multidimensional consistency of the (discrete) hirota equation · 2020-05-06 · multidimensional...

25
MULTIDIMENSIONAL CONSISTENCY OF THE ( DISCRETE)HIROTA EQUATION Adam Doliwa [email protected] University of Warmia and Mazury, Olsztyn, Poland GEOMETRY AND DIFFERENTIAL EQUATIONS SEMINAR, IM PAN WARSZAWA,6 MAJA 2020 ADAM DOLIWA (UWM PL) MULTIDIMENSIONAL CONSISTENCY 6.05.2020 1/25

Upload: others

Post on 12-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Multidimensional consistency of the (discrete) Hirota equation · 2020-05-06 · MULTIDIMENSIONAL CONSISTENCY OF THE (DISCRETE) HIROTA EQUATION Adam Doliwa doliwa@matman.uwm.edu.pl

MULTIDIMENSIONAL CONSISTENCYOF THE (DISCRETE) HIROTA EQUATION

Adam [email protected]

University of Warmia and Mazury, Olsztyn, Poland

GEOMETRY AND DIFFERENTIAL EQUATIONS SEMINAR, IM PAN

WARSZAWA, 6 MAJA 2020

ADAM DOLIWA (UWM PL) MULTIDIMENSIONAL CONSISTENCY 6.05.2020 1 / 25

Page 2: Multidimensional consistency of the (discrete) Hirota equation · 2020-05-06 · MULTIDIMENSIONAL CONSISTENCY OF THE (DISCRETE) HIROTA EQUATION Adam Doliwa doliwa@matman.uwm.edu.pl

OUTLINE

1 MULTIDIMENSIONAL CONSISTENCY

2 DESARGUES MAPSNon-commutative Hirota equation and its 4D consistencyThe Zamolodchikov equationThe normalization map and the Veblen mapThe ten-term relation

3 NON-COMMUTATIVE MAP AND ITS QUANTUM REDUCTIONNormalization map and its ultralocal/quantum reductionThe Veblen map and its quantum reductionQuantum map with Zamolodchikov’s property

ADAM DOLIWA (UWM PL) MULTIDIMENSIONAL CONSISTENCY 6.05.2020 2 / 25

Page 3: Multidimensional consistency of the (discrete) Hirota equation · 2020-05-06 · MULTIDIMENSIONAL CONSISTENCY OF THE (DISCRETE) HIROTA EQUATION Adam Doliwa doliwa@matman.uwm.edu.pl

OUTLINE

1 MULTIDIMENSIONAL CONSISTENCY

2 DESARGUES MAPSNon-commutative Hirota equation and its 4D consistencyThe Zamolodchikov equationThe normalization map and the Veblen mapThe ten-term relation

3 NON-COMMUTATIVE MAP AND ITS QUANTUM REDUCTIONNormalization map and its ultralocal/quantum reductionThe Veblen map and its quantum reductionQuantum map with Zamolodchikov’s property

ADAM DOLIWA (UWM PL) MULTIDIMENSIONAL CONSISTENCY 6.05.2020 3 / 25

Page 4: Multidimensional consistency of the (discrete) Hirota equation · 2020-05-06 · MULTIDIMENSIONAL CONSISTENCY OF THE (DISCRETE) HIROTA EQUATION Adam Doliwa doliwa@matman.uwm.edu.pl

DISPERSIONESS HIROTA (VERONESE WEB) EQUATION

(λi − λj )f,k f,ij + (λk − λi )f,j f,ki + (λj − λk )f,i f,jk = 0

f = f (x1, x2, . . . , xN), f,i =∂f∂xi

, λi = λi (xi )

Veronose webs, bi-Hamiltonian systems [Gelfand, Zakharevich 1991, 2000]HR-integrable Lagrangean systems [Ferapontov, Khusnutdinova , Tsarev 2006]Einstein–Weyl geometry [Dunajski, Krynski 2014]N > 3 [ Krynski 2016]

FACT

For any quadruple (i, j, k , `) of distinct indices three dHVw equations in triplets (i, j, `),(i, k , `) and (j, k , `) imply the forth equation in the triplet (i, j, k)

