istherandom

additiveeffectwithintrait,witha (t)∼N(0,AVA

); and eistheresidual

error,withe∼N(0,IeVR

).ThematrixA(ABLUP)wasreplacedbythe

realizedgenomicrelationshipmatrix(G)fortheGBLUPmethod.ThematricesVB,VA,andVRare2x2variance–covariancematricesde‐finedbythecorrelationofeffectsbetweentraits(rb,ra,andre,respec‐tively)anduniquevariancesforeachtrait(i.e.,CORGHinASReml).Tofacilitateconvergence,weprovidedstartingvaluesforthevariancecomponentsinVB,VA,andVRmatricesthatweretakenfromthere‐sultsofthesingle‐traitmodels(Equation(2),TableS4).Forrb,ra,andre,thestartingvaluewassetto0(nocorrelation).Thegeneticcorrela‐tionbetweentraitswasdirectlyprovidedbytheestimatedparameterraandthephenotypiccorrelationwascalculatedas:

whereCOV(i,j)pisthephenotypiccovariancebetweentraits,and��2

pi,

��2bi,��2

ai,and��2

eiaretheestimatedphenotypic,block,additive,andre‐

sidual varianceof trait i (same for trait j), respectively. The signif‐icanceof thegeneticcorrelation (H0: ra=0;H1: ra≠0)wastestedby performing a likelihood‐ratio testwith one degree of freedombetweenthefullmodelinEquation(5)andareducedmodelassum‐ingra=0(i.e.,adiagonalVAmatrix).Thesignificanceofthepheno‐typiccorrelation(H0: rp=0;H1: rp≠0)wastestedbyperformingalikelihood‐ratiotestwiththreedegreesoffreedombetweenthefullmodelinEquation(5)andareducedmodelassumingnocorrelationbetweentraits(rb=0,ra=0,andre=0).Thesingle‐siteheritabilityoftraitiwasgivenby:

(2)y=�+Xs+Z1b (s)+Z2a+Z3sa+e

(3)h2ind

= ��2a∕

(��2a+ ��2

sa+ ��2

e

)

(4)rB= ��2a∕

(��2a+ ��2

sa

)

(5)⎡⎢⎢⎣yi

yj

⎤⎥⎥⎦=Xt+Z1b (t)+Z2a(t)+e

(6)rP=COV(i,j)p√

��2pi��2pj

=

rb

√��2bi��2bj+ ra

√��2ai��2aj+ re

√��2ei��2ej√(

��2bi+ ��2

ai+ ��2

ei

) (��2bj+ ��2

aj+ ��2

ej

)

Page 7: Multi‐trait genomic selection for weevil resistance ...fasttracproject.ca/wp-content/uploads/2019/06/Lenz... · ple the Bayesian generalized linear regression models that support

     |  7LENZ Et aL.

2.6 | Single‐trait genomic selection models

We evaluated four single‐trait GS methods: GBLUP, Bayesianridge regression (BRR), BayesCπ, and, in addition for CWA,thresholdGBLUP(TGBLUP)developedforordinaltraits.GBLUPwas implemented as described in Equation (2) in ASReml. TheGmatrix describes the realizedgenomic relationshipsbetweentrees, which better account for within‐family Mendelian sam‐pling, as well as deeper (unknown) pedigree relationships.GBLUP relies on the “infinitesimal” model of quantitative ge‐netics, assuming that the genetic control of complex traits isequallydistributedacrossmany(infinite) lociwithsmalleffects(Falconer&Mackay,1996).TheGBLUPmodelassumedthatre‐sidualsarenormallydistributedforalltraits.ForthetraitCWA,we tested the threshold GBLUP model (TGBLUP) for ordinaldata,asdescribedbyMontesinos‐Lópezetal. (2015).Toimple‐mentTGBLUP,thesamemodelasinEquation(2)wasfitted,butthe response typewas set to “ordinal” (probit link function) intheBGLRRpackagev.1.0.5(delosCampos,&Pérez‐Rodríguez,2016). Conventional‐estimated breeding values (EBVs) of indi‐vidual trees for the ABLUP method or the genomic‐estimatedbreeding values (GEBVs) for theGBLUP and TGBLUPmethodswereobtainedfromthebestlinearunbiasedpredictions(BLUPs)oftherandomadditiveeffect(a).

BRRandBayesCπarefromadifferentclassofmodels,inwhichmarker effects are estimated andused topredict breedingvaluesbasedontreegenotypes.WefittedthefollowingBayesianmodelintheBGLRpackage:

where yisthephenotype;μistheoverallmean;sisthefixedsiteeffect(i.e.,modeledwithaflatprior);b(s)istherandomeffectofblockwithinsite,withb (s)∼N(0,�2

bIb); am is therandomadditive

effect of markers; and e is the residual term, with e∼N(0,�2eIe).

NotethatcomparedwithABLUPandGBLUPmodels,thegeno‐type‐by‐environmentinteraction(GxE)componentwasnotfittedinBRRandBayesCπmodels, thusassumingthatmarkereffectswerestableacrossenvironments.Toaccountfordifferentdistri‐butionsofmarkereffects,thepriorforamchangesdependingonthemethod(seeAppendixS1forafulldescription).Briefly, themethodBRR isaBayesianversionof ridge regression, inwhichmarkereffectsarenormallydistributed(i.e.,Gaussianprior)andhaveidenticalvariance(am∼N(0,�2

mIm)).InBRR,allmarkershavea

nonzeroeffect,andsothismethodisappropriatefortraitscon‐trolledbyalargenumberofgeneswithsmalleffects.Incontrast,themethodBayesCπtakesintoaccountthatonlyaproportionπ ofmarkershaveaneffect,whileaproportion (1−π)ofmarkereffects are shrunk toward zero (Habier, Fernando, Kizilkaya, &Garrick,2011).FortheBRRandBayesCπmethods,theresponsetypewassetto“ordinal”(probitlinkfunction)forthetraitCWA,

and to “gaussian” for all other traits.BGLRwas run for50,000iterations and a thinning interval of 20, with the first 15,000iterations discarded as a burn‐in. Genomic‐estimated breedingvalues(GEBVs)wereobtainedbysummingovertheeffectsofallmarkers,withGEBVi=

∑m

j=1Z’ijaj,whereajistheestimatedeffectof

thejthmarker,andZ′

ijisanindicatorofthegenotypeofindividual

iatthejthmarker.

2.7 | Multi‐trait genomic selection models

Genomic selection models that incorporated the information ofmultiplecorrelatedtraitsintoasingleanalysiswereevaluatedusingGBLUPmultivariatemodelsinASReml.Tofacilitatetheconvergenceofmultivariatemodels, themodelingwasdone intwosteps.First,phenotypeswereadjustedforblockandsiteeffects (y*)bytakingtheresiduals(e)ofamodelthatincludedafixedsiteeffect(s)andarandomblockwithinsiteeffect(b(s)):y=�+Xs+Zb (s)+e.Afterad‐justingphenotypes,theportionofGxEduetorankchangesindif‐ferentsitesremains,butthe“level‐of‐expressionGxE”(i.e.,spreadofbreedingvaluesacrossenvironments)iscontrolledfor(Li,Suontama,Burdon,&Dungey,2017).Second,amultivariatemodelwithptraitswasfitted:

where y*i are the stacked vectors of adjusted phenotypes from

trait i totraitp; t is thevectorof fixedeffectsof traits (i.e., thegrand mean for each trait); a(t) is the random additive effectwithintrait,witha (t)∼N

(0,GVA

); and eistheresidualerror,with

e∼N(0,IeVR

).ThematricesVA,andVR are p×p variance–covari‐

ancematrices,definedbycorrelationsbetweenallpairsoftraitsanduniquevariances for each trait.GxE (as rank‐changes inter‐action)wasnotfittedtosimplifythemodelandfacilitateconver‐gence.Weprovidedstartingvaluesforthevariancecomponentsin VA and VRmatricesthatweretakenfromtheresultsofthesin‐gle‐traitmodels.WeobtainedGEBVsofindividualtreesforeachtraitseparatelyfromtheBLUPsoftherandomadditiveeffect(a)withintrait.

Weevaluatedtheperformanceofmulti‐traitGSmodelsforpre‐dictingatargettrait,whencoupledwithgeneticallycorrelatedindi‐catortraits.Wechosethreetargettraits,thecumulativenumberofweevilattacks(CWA),averagewooddensityatage15(Density15),andmicrofibrilangleatage15(MFA15),forwhichmeasurementsaredifficultorcostlytoobtainforalargenumberofcandidatetrees.Foreachtargettrait,fourmulti‐traitGSmodelwastested:(a)atwo‐traitmodelincludingoneofthetargettraitsandHeight15asanindicatortrait;(b)atwo‐traitmodelwithoneofthetargettraitsandHeight15/DBH15ratio;(c)atwo‐traitmodelwithoneofthetargettraitsandVelocity16;and(d)athree‐traitmodelwithoneofthetargettraits,Height15/DBH15ratio,andVelocity16.Tosimulateasituationwhere

(7)h2indss

= ��2ai∕

(��2ai+ ��2

ei

)

(8)y=�+Xs+Z1b (s)+Z2am+e

(9)

⎡⎢⎢⎢⎢⎣

y* i

y*p

⎤⎥⎥⎥⎥⎦=Xt+Za(t)+e

Page 8: Multi‐trait genomic selection for weevil resistance ...fasttracproject.ca/wp-content/uploads/2019/06/Lenz... · ple the Bayesian generalized linear regression models that support

8  |     LENZ Et aL.

thetargettraitwasonlymeasuredforasmallersubsetofthetrees,thepercentageofmissingdata in the trainingset (seebelow)wasvaried from0% to90%by randomlyaddingmissingvalues to thephenotypesofthetargettrait.Werepeatedthisprocess100timesforeachtraitandlevelofrandommissingvaluesincross‐validation(seebelow).

2.8 | Cross‐validation and estimation of accuracy

ThepredictionaccuracyofABLUP,GBLUP (singleandmulti‐trait),TGBLUP,BRR,andBayesCπmodels’predictionswastestedusingatenfoldcross‐validation(CV)schemecombiningdataacrosssitesasinBeaulieu,Doerksen,Clément,etal.(2014)andLenzetal.(2017).Thefullsetofindividualtreeswasrandomlysplitintotenfold,eachcontaining~10%of the trees fromeach family.Foreach roundofCV,ninefold(~642treesor90%)wasusedinmodeltraining,whichwasusedtopredictthebreedingvaluesfortheremainingfold(~71validationtreesor10%).ThistenfoldCVwasrepeatedtentimes,foratotalof100modelsforeachtrait.

Thepredictiveability(PA)ofthemodelswasevaluatedasthe Pearson correlation coefficient between the predictedbreedingvaluesofthevalidationtreesandtheadjustedphe‐notypes(y*)forblockandsiteeffects.Thepredictiveaccuracy(PACC)ofmodelswasestimated fromPAasPACC=PA∕

√h2ind

(Dekkers, 2007; Legarra, Robert‐Granie, Manfredi, & Elsen,2008). For all themethods tested (ABLUP, GBLUP, TGBLUP,BRR,BayesCπ , andmulti‐traitGBLUP),weused the h2

ind esti‐

matedfromtheGBLUPmodel(Equations2and3)asourbestestimateofheritabilityforthecalculationofpredictiveaccu‐racy (PACC). PA and PACCwere calculated within each foldto avoid including a fold effect, then averaged across foldsand repetitions to obtain standard errors (Isik, Holland, &Maltecca,2017).