Variables x`, for ` > 3, can be interpreted as parameters of commuting symmetries ofthe dHVw equation in variables (x1, x2, x3). Such property of an equation (symmetricwith respect to all independent variables) is called its MULTIDIMENSIONAL CONSISTENCY

EXAMPLE (RATHER TRIVIAL)

u,i = u,j , u(x1, x2, x3, . . . ) = U(x1 + x2 + x3 + . . . )

ADAM DOLIWA (UWM PL) MULTIDIMENSIONAL CONSISTENCY 6.05.2020 4 / 25

Page 5: Multidimensional consistency of the (discrete) Hirota equation · 2020-05-06 · MULTIDIMENSIONAL CONSISTENCY OF THE (DISCRETE) HIROTA EQUATION Adam Doliwa doliwa@matman.uwm.edu.pl

HIROTA’S DISCRETE KP EQUATION (1981)

τ(i)τ(jk) − τ(j)τ(ik) + τ(k)τ(ij) = 0, i < j < k

τ = τ(n1, n2, n3, . . . ), τ(i)(n1, . . . , ni , . . . ) = τ(n1, . . . , ni + 1, . . . )

KADOMTSEV–PETVIASHVILI EQUATION (1970)

(−4v,t + v,xxx + 6vv,x ),x + 3v,yy = 0

t = (t1, t2, t3, . . . ) infinite sequence of its commuting symmetries (time variables),where t1 = x , t2 = y , and t3 = t

THEOREM (MIWA 1982)

For λ ∈ C define the collective shift t 7→ t + [λ] in all time variables by tk 7→ tk + λk

k . Ifv(t) is a solution of the KP hierarchy, then the function τ(t) defined by v = −2(log τ),xx

satisfies

λi (λj − λk )τ(t + [λi ])τ(t + [λj ] + [λk ]) + λj (λk − λi )τ(t + [λk ])τ(t + [λi ] + [λk ])+

+λk (λi − λj )τ(t + [λk ])τ(t + [λi ] + [λj ]) = 0 λi , λj , λk ∈ C

ADAM DOLIWA (UWM PL) MULTIDIMENSIONAL CONSISTENCY 6.05.2020 5 / 25

Page 6: Multidimensional consistency of the (discrete) Hirota equation · 2020-05-06 · MULTIDIMENSIONAL CONSISTENCY OF THE (DISCRETE) HIROTA EQUATION Adam Doliwa doliwa@matman.uwm.edu.pl

3D CONSISTENT EQUATIONS AND YANG–BAXTER MAPS I

EXAMPLE [Nijhoff 2002], [Adler, Bobenko, Suris 2003]

The discrete modified Korteweg – de Vries equation is multidimensionally consistent

v(ij) = vλjv(i) − λiv(j)

λjv(j) − λiv(i), v = v(n1, n2, . . . ), λi = λi (ni ), i 6= j

i.e. three ways to calculate v(ijk) from the initial data v , v(i), v(j), v(k) give the same result

v v

v

vv

v

v

(i)

(j)

(k)

(jk)

(ij)

(ik)

(ijk)v

v v

v

vv

v

v

(i)

(j)

(k)

(jk)

(ij)

(ik)

(ijk)v

v v

v

vv

v

v

(i)

(j)

(k)

(jk)

(ij)

(ik)

(ijk)v

On the level of the edge-valued fields ui =v(i)v we have the system

ui(j) =1uj

λjui − λiuj

λjuj − λiui

uj(i)

i(j)u

uj(k)

k

j

i

uj

kuuk(i)uj(i)u j

i

j

u i(j)

uk(j)

ui(k)

iu

ui(jk)

ui

ADAM DOLIWA (UWM PL) MULTIDIMENSIONAL CONSISTENCY 6.05.2020 6 / 25

Page 7: Multidimensional consistency of the (discrete) Hirota equation · 2020-05-06 · MULTIDIMENSIONAL CONSISTENCY OF THE (DISCRETE) HIROTA EQUATION Adam Doliwa doliwa@matman.uwm.edu.pl