Formulti‐traitmodels,thepredictionability(PA)andpredictionaccuracy(PACC)ofmulti‐traitGBLUPmodelswerecomparedwiththe equivalent single‐trait GBLUP models using adjusted pheno‐typesasaresponsevariable(seeAppendixS2).

2.9 | Genetic gains and multi‐trait selection indices

Expectedgenetic gains from single‐trait selectionwere calculatedasthemeanestimatedbreedingvalueofthetop5%treesforeachtraitseparately,asestimatedfromthesingle‐traitABLUP(EBVs)orGBLUP(GEBVs)analysis(Equation2).Theseestimatedgainsrepre‐sentedthemaximumpossiblegainforeachtrait.Toestimategeneticgains inamulti‐traitselectioncontext,wecombinedfour traitsofeconomicinterestintoaSIasfollows:

where Height15EBV, CWA6.15EBV, Velocity16EBV, and Density15EBV are theBLUPestimatedbreedingvalues fromthesingle‐traitABLUPorGBLUPanalysis(Equation2)forthecorrespondingtrait;andwiaretherelativeweightgiventoeachtrait,withtherestrictions:

0≤wi≤1foralltraits,andw1+w2+w3+w4=1.

WeassignedanegativesigntoCWAsinceadecreaseinthevalueof this trait (fewer weevil attacks) represents an improvement.Breedingvaluesforeachtraitwerescaledtoavarianceofone(al‐ready centered)prior toSI calculations.DBH15 is aneconomicallyimportanttrait,butwasexcludedfromtheSIscenariosbecauseitsheritability was not significantly different from zero (see results).Thefourweightcoefficientswerevariedbetween0and1byinter‐valsof0.05,resultingin1,771differentselectionindices.ForeachSI,treeswererankedaccordingtodecreasingvaluesoftheindex(I)andthetop5%treeswereselectedtocalculatetheexpectedgeneticgain.Foreachtrait, therelativegeneticgain (%)wascalculatedastheratioof theexpectedgaintothemaximumpossiblegainfromsingle‐traitselection.Wepresent,afirstSIscenario(SI‐1)thatcor‐respondedtotheprioritiesfortheNorwaysprucebreedingprograminQuébec,whichputmoreemphasisonweevilresistance(w2=0.6),followedbygrowth,representedherebyheightgrowth(w1=0.3),

(10)SI=w1Height15EBV−w2CWA6.15EBV+w3Velocity16EBV+w4Density15EBV

Traitc

ABLUP GBLUP

h2ind

rB h2ind

rB

Velocity16 0.37(0.12)** 0.79(0.15) 0.29(0.08)*** 0.76(0.16)

Density15 0.25(0.11)* 0.65(0.2)* 0.26(0.08)** 0.76(0.17)

MFA15 0.08(0.06) 0.47(0.32)* 0.06(0.05) 0.43(0.32)**

DBH15 0.00(0.00) 0.00(0.00)*** 0.00(0.00) 0.00(0.00)**

Height15 0.47(0.16)** 0.65(0.15)*** 0.22(0.08)** 0.52(0.17)***

Height15/DBH15 0.40(0.14)** 0.68(0.16)** 0.20(0.08)* 0.56(0.20)**

CWA 0.47(0.12)*** 0.97(0.08) 0.27(0.07)*** 0.86(0.15)

aThemodelfittedisdescribedinEquation(2).bLevelofstatisticalsignificance:*p<0.05;**p < 0.01; ***p < 0.001. cSeeTable1forfulldescriptionoftraits.

TA B L E 2   Individualnarrow‐senseheritability(h2

ind)andtype‐Bgenetic

correlation(rB)estimates(standarderrorsinparentheses)usingthesingle‐traitABLUPandGBLUPmethodsfortheacross‐siteanalysesa.Forheritabilityestimates,thesignificanceoftheadditivevariancecomponentisshown(seeTableS4).Fortype‐Bgeneticcorrelations,thesignificanceofthesite×additivevariancecomponentisshownb.Asignificantsite×additivevarianceindicatessignificantgenotype‐by‐environmentinteraction(i.e.,smallervaluesofrB)

Page 9: Multi‐trait genomic selection for weevil resistance ...fasttracproject.ca/wp-content/uploads/2019/06/Lenz... · ple the Bayesian generalized linear regression models that support

     |  9LENZ Et aL.

andacousticvelocity (w3=0.1).Wechose topresent two furtherSIs that maximized the total relative gain of the following traits:Height15,CWA,andVelocity16 (SI‐2)andintheothercaseHeight15,CWA,Velocity16,andDensity15(SI‐3).

3  | RESULTS

3.1 | Heritability and genotype‐by‐environment interaction

Intheacross‐siteanalyses,heritabilityrangedfrom0to0.47usingthe ABLUP method and from 0 to 0.29 using GBLUP (Table 2).DetailsofestimatedvariancecomponentsareinTableS4.Wefoundmoderate‐to‐high heritability (ABLUP: h2

ind = 0.25–0.47; GBLUP:

h2ind=0.20–0.29)forthecumulativenumberofweevilattacks(CWA),

woodqualitytraits(Velocity16;Density15),heightgrowth(Height15),and height‐to‐DBH ratio (Height15/DBH15), whereas microfibrilangle(MFA15)wasunderlowadditivegeneticcontrol(theadditivevariancewasnotsignificantlydifferentfromzero).ForDBH15,the

estimatedheritabilitywasnullandthetype‐Bcorrelationwaszero(rB=0)duetolargegenotype×environmentinteraction(GxE).Usingthe GBLUP method, weevil resistance (CWA), acoustic velocity(Velocity16),andaveragewooddensity (Density15)hadthehighestheritabilities(h2

ind=0.26–0.29).ThelowestGxEestimateswerealso

found for these traits (rB=0.76–0.86usingGBLUP), indicating lit‐tle rankchangesof familiesbetweensites.GxEwasmoderate forHeight15andHeight15/DBH15(rB=0.52–0.56usingGBLUP)andwashigherforMFA15 and DBH15(rB<0.43usingGBLUP).

3.2 | Correlations between weevil resistance, growth, and wood quality traits

PhenotypicandgeneticcorrelationsbetweentraitsusingtheGBLUPmethodarepresentedforeachsiteseparately,inTable3forGPI,themostseverelyaffectedsitebyweevilattacks,andinTable4forSTM,thesitethatwasmoderatelyaffected.ResultsusingABLUPweresimi‐lar(GPI:TableS5;STM:TableS6),andsowepresentbelowonlythere‐sultsusingGBLUP.Weevilresistancewassignificantlycorrelatedwith

TA B L E 3  SiteGPI:phenotypic(rp,abovediagonal)andgeneticcorrelations(ra,belowdiagonal)betweentraitscalculatedwiththeGBLUPmethod.Diagonalelementsindicatethesingle‐sitenarrow‐senseheritability(h2

ind ss)foreachtrait.Standarderrorsofestimatesarein

parentheses.Geneticandphenotypiccorrelationsweretestedforsignificance.Forh2ind ss,thesignificanceoftheadditivevariancecomponent

isshown

Traitc Velocity16 Density15 MFA15 DBH15 Height15 Height15/DBH15 CWA

Velocity16 0.38(0.09)*** 0.32(0.06)*** −0.10(0.05) −0.16(0.06)** 0.28(0.06)*** 0.41(0.05)*** −0.19(0.06)*

Density15 0.61(0.14)*** 0.49(0.10)*** −0.04(0.05) −0.46(0.05)*** −0.07(0.07) 0.39(0.05)*** −0.12(0.06)

MFA15 −0.16(0.38) −0.11(0.40) 0.06(0.05) 0.02(0.05) 0.01(0.05) −0.03(0.05) 0.04(0.05)†

DBH15 −0.02(0.28) −0.38(0.23) −0.52(0.48) 0.18(0.09)* 0.40(0.05)*** −0.56(0.04)*** 0.11(0.06)

Height15 0.6(0.17)** 0.00(0.18) 0.29(0.34) 0.33(0.22) 0.54(0.09)*** 0.52(0.05)*** −0.48(0.05)***

Height15/DBH15 0.62(0.14)*** 0.36(0.16)* 0.37(0.34) −0.35(0.21) 0.74(0.12)*** 0.44(0.09)*** −0.54(0.04)***

CWA −0.52(0.18)* −0.20(0.19) −0.14(0.38)† 0.49(0.25) −0.69(0.12)*** −0.99(0.04)*** 0.44(0.09)***

aThemodelfittedisdescribedinEquation(5).bLevelofstatisticalsignificance:*p<0.05;**p < 0.01; ***p < 0.001; †Convergencefailed.cSeeTable1forfulldescriptionoftraits.

TA B L E 4  SiteSTM:phenotypic(rp,abovediagonal)andgeneticcorrelations(ra,belowdiagonal)betweentraitscalculatedwiththeGBLUPmethoda.Diagonalelementsindicatethesingle‐sitenarrow‐senseheritability(h2

ind ss)foreachtrait.Standarderrorsofestimatesarein

parentheses.Geneticandphenotypiccorrelationsweretestedforsignificance.Forh2ind ss,thesignificanceoftheadditivevariancecomponent

isshownb

Traitc Velocity16 Density15 MFA15 DBH15 Height15 Height15/DBH15 CWA

Velocity16 0.47(0.11)*** 0.26(0.07)*** −0.32(0.05)*** −0.18(0.08)* 0.23(0.07)* 0.41(0.07)*** −0.22(0.07)**

Density15 0.16(0.27) 0.21(0.09)*** 0.14(0.06) −0.43(0.06)*** −0.16(0.07)** 0.40(0.06)*** −0.22(0.06)***

MFA15 −0.78(0.16)** 0.18(0.32) 0.19(0.08)*** −0.07(0.06) −0.14(0.06) −0.01(0.06) −0.02(0.06)

DBH15 −0.29(0.32) 0.08(0.38) 0.71(0.32)* 0.14(0.08)** 0.62(0.04)*** −0.69(0.04)*** 0.25(0.06)***

Height15 0.62(0.22)* 0.15(0.36) −0.16(0.33) 0.05(0.44) 0.21(0.10)** 0.11(0.07) −0.23(0.06)**

Height15/DBH15 0.58(0.19)* 0.02(0.28) −0.65(0.23)* −0.69(0.19)* 0.71(0.24)* 0.34(0.10)*** −0.52(0.05)***

CWA −0.57(0.21)* −0.06(0.30) 0.25(0.29) 0.55(0.27) −0.60(0.25) −0.79(0.12)*** 0.29(0.10)***

aThemodelfittedisdescribedinEquation(5).bLevelofstatisticalsignificance:*p<0.05;**p < 0.01; ***p < 0.001. cSeeTable1forfulldescriptionoftraits.

Page 10: Multi‐trait genomic selection for weevil resistance ...fasttracproject.ca/wp-content/uploads/2019/06/Lenz... · ple the Bayesian generalized linear regression models that support

10  |     LENZ Et aL.

growthandwoodqualitytraits.Onbothsites,wefoundamoderatenegativegeneticcorrelation(GPI:ra=−0.52;STM:ra=−0.57)betweenthecumulativenumberofweevilattacks(CWA)andacousticvelocity(Velocity16),andastrongnegativegeneticcorrelationbetweenCWAandHeight15/DBH15 (GPI: ra=−0.99;STM: ra=−0.79).TherewasanegativegeneticcorrelationbetweenCWAandHeight15onbothsites(GPI: ra = −0.69; STM: ra = −0.60), although this genetic correlationwasonlysignificantonthemostseverelyaffectedsiteGPIbyweevilattacks.Conversely,therewasapositive,butnotsignificant,geneticcorrelationbetweenCWAandDBH15(GPI:ra=0.49;STM:ra=0.55).Overall,theseresultsindicatedthatweevil‐resistantgenotypesweretaller,with larger height‐to‐DBH ratio and higherwood stiffness asmeasuredbyacousticvelocity.

Significant genetic correlations between wood quality andgrowthtraitswerefoundforbothsites.Acousticvelocity(Velocity16)wasstronglypositivelycorrelatedwithHeight15andHeight15/DBH15 forbothsites(ra>0.58).Averagewooddensity(Density15)wasalsoweaklypositivelycorrelatedwithHeight15/DBH15(ra=0.36)forsiteGPI, but this genetic correlationwas not significant for site STM.MFAwasstronglypositivelycorrelatedwithDBH15 (ra=0.71)andnegativelycorrelatedwithHeight15/DBH15(ra=−0.65)forsiteSTM,butthesecorrelationswerenotsignificantforsiteGPI.

3.3 | Accuracy of single‐trait genomic selection models

Thefourtestedsingle‐traitgenomicselection(GS)methods(GBLUP,TGBLUP, BRR, BayesCπ) and the conventional pedigree‐basedmethod (ABLUP) resulted in similarpredictiveabilitiesandpredic‐tive accuracies. ThePA,whichwasdefined as the correlationbe‐tween the predicted breeding values for the validation trees andthe phenotypic values, ranged from 0.10 for DBH15 to 0.46 forVelocity16 (Figure 4). Low heritability traits (MFA15, DBH15) hadthesmallestPA,whilePAforallothertraitswasabove0.35.AfterstandardizingPAwiththesquarerootofheritability,theestimatedpredictiveaccuracy(PACC)wasobtainedanditwashighforalltraits(PACC>0.69).PACCwasveryhigh(0.97)forHeight15/DBH15 and above0.80forCWA,Velocity16,Height15,andMFA15.HoweverforMFA15,thestandarderroroftheestimatedPACCwashigh,whichislikelyduetoalowheritabilityestimatewithlargestandarderror.PACCforDBH15wasnotestimatedbecauseofthenullheritabilityobservedforthistrait.

For the cumulative number of weevil attacks (CWA), thethree methods that considered ordinal data, namely TGBLUP,BRR,andBayesCπ,hadPAandPACCsimilartothoseofGBLUP,whichassumednormalityofresiduals(Figure4).Inaddition,ge‐nomic‐estimated breeding values obtained from TGBLUP andGBLUPwerehighlycorrelated(Pearsonr=0.997),andtheheri‐tabilityestimateswerewithinthesamerange(GBLUP:h2

ind=0.27

(0.07);TGBLUP:h2ind=0.30(0.08)).Thus,theassumptionofthe

normality of residuals in GBLUP (Figure S8) did not appear toaffectheritabilityestimatesand theperformanceof themodelinourdataset.

3.4 | Accuracy of multi‐trait genomic selection models

Multi‐traitGBLUPmodelswereusedtopredictthebreedingvaluesofatargettrait (CWA,Density15,orMFA15),whencombinedwithgeneticallycorrelatedindicatortraits(Height15,Velocity16,Height15/DBH15ratio).Thecumulativenumberofweevilattacks(CWA),av‐eragewooddensity at age15 (Density15), andmicrofibril angle atage15(MFA15)werechosenastargettraitsbecausetheyarerathercumbersomeandexpensive to assesson a largenumberof trees,whereasindicatortraitsareeasiertotrackforthemajorityoftreesinabreedingpopulation.Themulti‐traitmodelswerecomparedwiththesingle‐traitGBLUPmodels.Asexpected,whenthepercentageofmissingphenotypicdataincreasedfrom0%to90%forthetargettraitsCWA,Dens15,andMFA15,thepredictiveaccuracy(PACC)ofthesingle‐traitmodels(dashedgraylineinFigure5)sharplydroppedfrom0.83to0.59,from0.71to0.43,andfrom0.91to0.55,respec‐tively.SimilartrendswerefoundforthePA(FigureS9).

The PACC ofmulti‐trait models was not improved over single‐traitmodelswhenallofthephenotypicdataforthetargettraitwere

F I G U R E 4   (a)Predictiveability(PA)and(b)predictiveaccuracy(PACC)ofthesingle‐traitgenomicselectionmodels(GBLUP,BRR,BayesCπ)andtheconventionalpedigree‐basedmodel(ABLUP)testedinthisstudy.Forthecumulativenumberofweevilattacks(CWA),threemodelsaccountedforordinaldatatype,namelythethresholdGBLUPmodel(TGBLUP),BRR,andBayesCπ,whileABLUPandGBLUPassumedthaterrorswerenormallydistributed.Errorbarsindicatethestandarderrorsoftheestimates.ThePACCofmodelsforthetraitDBH15wasnotcalculatedbecausetheestimatedheritabilitywasnull.SeeTable1forfulldescriptionoftraits

(a)

(b)

Page 11: Multi‐trait genomic selection for weevil resistance ...fasttracproject.ca/wp-content/uploads/2019/06/Lenz... · ple the Bayesian generalized linear regression models that support

     |  11LENZ Et aL.

includedformodeltraining(0%missingdata)(Figure5;standarder‐rorsaregiven inTableS7).However, for thetarget traitCWAwith40%ormoremissingdata,theaccuracyofmulti‐traitmodelswasim‐provedas comparedwith thatof the single‐traitmodel (Figure5a).PACCwasthehighestwhenCWAwascoupledwiththehighlyge‐neticallycorrelatedHeight15/DBH15ratio(ra=−0.89,averageofsin‐gle‐siteestimates)asanindicatortrait(bluelineinFigure5a).Forthistwo‐traitmodel,PACCwasmaintainedhigh(0.74)anddecreasedonlymarginallywhen90%ofCWAdatawasmissing, ascomparedwith

the full dataset. The two‐traitmodelwithHeight15 as an indicatortrait (ra =−0.65, red line)outperformed the single‐traitmodelonlywhenCWAhad80%ormoremissingdata.WhenCWAwascoupledwiththemoderatelycorrelatedtraitVelocity16(ra=−0.55,greenline),PACCwas similar to that of the single‐trait model. The three‐traitmodelincludingtraitsCWA,theHeight15/DBH15ratio,andVelocity16 (purple line) outperformed the single‐trait model for 40% ormoremissingdata,butitsPACCwasslightlylowerthanthatofthetwo‐traitmodelconsideringCWAandtheHeight15/DBH15ratio(blueline).

F I G U R E 5  Predictiveaccuracy(PACC)ofGBLUPmulti‐traitgenomicselectionmodelsforpredictingthetargettraits:(a)thecumulativenumberofweevilattacks(CWA);(b)Density15;and(c)MFA15. Thedifferentcoloredlinesrepresentdifferentmulti‐traitmodelswithdifferentindicatortraits.Thedashedgraylineisthesingle‐traitGBLUPmodel.Thepercentageofmissingphenotypicdataforthetargettraitinthetrainingsetswasvariedfrom0%to90%(x‐axis),while100%ofthetrainingdatawasretainedfortheindicatortraits.SeeTable1forfulldescriptionoftraits

(b) (c)(a) 15 15

M

TA B L E 5  Geneticgainsforeachtraitawhenselectingthetop5%treesinthreeselectionindexscenarios(SIs)usingtheABLUPandGBLUPmethods.Gainsareexpressedasapercentageofthephenotypicmean.Apositivepercentageindicatesanimprovementinthevalueofthetrait.DBH15wasnotconsideredbecauseofthenullheritabilityandassociatednullgeneticgains

Selection indexbVelocity16 (%)

Density15 (%)

MFA15b

(%)Height15 (%)

Height15/DBH15 (%)

CWAb (%)

ABLUP

SI−1:emphasisonweevilresistance (w1=0.3;w2=0.6;w3=0.1;w4=0)

4.27 0.08 1.70 12.13 10.97 67.97

SI−2:maximizeHeight15,CWA,Velocity16 (w1=0.25; w2=0.4; w3=0.35; w4=0)

6.32 0.14 4.91 12.36 11.09 56.89

SI−3:maximizeHeight15,CWA,Velocity16,Density15 (w1=0.2; w2=0.3; w3=0.25; w4=0.25)

5.77 1.87 0.25 11.51 11.10 53.77

GBLUP

SI−1:emphasisonweevilresistance (w1=0.3; w2=0.6; w3=0.1; w4=0)

5.30 0.62 3.61 7.82 9.74 54.57

SI−2:maximizeHeight15,CWA,Velocity16 (w1=0.3; w2=0.35; w3=0.35; w4=0)

6.17 0.51 5.62 8.10 10.30 50.33

SI−3:maximizeHeight15,CWA,Velocity16,Density15 (w1=0.25; w2=0.25; w3=0.25; w4=0.25)

5.60 2.60 2.09 7.93 10.18 45.84

aSeeTable1forfulldescriptionsoftraits.bIndexselectionformula(Equation10):SI=w1Height15EBV−w2CWA6.15EBV+w3Velocity16EBV+w4Density15EBV , where Height15EBV,CWA6.15EBV,Velocity16EBV,andDensity15EBVaretheBLUPestimatedbreedingvaluesfromthesingle‐traitABLUP(EBVs)orGBLUP(GEBVs)analysisforthecorrespondingtrait(Equation2).cForMFAandCWA,animprovement(positivepercentage)isassociatedwithadecreasingvalueofthetrait(i.e.,areductionofthemicrofibrilangleandareductionofthecumulativenumberofweevilattacks,respectively).

Page 12: Multi‐trait genomic selection for weevil resistance ...fasttracproject.ca/wp-content/uploads/2019/06/Lenz... · ple the Bayesian generalized linear regression models that support

12  |     LENZ Et aL.

For the target traitsDensity15 andMFA15 (Figure 5b,c),multi‐traitmodels did not improve PACC over single‐trait GBLUP, evenwhenthetargettraithadlargeamountofmissingdata.ForMFA15,someofthemulti‐traitmodelsshowedevenalowerPACCthanthesingle‐traitmodels.

3.5 | Genetic gains and multi‐trait selection indices

Theexpectedgeneticgains,expressedasapercentageofthepheno‐typicmeanwhenselectingthetop5%treesforeachtraitseparately(single‐traitselection),aregiveninTableS8.Forthecumulativenum‐berofweevilattacks(CWA),apositivegainrepresentsareductionofthenumberofattacks(i.e.,higherresistance).CWAcouldbeim‐provedby asmuch as78% (ABLUP)or66% (GBLUP),whileothertraits showedmuchsmallergains in the4%–20%range.The largeobservedgainsforCWAarelikelyduetoamoderate‐to‐highherit‐abilityofCWA,alargecoefficientofphenotypicvariation(Table1),andthenon‐normaldistributionofthetrait.