3D CONSISTENT EQUATIONS AND YANG–BAXTER MAPS II

A map R : X × X → X ×X satisfying the relation

R12 ◦ R13 ◦ R23 = R23 ◦ R13 ◦ R12, in X × X × X

is called Yang–Baxter map [Drinfeld 1992]

iu

u

R

=x

i(j)~

=yju~ uj(i)=y

=x

=

1

2

3R23

R13

R12

1

2

3

12R

R23

R13

OBSERVATION

The companion map R(x , y) = (x , y) to a three dimensionally consistent edge-map isa Yang–Baxter map [Adler, Bobenko, Suris 2004]

R ∈ End(V⊗ V) is a solution of the quantum Yang–Baxter equation if

R12R13R23 = R23R13R12, in V⊗ V⊗ V

ADAM DOLIWA (UWM PL) MULTIDIMENSIONAL CONSISTENCY 6.05.2020 7 / 25

Page 8: Multidimensional consistency of the (discrete) Hirota equation · 2020-05-06 · MULTIDIMENSIONAL CONSISTENCY OF THE (DISCRETE) HIROTA EQUATION Adam Doliwa doliwa@matman.uwm.edu.pl

OUTLINE

1 MULTIDIMENSIONAL CONSISTENCY

2 DESARGUES MAPSNon-commutative Hirota equation and its 4D consistencyThe Zamolodchikov equationThe normalization map and the Veblen mapThe ten-term relation

3 NON-COMMUTATIVE MAP AND ITS QUANTUM REDUCTIONNormalization map and its ultralocal/quantum reductionThe Veblen map and its quantum reductionQuantum map with Zamolodchikov’s property

ADAM DOLIWA (UWM PL) MULTIDIMENSIONAL CONSISTENCY 6.05.2020 8 / 25

Page 9: Multidimensional consistency of the (discrete) Hirota equation · 2020-05-06 · MULTIDIMENSIONAL CONSISTENCY OF THE (DISCRETE) HIROTA EQUATION Adam Doliwa doliwa@matman.uwm.edu.pl

DESARGUES MAPS [AD 2010]

Maps φ : ZN → PM (D), such that the points φ(n), φ(i)(n) and φ(j)(n) are collinear, for alln ∈ ZN , i 6= j ; here D is a division ring

NOTATION: φ(i)(n1, . . . , ni , . . . , nN) = φ(n1, . . . , ni + 1, . . . , nN)

Φ

Φ Φ

Φ

Φ

(2)

Φ (1)

Φ(3)

(12)

(23)

(13)

In homogeneous coordinates Φ : ZN → DM+1∗

Φ + Φ(i)Aij + Φ(j)Aji = 0, i 6= j, where Aij : ZN → D∗The compatibility condition of the above linear system reads

A−1ij Aik + A−1

kj Aki = 1,

Aik(j)Ajk = Ajk(i)Aik , i, j, k distinct

ADAM DOLIWA (UWM PL) MULTIDIMENSIONAL CONSISTENCY 6.05.2020 9 / 25

Page 10: Multidimensional consistency of the (discrete) Hirota equation · 2020-05-06 · MULTIDIMENSIONAL CONSISTENCY OF THE (DISCRETE) HIROTA EQUATION Adam Doliwa doliwa@matman.uwm.edu.pl

DESARGUES MAPS IN THE HIROTA GAUGE

In homogeneous coordinates of the projective space, and in a suitable gauge

Φ(i) −Φ(j) = ΦUij , 1 ≤ i 6= j,

whose compatibility is

Uij + Uji = 0, Uij + Ujk + Uki = 0, UkiUkj(i) = UkjUki(j) i, j, k distinct

[Nimmo 2006]When D is commutative then the functions Uij can be parametrized in terms of a singlepotential τ : ZN → D

Uij =ττ(ij)τ(i)τ(j)

, 1 ≤ i < j ≤ N

and the nonlinear system reads [Hirota 1981], [Miwa 1982]