The expected gains from themulti‐trait selection indices (SIs)areshowninTable5.ResultsfromABLUPandGBLUPweresimilar,andso,wepresentonlytheGBLUPresultsbelow.Thefirstselectionindex scenario (SI‐1)presents theplannedbreeding focusandputmostemphasisonweevilresistance(w2=0.6),followedbyHeight15 (w1=0.3),andbyVelocity16 (w3=0.1).Thisscenarioachievedthelargest gains in terms of reduction of cumulative weevil attacks(CWAs)(83%ofmaximumpossiblegainsfromsingle‐traitselectioninTableS8),whilestillyieldingdesirablegainsforHeight15(86%ofmaximum)andVelocity16(74%ofmaximum).TheSI‐2scenariothatsimultaneouslymaximized thegeneticgain inHeight15,Velocity16,andCWAreachedasmuchas89%,87%,and76%ofthemaximumpossible gains for each trait, respectively. In this scenario,MFA15 was also improved by 5.6% (62%ofmaximum). For SI‐1 and SI‐2,thegain inDensity15wasmarginal.ForSI‐3,Density15wasaddedas an important trait tomaximize alongwithHeight15, Velocity16,andCWA.ThisSIscenarioslightly improvedgains inDensity15 by 2.6%(51%ofmaximum),butatthecostofsmallerimprovementsforHeight15,Velocity16,CWA,andMFA15. InallthreeSIs,stemtaper,asestimatedbytheHeight15/DBH15ratio,wasimproved(i.e.,lowerstemtaper)by~10%.

4  | DISCUSSION

4.1 | Genetic control of weevil resistance and its relationships to growth and wood quality traits

Tree breeding uses the existing natural intraspecific variation toidentify superior genotypeswith desirable attributes. In this con‐text,theheritabilityofnaturalresistancetopestsmaybeseenasanindicatorfortheevolutionarypotentialofthespecies(Charmantier&Garant, 2005;Geber&Griffen,2003). In a recently introducedspeciessuchasNorwaysprucetoNorthAmerica,naturalselectionfor resistancetonativepestsmayhaveactedonly foroneor twogenerations at best. Nevertheless, we showed that resistance to

whitepineweevilattackwasundermoderate‐to‐highgeneticcon‐trol. Individual heritability estimates (ABLUP)were slightly higherthaninanearlierstudybyMottetetal.(2015),whocombineddatafrommorefamiliesandteststhanthisstudy,butvalueswereinthesamerangethanthoseobservedinthenativeinteriorspruce(Kingetal.,1997)andslightlyhigherthanthoseinthenativeSitkaspruce(King, 2004). In its native range, Norway spruce suffers damagesfromanotherweevilspecies,thelargepineweevil(Hylobius abietis),mostly at the seedling stage after clearfelling operations (Day &Leather,1997).Althoughbothweevilspeciesdonotattacktreesatthesamedevelopmentalstage,bothfeedonthebarkandphloem,soitislikelythatresistancemechanismstodifferentweevilsarepartlyrelated.Zasetal.(2017)foundmoderatefamilyheritabilityandlowGxE for resistance to the pineweevil in Norway spruce. Norwaysprucehasalsofacedoutbreaksofbarkbeetles,suchasIps imitinus and Ips typographus,aftermajorstormssuchasthosethatoccurredin Central Europe in the 1990s (Wermelinger, 2004). Resin canaltraitsrelevantforconstitutiveresistanceagainstbarkbeetleswerefoundtobeunderstronggeneticcontrol(Rosner&Hannrup,2004).Thus, it is likely that genetic variation at resistance genes for theNorthAmericanwhitepineweevilwasalreadyavailableatthetimeofintroductionofNorwayspruceinNorthAmerica,astheresultofnaturalselectionagainstinsectpestsinEurope,withopportunitiesforrapidchangeinallelefrequenciesatresistanceloci.

Inourstudy,bothCWAandtreeheightatage15wereundersig‐nificantgeneticcontrolandthegeneticcorrelationbetweenthesetraitswasnegative,butsignificantonlyforthesitethatsufferedthemostfrequentweevilattacks(GPI).Theseresultsarenotsurprisinggiventhatheightgrowthismechanisticallystuntedinconsequenceof attack, while the tree continues to grow in DBH and volume.Indeed,with increasingage,ahigherheight/DBHratioand thusalowerstemtaperwasobservedinmoreweevil‐resistanttrees(Holst,1955;Mottetetal.,2015;thisstudy).Kingetal.(1997)alsoreportednegativegeneticcorrelationsbetweenCWAandtreeheightforinte‐riorspruceinBritishColumbia,bothbeforeandaftertheoccurrenceof weevil attacks. They concluded that inherently faster growingfamilieshavehigher levelofgeneticresistance. InNorwayspruce,Mottetetal. (2015) foundnegligiblegeneticcorrelationsbetweenweevil attacks and tree height measured before the majority ofweevilattacks(age5)andconcludedthatgeneticimprovementforresistancetowhitepineweevilwouldnotadverselyaffectgrowth.Ontheotherhand,thestrongpositivegeneticcorrelationbetweenresistancetoweevilattacksandheightatage15foundonsiteGPIinthisstudymayindicatethattheyarecontrolledbycommongenes,whichwasalsosuggestedbyanearlierQTLstudyininteriorspruce(Porthetal.,2012).Inaddition,resistancemechanismstoEuropeanbarkbeetlessuchas resincanal traitswere foundtobepositivelygeneticallycorrelatedwithbothheightgrowthandDBH(Rosner&Hannrup,2004).Overall,ourresultssuggestthatacceleratedbreed‐ingofresistantseedstockthroughgenomicselectiontoolswillre‐sultintallertrees,eitherbecausetheleadersofresistanttreeswillbe less affected by attacks, or because alleles underlying growthgeneswillbesimultaneouslyfavored.

Page 13: Multi‐trait genomic selection for weevil resistance ...fasttracproject.ca/wp-content/uploads/2019/06/Lenz... · ple the Bayesian generalized linear regression models that support

     |  13LENZ Et aL.

Thegeneticcontrolofvariationinwoodqualitytraits,suchasav‐eragewooddensityandacousticvelocityasaproxyforwoodstiff‐ness,wasinthesamerangeasthatforweevilresistance.ComparedtorecentwoodqualitystudiesofNorwaysprucefromScandinavia(Chenetal.,2014,2015),ourheritabilityestimateswerelowerforaveragewooddensity,buthigherforacousticvelocity.HeritabilityestimatesforMFAwerelowcomparedwiththosereportedinprevi‐ousstudies(Chenetal.,2014;Lenzetal.,2010),whichismostlikelyrelatedtothemeasuringapproachusedinthepresentstudywhereonly the last ringwasassessed.Themoderateheritabilityand theresulting sizeablegeneticgainobservedhere foracousticvelocitymakeitapromisingquick‐assessmenttraitforimprovingwoodstiff‐nessandproductquality(Lenzetal.,2013).Inaddition,woodstiff‐nesscanbeimprovedtogetherwithweevilresistancesinceacousticvelocitywasnegativelygenetically correlatedwith thecumulativenumber ofweevil attacks.Moreover, weevil resistance andwoodtraits showed low genotype‐by‐environment interactions, whichshould facilitate reforesting selected planting stock across largerbreedingzones.AveragewooddensitydidnotappeartobethebesttraitforoverallimprovementofNorwayspruceinthetestedcondi‐tionsgivenitsnegativecorrelationswithgrowthtraitsandslightlyhigher genotype‐by‐environment interaction. Overall, given theirpositivegeneticcorrelationsandmoderate‐to‐highheritability,wee‐vilresistance,acousticvelocity,andheightgrowthappearasexcel‐lentcandidatetraitsforsimultaneousgeneticimprovement.

4.2 | Genomic selection models for accurate and hastened selection of best genotypes

Genomic selection can significantly shorten breeding cyclesthrough the prediction of breeding values of nonphenotypedmaterial using their genomic profiles and allows screeningmorecandidates for increase selection intensity or multi‐trait selec‐tion. Comparedwith the conventional pedigree‐based approach(ABLUP),genomicselectionmodelsusingGBLUP,BRR,orBayesCπ hadcomparablePAandaccuracy,confirmingearlyproof‐of‐con‐cept studies in other conifers and spruces (Beaulieu, Doerksen,Clément, et al., 2014;Beaulieu,Doerksen,MacKay, et al., 2014;GamalEl‐Dienetal.,2015;Lenzetal.,2017;Ratcliffeetal.,2015).InBRRandBayesCπ,wedidnotfitgenotype‐by‐environmentin‐teractionsasopposedtoABLUPandGBLUPmethods,butthisdidnotaffectPAnorpredictiveaccuracy.

PredictiveabilitywasrelatedtoheritabilityandwaslowestforthelowheritabilitytraitsMFA15 and DBH15.Thisisbecausethepro‐portion of phenotypic variation that can be explained by additivegeneticeffectsissmallerforthesetraits.Comparisonsofpredictiveaccuracyofbreedingvaluesacrossstudiesaredifficultbecauseoftheabsenceofastandardwayofdetermination.Forsimilargrowthandwoodqualitytraits,predictiveaccuracywasslightlyhigherthanpreviouslyobservedfornativeNorwayspruce(Chenetal.,2018)orforwhitespruce(Beaulieu,Doerksen,Clément,etal.,2014;Beaulieu,Doerksen,MacKay,etal.,2014;GamalEl‐Dienetal.,2015;Ratcliffeetal.,2015),anditwaslowerandmorevariablethanthatobserved

forblack spruce (Picea mariana [Mill.]B.S.P.) (Lenzet al., 2017). IncontrasttothosepreviousGSstudies,weassumedhereinthattruebreedingvalueswereunknownandcalculatedthepredictiveaccu‐racybydividingthePAbythesquarerootofheritability(Dekkers,2007;Legarraetal.,2008).Hence,predictiveaccuracyshouldnotbecorrelatedwithheritability,butdependsonothercharacteristicsofthedataset,suchastheaccuracyofphenotypicmeasurements,theeffectivepopulationsize,andthegeneticarchitectureoftraits(Grattapaglia&Resende,2011).However,theprecisionofthepres‐entestimatesofpredictiveaccuracymaybeaffectedbythepreci‐sionofheritabilityestimates.

Intheory,GSshouldperformbetterthanpedigree‐basedmod‐els because it allows correcting pedigree errors and capturingthe within‐family variation resulting from Mendelian segregation(Grattapagliaetal.,2018).Thus,inaforwardselectionscenariowithnonphenotypedyoungmaterial,theselectionofthebestindividu‐alswithin families becomes possiblewithGS. In the present con‐textofsmallsizeofthebreedingpopulation,weconcludethattheestimatedgenomicpredictionsforresistancetoweevilattack,treeheight,height/DBHratio,andwoodqualitytraitsallowforaccurateandhastenedselectionofbestcandidatesbasedontheirgenomicprofiles.

4.3 | Evidence for polygenic control of weevil resistance in spruces

To our knowledge, the present study is the first one applyinggenomic selection to breed for insect resistance in conifers. Wethereforehadparticularinterestintestingdifferentalgorithmsthatconsidered the ordinal distribution of this trait and that reflecteddifferentdistributionsofmarkereffects.First,wefoundnoadvan‐tagesofusingmethods thataccounted forordinaldata (thresholdGBLUP,BRR,andBayesCπ),ascomparedwithapproachesthatas‐sumed normality of residuals (ABLUPs andGBLUPs). Second, theBayesCπalgorithm,whichassumedthatonlyaportionofgeneshadaneffect,didnotleadtoimprovementofPAoraccuracycomparedwithmethods assuming that all genes had small effects (GBLUPs,BRR). InBayesCπ, the estimated proportion ofmarkers having aneffect(� ≅ 0.50)forweevilresistancewasinthesamerangeasthatforothertraits(TableS9).Incontrast,Resende,Munoz,etal.(2012)andResende,Resende,etal.(2012)obtainedahigherpredictiveac‐curacyusingBayesCπ for fusiform rust resistance in loblolly pine,which suggested the presenceof large effect genes.Our findingscanbeexplainedbytwopossiblephenomena:(a)weevilresistanceiseffectivelycontrolledbymanygenesofsmalleffects,withnode‐tectablemajorgeneeffects;or(b)noneofthesampledSNPswasincloselinkagewithgeneshavingeffectsforresistance.Itisdifficulttodiscriminatebetweenbothhypotheses,especiallysinceGSmodelswith the current genome coverage and small size of the breedingpopulation shouldmostly retrace relatedness between trees fromlong‐rangelinkagedisequilibrium(e.g.,Beaulieu,Doerksen,MacKay,etal.,2014;Lenzetal.,2017)andcouldthusprovidehighpredictiveaccuracies following both sets of conditions. However, polygenic

Page 14: Multi‐trait genomic selection for weevil resistance ...fasttracproject.ca/wp-content/uploads/2019/06/Lenz... · ple the Bayesian generalized linear regression models that support

14  |     LENZ Et aL.

control of weevil resistance seems plausible since earlier reportsassociated resistance to weevil attack with different constitutiveandinducedmechanisms.Physicaldefensebarrierstoweevilweredescribedthroughsclereidsandstonecellsinthebarkofsitkaandhybridspruces(King,Alfaro,Lopez,&VanAkker,2011;Whitehilletal.,2016). Inaddition, chemicaldefensestrategiesarealsoatplaythroughthepresenceofabundantconstitutiveresinducts(Kingetal.,2011;Rosner&Hannrup,2004)andtheadditionalformationoftraumatic resinducts (Poulin,Lavallee,Mauffette,&Rioux,2006),togetherwith increase interpenoidmetaboliteproduction(Robertetal.,2010) following insect feeding.Porthetal. (2012) identifiedmany candidate genes forweevil resistance in interior spruce, in‐cluding some master regulatory genes. Moreover, transcriptomestudies inSitkasprucerevealedseveralthousanddifferentiallyex‐pressedgenesbetweenresistantandsensiblegenotypes,aswellasfollowingweevilwoundingandfeeding(Ralphetal.,2006;Whitehillet al., 2019). Hence, weevil resistance in Norway spruce is mostlikelypolygenicgiventhecomplexnatureofphysicalandchemicaldefensemechanisms,butwhethersomelargergeneeffectsexistre‐mainstobeelucidated.

4.4 | Multi‐trait GS as a tool to improve accuracy of scarcely phenotyped traits

The jointmodelingofmultiple traitscanbenefit fromgeneticcor‐relationsbetweentraitsand increasepredictiveaccuracy (Calus&Veerkamp,2011;Guoetal.,2014;Jia&Jannink,2012).InEucalyptus,Cappa et al. (2018) reportedmodest improvements in thepredic‐tive accuracy of breeding values frommulti‐trait over single‐traitGS models (~2%–4%) when a low heritability target trait (treeheight)wascoupledwithahighlygeneticallycorrelatedtrait(DBH,ra=0.92).Otherempiricalplantortreebreedingstudiesfoundlittlebenefitsofusingmulti‐traitGStopredictnonphenotypedselectioncandidateswhen100%of the individuals in the training setwerephenotyped(Baoetal.,2015;Chengetal.,2018;Fernandesetal.,2018; Jia & Jannink, 2012; Schulthess et al., 2016). Similarly, wefoundthatmulti‐traitGBLUPdidnotoutperformsingle‐traitmod‐elswhenallindividualsinthetrainingsetwerephenotypedforthetargettrait.Thus,incaseswhenphenotypicinformationisbalancedacross traits, single‐trait modeling is the recommended methodgiventhattheyharborreducedmodelcomplexity(Schulthessetal.,2016).

Multi‐trait GS models present an interesting strategy to copewithtraitsthathavelargeamountofmissingvaluesbecausetheyaredifficultorcostlytomeasure,suchastraitsrelatedtoresistancetobioticandabioticfactors,orwoodqualitytraits.Wefoundthatwhenwe includedahighlygeneticallycorrelatedgrowthtrait (Height15/DBH15 ratioorHeight15)asan indicator trait, themulti‐traitmod‐els predicted resistance to weevil attacks more accurately whentherewasalargeamountofmissingdataforthistrait.However,theadvantageofmulti‐traitoversingle‐traitGSdisappearedasthege‐neticcorrelationbetweenweevil resistanceandthe indicator traitdecreasedtora=−0.55whenusingVelocity16astheindicatortrait.

Similarly, there was no advantage of using multi‐trait models topredict the target traitsDensity15orMFA15,whichwas likelyduetoweak or inconsistent genetic correlations across sites betweenthetargetandindicatortraits.Previousstudiessimilarlyfoundthatmulti‐traitmodelsperformedbestwhenthegeneticcorrelationbe‐tweentraitswashigh(ra>0.5;Calus&Veerkamp,2011;Guoetal.,2014;Montesinos‐Lópezetal.,2016).Thus,ourresultsandthoseofpreviousstudiessuggestthat,inthecaseofatargettraitwithmod‐erateheritabilitysuchasweevilresistance,multi‐traitGSmodelsareonly advantageous when a highly genetically correlated indicatortraitisavailable.

Inabreedingcontext,ourresultsopenuppossibilitiestoconsidermaterialtestedonsiteswherenorecordofweevilattackshavebeentaken.Accuratephenotypingofweevil resistance requiresnumer‐ousvisitsateachtrialandatdifferentplantationages.Furthermore,anappropriatelevelofattackateachsite,ideallymorethan50%ofattackedtrees,isdesirabletoproperlyevaluategeneticresistance.These constraints imply that resistance toweevil attacks is oftenrecordedonlyforapartofavailabletestsitesandmaterial.Insuchcases,multi‐traitGSmodelscanbeusedtomoreaccuratelypredictweevilresistanceforthetreesinnonphenotypedsiteswhenanin‐dicatortraithasbeenmeasuredinallsites(Montesinos‐Lópezetal.,2016).Furthermore,the lowgenotype‐by‐environment interactionofresistancetoweevilattacksfoundinthisstudyandinMottetetal.(2015)wouldensurerelativelyhighaccuraciesofpredictionsbe‐tweensites (Beaulieu,Doerksen,MacKay,etal.,2014;Lenzetal.,2017).

Due to convergence issues for the three‐trait models, we didnotaccountforgenotype‐by‐environmentinteractions(GxE)inourmulti‐traitmodels.Weadjustedthephenotypesforsiteandblockeffects,butthisstandardizationdoesnotcontrolforGxEduetorankchangesbetweensites.Nevertheless, thisseemedtobeareason‐ablemodelsimplification inthepresentcase,giventhatwefoundthe same predictive accuracy for single‐trait GBLUP models thataccountedforGxE(Equation2)comparedwithGBLUPmodelsthatusedtheadjustedphenotypeasaresponsevariableanddidnotac‐countforGxE(Equation11inAppendixS2,TableS10).

Modelswithmore than two traits have only been tested in ahandfulofstudies(Baoetal.,2015;Schulthessetal.,2016;Tsuruta,Misztal,Aguilar,&Lawlor,2011).Inparticular,Schulthessetal.(2016)didnot findanybenefitofusing three‐traitover two‐traitmodelswhen theaimwas topredictonlyone target trait.However, theyfoundthatthethree‐traitmodelwasbettertopredicttwoscarcelyphenotyped target traits, when a third correlated trait was fullyavailable. In this study, the three‐trait model with indicator traitsHeight15/DBH15 ratio andVelocity16 did not outperform our besttwo‐traitmodelusingonlyHeight15/DBH15ratioasanindicatortraitto predict resistance toweevil attacks. This is becauseVelocity16 wasmuch less correlatedwithweevil resistance (ra = −0.55) thanwas the Height15/DBH15 ratio (ra = −0.89), and thus, Velocity16 added little information to thepredictions.Becauseof the rapidlyincreasingcomplexityofmodelsasthenumberofcorrelatedtraitsincreases,computerresourcelimitationsandconvergenceproblems

Page 15: Multi‐trait genomic selection for weevil resistance ...fasttracproject.ca/wp-content/uploads/2019/06/Lenz... · ple the Bayesian generalized linear regression models that support

     |  15LENZ Et aL.

duetocollinearitycanarise (Schulthessetal.,2016). Inthisstudy,convergenceproblemsprecludedustofitsimultaneouslymorethanthree traits.Multi‐trait Bayesianmodels are expected to bemoreefficientthanmulti‐traitGBLUPwhenthenumberoftraitsincreases(Calus&Veerkamp,2011).Overall,thebenefitsofaddingmoretraitsseemslimited,butthisneedstobefurthertestedwithdifferentGSmodelsandwithtraitscombinationsofdifferentlevelsofheritabilityandgeneticcorrelations.

4.5 | Index selection provided positive gains for most focus traits

Indexselectionisacommonlyusedtoolintreeimprovementtose‐lectindividualsthatcombinesuperiorgeneticvalueforseveraltraitsofinteresttothebreeder.Thisstrategyusuallyresultsinlowerge‐neticgainforeachtraitcomparedwithsingle‐traitselection,becausecorrelationsamongtraitsarenotperfectandareoftennegative.OurscenarioSI‐1 reflected theprioritiesof theNorwaysprucebreed‐ersoftheprovinceofQuébec.Besidesthecurrentfocusonweevilresistance and growth,woodquality traitswill be included in thenextgenerationselectioncriteriaforthisplantation‐grownspeciestoavoida reduction inmechanicalpropertiesof lumberextractedfromfastergrowingtrees.However,determiningeconomicweightsforeachtraitischallenging.Economicstudieshavebeenconductedfordifferentconiferbreedingprograms(e.g.,Aubry,Adams,&Fahey,1998; Ivković,Wu,McRae,&Powell, 2006;Petrinovic,Gélinas,&Beaulieu,2009),buttheresultingeconomicweightsarenottrans‐ferabletootherspeciesandregionssincetheydependmuchonthewood production and transformation systems. Because of thesedifficulties, economic weights have not been established yet forNorwayspruceintheCanadianbreedingandforestrycontexts,andtherelativeweightsthatwehavechosenfortheSI‐1scenarioarecurrentlythemostlikelytobeimplementedintheshorttermbutarestillofanindicativenature.

Inthisstudy,favorablecorrelationsbetweenweevilresistance,heightgrowth,andacousticvelocity resulted inonlyminor trade‐offsamongthosetraitsinthetestedselectionindices.However,theimprovementforDBHorthecloselyrelatedvolume(notestimatedin this study) appears more challenging. The low genetic controland the importantgenotype‐by‐environment interactionobservedforDBH (see alsoMottet et al., 2015)make it difficult to predicttheeffectofselectingforweevilresistanceonthistrait.However,thepossiblelossinlumbervolumewouldlikelybecompensatedbylesslogdefectsduetoincreasedresistanceofplantationstoweevilattacks(Daoust&Mottet,2006).Thus,improvingforweevilresis‐tancewouldundoubtedlybenefitNorwayspruceasanexoticplan‐tationspeciesineasternCanada.

5  | CONCLUSIONS

Inthisstudy,weinvestigatedthegeneticcontrolofweevilresistanceanditsrelationshipwithwoodandgrowthtraitsinNorwayspruceas

anexoticplantationspecies.Wefurtherintegratedthesetraitsintoamulti‐traitgenomicselection(GS)framework.Wefoundthatinsucharealisticcontext,itwaspossibletoimprovesignificantlyforwee‐vilresistanceusingGS,giventhatweevilresistancewasmoderatelytohighlyheritableandthat itwaspositivelygeneticallycorrelatedwiththeheight/DBHratioandwoodstiffness(acousticvelocity).Bytakingadvantageoftheseexistinggeneticrelationships,weshowedthatmulti‐traitgenomicselectionmodelscould improve theaccu‐racyofthepredictionforascarcelyphenotypedtargettrait(weevilresistance)byusingtheinformationfromareadilyavailableindicatortrait.Finally,bycombiningmultiplecorrelatedtraitsintoaselectionindex,weobtainedthebestcompromiseforalltraitsofinterestthatcorrespondedtotheprioritiesofthebreeders.Thus,thisintegratedapproachshowedhowgenomicselectioncanbeusedtobreedsi‐multaneously for taller, stiffer, andmoreweevil‐resistantNorwayspruces.We conclude that single/multi‐traitGSmodels and indexselectionareefficientselectiontoolsthatcanbeintegratedintoop‐erationalbreedingprogramstoacceleratetherealizationofgeneticgainsformosttraitsofinterest.

Anotheradvantageofintegratinggenomicselectiontoabreed‐ingprogram is that,once thebreedingpopulationhasbeengeno‐typed,modelscaneasilybe recalibrated foradditional traits, suchaspestresistanceorresiliencetoepisodicclimateextremessuchasdroughts.Suchtraitsmaybecostlyanddifficulttomeasureinforesttrees(e.g.,Houssetetal.,2018)andtheuseofcorrelatedindicatortraits inmulti‐traitmodelswould reducephenotypingcosts.Massphenotypingusingremotesensingtechnologiescouldalsohelpiden‐tifyindicatortraitsthatarecorrelatedwitheconomicallyimportantones(Dungeyetal.,2018).Theincreaseofinformationfrommultiplecorrelatedtraitswillprovideopportunitiestotestnovelmulti‐traitmodelsandtoimprovegenomicselectionaccuracies.Finally,giventhatlargenumbersofcandidatetreescanbegenotypedattheveryjuvenile stage,multi‐traitGSwill result inhighly significant reduc‐tions in testing time for such long‐lived species,while allowing toincreaseselection intensitycompared tomoreconventional selec‐tionapproaches.

ACKNOWLEDG EMENTS

We thank Gaëtan Daoust (Natural Resources Canada), AnteStipacinic, Jean‐Sébastien Joannette, and Johanne Claveau(Ministère des Forêts, de la Faune et des Parcs du Québec) fortheestablishmentof the field trialsanddatacollection,aswellasFrançoisBeaulieu(CanadaResearchChairinForestGenomics,Univ.Laval,andNaturalResourcesCanada)andJasonMiccocci (NaturalResourcesCanada) forhelpwith samplingandphenotypicassess‐mentsof test trees.Our thanks to JosianeDeBlois (MinistèredesForêts, de la Faune et de Parcs du Québec), Sébastien Clément(CanadianWoodFibreCentre),andJeremyMartel(CanadaResearchChair in Forest Genomics, Univ. Laval, and Natural ResourcesCanada)forhelpwithdatabasingandstatisticalanalysesofquantita‐tivetraitdata.WealsothankM.Deslauriers(CanadianWoodFibreCentre), S. Blais, and A. Azaiez (Canada Research Chair in Forest

Page 16: Multi‐trait genomic selection for weevil resistance ...fasttracproject.ca/wp-content/uploads/2019/06/Lenz... · ple the Bayesian generalized linear regression models that support

16  |     LENZ Et aL.

Genomics,Univ.Laval)forDNAextractionsandvalidationofgeno‐typicdata,andD.Vincent,F.Bacot,andtheirteamforgenotypingNorwaysprucesamplesattheGenomeQuébecInnovationCentre(McGill Univ.,Montreal). This researchwas part of the FastTRACproject, fundedbyGenomeCanadaandGenomeQuébecthroughthe national Genomics Applied Partnership Program (GAPP). Theproject was also supported by contributions from the Ministèredes Forêts, de la Faune et des Parcs du Québec, FPInnovations,J.D.IrvingLtd,theNewBrunswickTreeImprovementCouncil,theCanadianWoodFibreCentre,andtheLaurentianForestryCenterofNaturalResourcesCanada.

DATA ARCHIVING S TATEMENT

SNPdataandthedescriptionofthegenotypingarrayweredepos‐itedintheEuropeanVariationArchive(EVA,https://www.ebi.ac.uk/eva/, accession number PRJEB27427).More details can be foundinAzaiezetal. (2018).ThephenotypicandgenotypicoriginaldatabelongtotheNorwaysprucebreedingprogramoftheprovinceofQuébecandhavebeenstoredinourinstitutions’databases.Itcanbesharedupon request to thecorrespondingauthoraccording totheintellectualpropertypolicies(IPP)ofparticipatinggovernmentalinstitutions.Therefore,datahavethereforenotbeendepositeddi‐rectlyintoapublicdomain.

ORCID

Patrick R. N. Lenz https://orcid.org/0000‐0002‐0184‐9247

R E FE R E N C E S

Alfaro,R.I.,King,J.N.,&VanAkker,L.(2013).DeliveringSitkasprucewithresistanceagainstwhitepineweevilinBritishColumbia,Canada.The Forestry Chronicle, 89(2), 235–245. https://doi.org/10.5558/tfc2013‐042

Alfaro,R.I.,VanAkker,L.,Jaquish,B.,&King,J.(2004).Weevilresistanceofprogenyderivedfromputativelyresistantandsusceptibleinteriorspruceparents.Forest Ecology and Management,202(1–3),369–377.https://doi.org/10.1016/j.foreco.2004.08.001

Aubry,C.A.,Adams,W.T.,&Fahey,T.D.(1998).Determinationofrela‐tiveeconomicweightsformultitraitselectionincoastalDouglas‐fir.Canadian Journal of Forest Research,28(8), 1164–1170. https://doi.org/10.1139/x98‐084

Azaiez, A., Pavy, N., Gérardi, S., Laroche, J., Boyle, B., Gagnon, F., …Bousquet, J. (2018).A catalogof annotatedhigh‐confidenceSNPsfrom exome capture and sequencing reveals highly polymorphicgenesinNorwayspruce(Picea abies).BMC Genomics,19,942.https://doi.org/10.1186/s12864‐018‐5247‐z

Bao, Y., Kurle, J. E., Anderson,G., & Young,N.D. (2015). Associationmapping and genomic prediction for resistance to sudden deathsyndromeinearlymaturingsoybeangermplasm.Molecular Breeding,35(6),128.https://doi.org/10.1007/s11032‐015‐0324‐3

Beaulieu, J., Doerksen, T., Boyle, B., Clément, S., Deslauriers, M.,Beauseigle, S., …MacKay, J. (2011). Association genetics ofwoodphysical traits in the conifer white spruce and relationships withgeneexpression.Genetics,188(1),197–214.https://doi.org/10.1534/genetics.110.125781

Beaulieu,J.,Doerksen,T.,Clément,S.,MacKay,J.,&Bousquet,J.(2014).Accuracy of genomic selection models in a large population ofopen‐pollinatedfamiliesinwhitespruce.Heredity,113(4),343–352. https://doi.org/10.1038/hdy.2014.36

Beaulieu, J., Doerksen, T. K.,MacKay, J., Rainville, A., & Bousquet, J.(2014).Genomicselectionaccuracieswithinandbetweenenviron‐mentsandsmallbreedinggroupsinwhitespruce.BMC Genomics,15,1048.https://doi.org/10.1186/1471‐2164‐15‐1048

Branco, M., Brockerhoff, E. G., Castagneyrol, B., Orazio, C., & Jactel,H. (2015). Host range expansion of native insects to exotic treesincreases with area of introduction and the presence of conge‐nericnativetrees.Journal of Applied Ecology,52,69–77.https://doi.org/10.1111/1365‐2664.12362

Brockerhoff,E.G.,Liebhold,A.M.,&Jactel,H. (2006).Theecologyofforestinsectinvasionsandadvancesintheirmanagement.Canadian Journal of Forest Research,36(2),263–268.https://doi.org/10.1139/x06‐013

Butler,D.G.,Cullis,B.R.,Gilmour,A.R.,&Gogel,B.. (2007).Analysis of mixed models for S language environments. ASReml‐R reference man‐ual.Brisbane,Qld:TheStateofQueensland,DepartmentofPrimaryIndustriesandFisheries.

Calus,M.P.,&Veerkamp,R.F. (2011).Accuracyofmulti‐traitgenomicselection using differentmethods.Genetics Selection Evolution,43,26.https://doi.org/10.1186/1297‐9686‐43‐26

Cappa,E.P.,El‐Kassaby,Y.A.,Muñoz,F.,Garcia,M.N.,Villalba,P.V.,Klápště, J., & Marcucci Poltri, S. N. (2018). Genomic‐based mul‐tiple‐trait evaluation in Eucalyptus grandis using dominant DArTmarkers. Plant Science, 271, 27–33. https://doi.org/10.1016/j.plantsci.2018.03.014

Charmantier,A.,&Garant,D.(2005).Environmentalqualityandevolu‐tionarypotential:Lessonsfromwildpopulations.Proceedings of the Royal Society B: Biological Sciences,272(1571), 1415–1425. https://doi.org/10.1098/rspb.2005.3117

Chen, Z.‐Q., Baison, J., Pan, J., Karlsson, B. O., Andersson, B.,Westin,J.,…Wu,H.X.(2018).Accuracyofgenomicselectionforgrowth andwood quality traits in two control‐pollinated prog‐eny trials using exome capture as the genotyping platform inNorwayspruce.BMC Genomics,19,946.https://doi.org/10.1186/s12864‐018‐5256‐y

Chen,Z.‐Q.,Gil,M.R.G.,Karlsson,B.,Lundqvist,S.‐O.,Olsson,L.,&Wu,H.X. (2014). Inheritanceofgrowthandsolidwoodqualitytraits inalargeNorwaysprucepopulationtestedattwolocationsinsouth‐ernSweden.Tree Genetics & Genomes,10(5),1291–1303.https://doi.org/10.1007/s11295‐014‐0761‐x

Chen, Z.‐Q., Karlsson, B., Lundqvist, S.‐O., García Gil, M. R., Olsson,L., & Wu, H. X. (2015). Estimating solid wood properties usingPilodynandacousticvelocityonstandingtreesofNorwayspruce.Annals of Forest Science, 72(4), 499–508. https://doi.org/10.1007/s13595‐015‐0458‐9

Cheng, H., Kizilkaya, K., Zeng, J., Garrick, D., & Fernando, R. (2018).Genomic prediction frommultiple‐trait Bayesian regressionmeth‐ods using mixture priors. Genetics, 209(1), 89–103. https://doi.org/10.1534/genetics.118.300650

Daoust, G., & Mottet, M.‐J. (2006). Impact of the white pine weevil(Pissodes strobiPeck)onNorwayspruceplantations(Picea abies[L.]Karst.)Part1:Productivityandlumberquality.The Forestry Chronicle,82(5),745–756.https://doi.org/10.5558/tfc82745‐5

Day,K.R.,&Leather,S.R.(1997).ThreatstoforestrybyinsectpestsinEurope.InA.D.Watt,N.E.Stork,&M.D.Hunter(Eds.),Forests and insects(pp.177–205).London,UK:Chapman&Hall.

de los Campos, G., & Pérez‐Rodríguez, P. (2016). BGLR: Bayesian Generalized Linear Regression. R package version 1.0.5. Retrievedfromhttps://cran.r‐project.org/package=BGLR

Dekkers, J. C. M. (2007). Prediction of response to marker‐assistedand genomic selection using selection index theory. Journal

Page 17: Multi‐trait genomic selection for weevil resistance ...fasttracproject.ca/wp-content/uploads/2019/06/Lenz... · ple the Bayesian generalized linear regression models that support

     |  17LENZ Et aL.

of Animal Breeding and Genetics, 124(6), 331–341. https://doi.org/10.1111/j.1439‐0388.2007.00701.x

Desponts, M., Perron, M., & DeBlois, J. (2017). Rapid assessment ofwoodtraitsforlarge‐scalebreedingselectioninPicea mariana[Mill.]B.S.P. Annals of Forest Science, 74(3), 53. https://doi.org/10.1007/s13595‐017‐0646‐x

Dungey,H.S.,Dash,J.P.,Pont,D.,Clinton,P.W.,Watt,M.S.,&Telfer,E. J. (2018). Phenotyping whole forests will help to track geneticperformance.Trends in Plant Science,23(10), 854–864. https://doi.org/10.1016/j.tplants.2018.08.005

Endelman,J.B.,&Jannink,J.‐L.(2012).Shrinkageestimationofthere‐alizedrelationshipmatrix.G3: Genes|Genomes|Genetics,2(11),1405–1413.https://doi.org/10.1534/g3.112.004259

Falconer,D.D.,&Mackay,T.F.C.(1996).Introduction to quantitative ge‐netics(4thed.).Harlow,Essex,UK:Pearson.

Fernandes, S. B.,Dias, K.O.G., Ferreira,D. F., & Brown, P. J. (2018).Efficiency of multi‐trait, indirect, and trait‐assisted genomic se‐lection for improvement of biomass sorghum. Theoretical and Applied Genetics, 131(3), 747–755. https://doi.org/10.1007/s00122‐017‐3033‐y

Fraser, S.M.,& Lawton, J.H. (1994).Host range expansion byBritishmothsonto introduced conifers.Ecological Entomology,19(2), 127–137.https://doi.org/10.1111/j.1365‐2311.1994.tb00402.x

Gamal El‐Dien, O., Ratcliffe, B., Klápště, J., Chen, C., Porth, I., & El‐Kassaby,Y.A.(2015).Predictionaccuraciesforgrowthandwoodat‐tributesofinteriorspruceinspaceusinggenotyping‐by‐sequencing.BMC Genomics,16,370.https://doi.org/10.1186/s12864‐015‐1597‐y

Geber,M.A.,&Griffen,L.R. (2003). Inheritanceandnaturalselectionon functional traits. International Journal of Plant Sciences,164(S3),S21–S42.https://doi.org/10.1086/368233

Gonzalez‐Martinez, S. C., Wheeler, N. C., Ersoz, E., Nelson, C. D., &Neale,D.B. (2007).Associationgenetics inPinus taeda L. I.Woodpropertytraits.Genetics,175(1),399–409.https://doi.org/10.1534/genetics.106.061127

Grattapaglia,D.,&Resende,M.D.V.(2011).Genomicselectioninforesttree breeding.Tree Genetics & Genomes,7(2), 241–255. https://doi.org/10.1007/s11295‐010‐0328‐4

Grattapaglia,D.,Silva‐Junior,O.B.,Resende,R.T.,Cappa,E.P.,Müller,B.S.F.,Tan,B.,…El‐Kassaby,Y.A.(2018).Quantitativegeneticsandge‐nomicsconvergetoaccelerateforesttreebreeding.Frontiers in Plant Science,9,1693.https://doi.org/10.3389/fpls.2018.01693

Guo,G.,Zhao,F.,Wang,Y.,Zhang,Y.,Du,L.,&Su,G.(2014).Comparisonof single‐trait and multiple‐trait genomic prediction models. BMC Genetics,15,30.https://doi.org/10.1186/1471‐2156‐15‐30

Habier,D.,Fernando,R.L.,Kizilkaya,K.,&Garrick,D.J.(2011).ExtensionoftheBayesianalphabetforgenomicselection.BMC Bioinformatics,12,186.https://doi.org/10.1186/1471‐2105‐12‐186

Hannrup,B.,Cahalan,C.,Chantre,G.,Grabner,M.,Karlsson,B.,Bayon,I.L.,…Wimmer,R.(2004).Geneticparametersofgrowthandwoodquality traits inPicea abies. Scandinavian Journal of Forest Research,19(1),14–29.https://doi.org/10.1080/02827580310019536

Hazel,L.N.(1943).Thegeneticbasisforconstructingselectionindexes.Genetics,28(6), 476–490. Retrieved fromhttp://www.ncbi.nlm.nih.gov/pubmed/17247099.

Holst,M.J. (1955).BreedingforweevilresistanceinNorwayspruce.Z Forstgenetik,4(2),33–37.

Holst,M.J.(1963).Growth of Norway spruce (Piceaabies (L) Karst.) prov‐enances in eastern North America. ChalkRiver,ON:Government ofCanada, Department of Forestry, Petawawa Forest ExperimentStation.DepartmentofForestryPublication1022.

Housset,J.M.,Nadeau,S.,Isabel,N.,Depardieu,C.,Duchesne,I.,Lenz,P.,&Girardin,M.P.(2018).Treeringsprovideanewclassofpheno‐typesforgeneticassociationsthatfosterinsightsintoadaptationofconiferstoclimatechange.New Phytologist,218(2),630–645.https://doi.org/10.1111/nph.14968

Isik,F.,Bartholomé,J.,Farjat,A.,Chancerel,E.,Raffin,A.,Sanchez,L.,…Bouffier,L.(2016).Genomicselectioninmaritimepine.Plant Science,242,108–119.https://doi.org/10.1016/j.plantsci.2015.08.006

Isik,F.,Holland,J.,&Maltecca,C.(2017).Genetic data analysis for plant and animal breeding. Cham, Switzerland: Springer InternationalPublishingAG.

Ivković,M.,Wu,H.X.,McRae,T.A.,&Powell,M.B.(2006).Developingbreedingobjectives for radiatapinestructuralwoodproduction. I.Bioeconomicmodelandeconomicweights.Canadian Journal of Forest Research,36(11),2920–2931.https://doi.org/10.1139/x06‐161

Jia,Y.,&Jannink,J.‐L.(2012).Multiple‐traitgenomicselectionmethodsincreasegeneticvaluepredictionaccuracy.Genetics,192(4),1513–1522.https://doi.org/10.1534/genetics.112.144246

King, J.N. (2004).Genetic resistance of Sitka spruce (Picea sitchensis)populationstothewhitepineweevil(Pissodes strobi):Distributionofresistance. Forestry, 77(4), 269–278. https://doi.org/10.1093/forestry/77.4.269

King,J.N.,Alfaro,R.I.,Lopez,M.G.,&VanAkker,L.(2011).Resistanceof Sitka spruce (Picea sitchensis (Bong.) Carr.) towhite pineweevil(Pissodes strobi Peck): Characterizing the bark defence mecha‐nisms of resistant populations. Forestry, 84(1), 83–91. https://doi.org/10.1093/forestry/cpq047

King, J. N., Yanchuk, A. D., Kiss, G. K., & Alfaro, R. I. (1997). Geneticandphenotypicrelationshipsbetweenweevil(Pissodes strobi)resis‐tanceandheightgrowthinsprucepopulationsofBritishColumbia.Canadian Journal of Forest Research, 27(5), 732–739. https://doi.org/10.1139/x97‐009

Langström, B., Lieutier, F., Hellqvist, C., & Vouland, G. (1995). NorthAmerican pines as hosts for Tomicus piniperda L. (Col. Scolytidae)inFranceandinSweden.InF.P.Hain,S.M.Salom,W.Ravlin,T.L.Payne,&K.F.Raffa(Eds.),Behaviour, population dynamics and control of forest insects(pp.547–558).Wooster,OH:OhioStateUniversity,OARDC.

Legarra, A., Robert‐Granie, C., Manfredi, E., & Elsen, J.‐M. (2008).Performanceofgenomicselectioninmice.Genetics,180(1),611–618.https://doi.org/10.1534/genetics.108.088575

Lenz,P.,Auty,D.,Achim,A.,Beaulieu,J.,&Mackay,J. (2013).Geneticimprovementofwhitesprucemechanicalwoodtraits—Earlyscreen‐ingbymeansofacousticvelocity.Forests,4(3),575–594.https://doi.org/10.3390/f4030575

Lenz, P., Beaulieu, J., Mansfield, S. D., Clément, S., Desponts, M., &Bousquet, J. (2017).Factorsaffecting theaccuracyofgenomicse‐lectionforgrowthandwoodqualitytraitsinanadvanced‐breedingpopulationofblackspruce(Picea mariana).BMC Genomics,18,335.https://doi.org/10.1186/s12864‐017‐3715‐5

Lenz,P.,Cloutier,A.,MacKay,J.,&Beaulieu,J.(2010).GeneticcontrolofwoodpropertiesinPicea glauca—Ananalysisoftrendswithcambialage.Canadian Journal of Forest Research,40(4),703–715.https://doi.org/10.1139/X10‐014

Li,Y.,Suontama,M.,Burdon,R.D.,&Dungey,H.S.(2017).Genotypeby environment interactions in forest tree breeding: Reviewof methodology and perspectives on research and application.Tree Genetics & Genomes, 13(3), 60. https://doi.org/10.1007/s11295‐017‐1144‐x

Lombardero,M.J.,Alonso‐Rodríguez,M.,&Roca‐Posada,E.P. (2012).Tree insects and pathogens display opposite tendencies to attacknative vs. non‐native pines. Forest Ecology and Management, 281,121–129.https://doi.org/10.1016/j.foreco.2012.06.036

Meuwissen,T.H.,Hayes,B. J.,&Goddard,M.E. (2001).Predictionoftotalgeneticvalueusinggenome‐widedensemarkermaps.Genetics,157(4),1819–1829.

Money,D.,Gardner,K.,Migicovsky,Z.,Schwaninger,H.,Zhong,G.‐Y.,&Myles,S.(2015).LinkImpute:Fastandaccurategenotypeimputationfor nonmodel organisms.G3: Genes|genomes|genetics,5(11), 2383–2390.https://doi.org/10.1534/g3.115.021667

Page 18: Multi‐trait genomic selection for weevil resistance ...fasttracproject.ca/wp-content/uploads/2019/06/Lenz... · ple the Bayesian generalized linear regression models that support

18  |     LENZ Et aL.

Montesinos‐López, O. A.,Montesinos‐López, A., Crossa, J., Toledo, F.H., Pérez‐Hernández, O., Eskridge, K.M., & Rutkoski, J. (2016). Agenomic bayesian multi‐trait and multi‐environment model. G3: Genes|genomes|genetics, 6(9), 2725–2744. https://doi.org/10.1534/g3.116.032359

Montesinos‐López,O.A.,Montesinos‐López,A.,Pérez‐Rodríguez,P.,delosCampos,G.,Eskridge,K.,&Crossa,J. (2015). thresholdmodelsforgenome‐enabledpredictionofordinalcategoricaltraits inplantbreeding. G3: Genes|genomes|genetics, 5(2), 291–300. https://doi.org/10.1534/g3.114.016188

Mottet,M.‐J.,DeBlois,J.,&Perron,M.(2015).HighgeneticvariationandmoderatetohighvaluesforgeneticparametersofPicea abiesresis‐tancetoPissodesstrobi.Tree Genetics & Genomes,11(3),58.https://doi.org/10.1007/s11295‐015‐0878‐6

Mullin,T.J.,Andersson,B.,Bastien,J.‐C.,Beaulieu,J.,Burdon,R.,Dvorak,W.S.,…Yanchuk,A.(2011).Economicimportance,breedingobjec‐tivesandachievements.InC.Plomion,J.Bousquet,&C.Kole(Eds.),Genetics, genomics and breeding of conifers(pp.40–127).Enfield,NH:SciencePublishers&CRCPress.

Namkoong,G.,Kang,H.C.,&Brouard,J.S.(1988).Tree breeding: Principles and strategies (Vol.11).NewYork,NY:Springer‐Verlag.https://doi.org/10.1007/978‐1‐4612‐3892‐8

Núñez‐Farfán,J.,Fornoni,J.,&Valverde,P.L. (2007).Theevolutionofresistance and tolerance to herbivores. Annual Review of Ecology, Evolution, and Systematics,38(1),541–566.https://doi.org/10.1146/annurev.ecolsys.38.091206.095822

Park, Y.‐S., Beaulieu, J., & Bousquet, J. (2016). Multi‐varietal forestryintegrating genomic selection and somatic embryogenesis. In Y.‐S.Park,J.Bonga,&H.K.Moon(Eds.),Vegetative propagation of forest trees(pp.302–322).Seoul,SouthKorea:NationalInstituteofForestScience.

Pavy,N.,Lamothe,M.,Pelgas,B.,Gagnon,F.,Birol, I.,Bohlmann, J.,…Bousquet, J. (2017).Ahigh‐resolution referencegeneticmapposi‐tioning8.8Kgenesfortheconiferwhitespruce:Structuralgenomicsimplications and correspondencewith physical distance.The Plant Journal,90,189–203.https://doi.org/10.1111/tpj.13478

Perez,P.,&delosCampos,G.(2014).Genome‐wideregressionandpre‐dictionwiththeBGLRstatisticalpackage.Genetics,198(2),483–495.https://doi.org/10.1534/genetics.114.164442

Petrinovic,J.F.,Gélinas,N.,&Beaulieu,J.(2009).Benefitsofusingge‐netically improved white spruce in Quebec: The forest landown‐er’s viewpoint. The Forestry Chronicle, 85(4), 571–582. https://doi.org/10.5558/tfc85571‐4

Plomion,C.,Bousquet,J.,&Kole,C.(2011).Genetics, genomics and breed‐ing of conifers.Enfield,NH:SciencePublishers&CRCPress.

Porth,I.,Klapšte,J.,Skyba,O.,Hannemann,J.,McKown,A.D.,Guy,R.D., … Mansfield, S. D. (2013). Genome‐wide association mappingforwoodcharacteristics inPopulus identifiesanarrayofcandidatesinglenucleotidepolymorphisms.New Phytologist,200(3),710–726. https://doi.org/10.1111/nph.12422

Porth,I.,White,R.,Jaquish,B.,Alfaro,R.,Ritland,C.,&Ritland,K.(2012).Genetical genomics identifies the genetic architecture for growthandweevilresistanceinspruce.PLoS ONE,7(9),e44397.https://doi.org/10.1371/journal.pone.0044397

Poulin,J.,Lavallee,R.,Mauffette,Y.,&Rioux,D.(2006).WhitepineweevilperformancesinrelationtobudburstphenologyandtraumaticresinductformationinNorwayspruce.Agricultural and Forest Entomology,8(2),129–137.https://doi.org/10.1111/j.1461‐9563.2006.00293.x

Ralph, S. G., Yueh, H., Friedmann, M., Aeschliman, D., Zeznik, J. A.,Nelson, C. C., … Bohlmann, J. (2006). Conifer defence against in‐sects: Microarray gene expression profiling of Sitka spruce (Picea sitchensis) induced by mechanical wounding or feeding by sprucebudworms(Choristoneura occidentalis)orwhitepineweevils(Pissodes strobi) reveals large‐scale changes of the host transcriptome.

Plant, Cell and Environment, 29(8), 1545–1570. https://doi.org/10.1111/j.1365‐3040.2006.01532.x

Ratcliffe,B.,El‐Dien,O.G.,Klápště,J.,Porth,I.,Chen,C.,Jaquish,B.,&El‐Kassaby,Y.A.(2015).Acomparisonofgenomicselectionmodelsacrosstimeininteriorspruce(Picea engelmannii × glauca)usingunor‐deredSNPimputationmethods.Heredity,115(6),547–555.https://doi.org/10.1038/hdy.2015.57

Resende,M.F.R.,Munoz,P.,Resende,M.D.V.,Garrick,D.J.,Fernando,R. L.,Davis, J.M.,…Kirst,M. (2012). Accuracy of genomic selec‐tion methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics, 190(4), 1503–1510. https://doi.org/10.1534/genetics.111.137026

Resende, M. D. V., Resende, M. F. R., Sansaloni, C. P., Petroli, C. D.,Missiaggia,A.A.,Aguiar,A.M.,…Grattapaglia,D.(2012).Genomicselection for growth and wood quality in Eucalyptus: Capturingthe missing heritability and accelerating breeding for complextraits in forest trees.New Phytologist,194(1),116–128.https://doi.org/10.1111/j.1469‐8137.2011.04038.x

Robert,J.A.,Madilao,L.L.,White,R.,Yanchuk,A.,King,J.,&Bohlmann,J. (2010). Terpenoidmetabolite profiling in Sitka spruce identifiesassociation of dehydroabietic acid, (+)‐3‐carene, and terpinolenewith resistance againstwhitepineweevil.Botany‐Botanique,88(9),810–820.https://doi.org/10.1139/B10‐049

Roques,A.,Auger‐Rozenberg,M.‐A.,&Boivin,S.(2006).Alackofnativecongenersmay limit colonizationof introducedconifersby indige‐nous insects in Europe.Canadian Journal of Forest Research,36(2),299–313.https://doi.org/10.1139/x05‐277

Rosner,S.,&Hannrup,B.(2004).Resincanaltraitsrelevantforconstitu‐tiveresistanceofNorwayspruceagainstbarkbeetles:Environmentalandgeneticvariability.Forest Ecology and Management,200(1–3),77–87.https://doi.org/10.1016/j.foreco.2004.06.025

Schulthess,A.W.,Wang,Y.,Miedaner,T.,Wilde,P.,Reif,J.C.,&Zhao,Y. (2016).Multiple‐trait‐ and selection indices‐genomicpredictionsfor grain yield and protein content in rye for feeding purposes.Theoretical and Applied Genetics, 129(2), 273–287. https://doi.org/10.1007/s00122‐015‐2626‐6

Strauss,S.Y.,&Agrawal,A.A.(1999).Theecologyandevolutionofplanttolerancetoherbivory.Trends in Ecology & Evolution,14(5),179–185.https://doi.org/10.1016/S0169‐5347(98)01576‐6

Thiffault,N., Roy, V., Prégent,G., Cyr,G., Jobidon, R., &Ménétrier, J.(2003). La sylviculture des plantations résineuses au Québec. Le Naturaliste Canadien,127,63–80.

Tsuruta, S.,Misztal, I., Aguilar, I., & Lawlor, T. J. (2011).Multiple‐traitgenomicevaluationof linear typetraitsusinggenomicandpheno‐typicdatainUSHolsteins.Journal of Dairy Science,94(8),4198–4204.https://doi.org/10.3168/jds.2011‐4256

VanRaden, P. M. (2008). Efficient methods to compute genomic pre‐dictions. Journal of Dairy Science, 91(11), 4414–4423. https://doi.org/10.3168/jds.2007‐0980

Wermelinger, B. (2004). Ecology andmanagement of the spruce barkbeetle Ips typographus—Areviewof recentresearch.Forest Ecology and Management, 202(1–3), 67–82. https://doi.org/10.1016/j.foreco.2004.07.018

Whitehill,J.G.A.,Henderson,H.,Schuetz,M.,Skyba,O.,Yuen,M.M.S.,King,J.,…Bohlmann,J.(2016).Histologyandcellwallbiochemis‐tryofstonecellsinthephysicaldefenceofconifersagainstinsects.Plant, Cell & Environment,39(8),1646–1661.https://doi.org/10.1111/pce.12654

Whitehill,J.G.A.,Yuen,M.M.S.,Henderson,H.,Madilao,L.,Kshatriya,K., Bryan, J., … Bohlmann, J. (2019). Functions of stone cells andoleoresinterpenesintheconiferdefensesyndrome.New Phytologist,221(3),1503–1517.https://doi.org/10.1111/nph.15477

Wolak,M. E. (2012). Nadiv : An R package to create relatednessma‐trices for estimating non‐additive genetic variances in animal

Page 19: Multi‐trait genomic selection for weevil resistance ...fasttracproject.ca/wp-content/uploads/2019/06/Lenz... · ple the Bayesian generalized linear regression models that support

     |  19LENZ Et aL.

models.Methods in Ecology and Evolution,3(5),792–796.https://doi.org/10.1111/j.2041‐210X.2012.00213.x

Zapata‐Valenzuela, J.,Whetten, R.W.,Neale,D.,McKeand, S., & Isik,F. (2013). Genomic estimated breeding values using genomic re‐lationship matrices in a cloned population of loblolly pine. G3: Genes|genomes|genetics, 3(5), 909–916. https://doi.org/10.1534/g3.113.005975

Zas,R.,Björklund,N.,Sampedro,L.,Hellqvist,C.,Karlsson,B.,Jansson,S., & Nordlander, G. (2017). Genetic variation in resistance ofNorwayspruceseedlingstodamagebythepineweevilHylobius ab‐ietis. Tree Genetics & Genomes,13(5), 111. https://doi.org/10.1007/s11295‐017‐1193‐1

Zas,R.,Moreira,X.,&Sampedro,L. (2011).Toleranceand inducedre‐sistance in a native and an exotic pine species: Relevant traits forinvasion ecology. Journal of Ecology,99(6), 1316–1326. https://doi.org/10.1111/j.1365‐2745.2011.01872.x

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle.   

How to cite this article:LenzPRN,NadeauS,MottetM‐J,etal.Multi‐traitgenomicselectionforweevilresistance,growth,andwoodqualityinNorwayspruce.Evol Appl. 2019;00:1–19. https://doi.org/10.1111/eva.12823