τ(i)τ(jk) − τ(j)τ(ik) + τ(k)τ(ij) = 0, 1 ≤ i < j < k

ADAM DOLIWA (UWM PL) MULTIDIMENSIONAL CONSISTENCY 6.05.2020 10 / 25

Page 11: Multidimensional consistency of the (discrete) Hirota equation · 2020-05-06 · MULTIDIMENSIONAL CONSISTENCY OF THE (DISCRETE) HIROTA EQUATION Adam Doliwa doliwa@matman.uwm.edu.pl

HIROTA MAP AND ITS COMPANION

Φ

Φ

Φ

Φ

Φ

Φ

H

(1)

(2)(3)Φ

Φ

UU 1213

23

(1)

(12)

(3)Φ

(13)Φ

(23)

(2)

U

U13(2)

23(1)

U12(3) U

Φ(12)

Φ(23)

Φ(13)

y1 = U12, y2 = U13(2), y3 = U23,

y1 = U12(3), y2 = U13, y3 = U23(1).

Φ

Φ(123)

Φ(1)

Φ (12)

Φ

Φ(123)

Φ(1)

Φ (12)

R

Φ(3)

Φ(23)Φ(23)

Φ(3)Φ(13)

~

Φ(2)

y3

y1

y2

y2

y y~ ~

31

H

y1 = (y1 + y3)−1y1y2,

y2 = y1 + y3,

y3 = (y1 + y3)−1y3y2.

ADAM DOLIWA (UWM PL) MULTIDIMENSIONAL CONSISTENCY 6.05.2020 11 / 25

Page 12: Multidimensional consistency of the (discrete) Hirota equation · 2020-05-06 · MULTIDIMENSIONAL CONSISTENCY OF THE (DISCRETE) HIROTA EQUATION Adam Doliwa doliwa@matman.uwm.edu.pl

4D CUBE VISUALIZATION OF ZAMOLODCHIKOV’S CONDITION (1981)

6

2

15

3

41

5

4

6

2

3

R246

R356

145

123R

35

1

2

4

6

6

5

4

13

26

5

4

2

1 3

246R

1

2

3

4

6

5

24

1

5

3

6

2

4

6

15

3

R123

R356

R

R145

R123

R145

R246

R356

=R356

R246

R145

R123

13

4

2

Φ

Φ (1234)

PROPOSITION [Kashaev, Korepanov, Sergeev 1998], [AD, Kashaev]

The companion to the Hirota map satisfies the functional Zamolodchikov equation

ADAM DOLIWA (UWM PL) MULTIDIMENSIONAL CONSISTENCY 6.05.2020 12 / 25

Page 13: Multidimensional consistency of the (discrete) Hirota equation · 2020-05-06 · MULTIDIMENSIONAL CONSISTENCY OF THE (DISCRETE) HIROTA EQUATION Adam Doliwa doliwa@matman.uwm.edu.pl

DESARGUES (103) CONFIGURATION

φ

φ

φ

φφ

φ

φ

φφ

φ

(ij)

(jk)

(ik)

(ijl)

(ikl)

(jkl)

(il)

(jl)

(kl)

(ijk)

4D consistency of Desargues maps is a consequence of the Desargues theorem

ADAM DOLIWA (UWM PL) MULTIDIMENSIONAL CONSISTENCY 6.05.2020 13 / 25

Page 14: Multidimensional consistency of the (discrete) Hirota equation · 2020-05-06 · MULTIDIMENSIONAL CONSISTENCY OF THE (DISCRETE) HIROTA EQUATION Adam Doliwa doliwa@matman.uwm.edu.pl

THE HIROTA–ZAMOLODCHIKOV MAP IN THE AFFINE GAUGE

Φ(2) −Φ(1) = (Φ−Φ(1))x1, Φ(23) −Φ(13) = (Φ(3) −Φ(13))x1,

Φ(23) −Φ(12) = (Φ(2) −Φ(12))x2, Φ(3) −Φ(1) = (Φ−Φ(1))x2,

Φ(3) −Φ(2) = (Φ−Φ(2))x3 Φ(13) −Φ(12) = (Φ(1) −Φ(12))x3

13

Φ

Φ(123)

Φ(1)

Φ (12)

Φ

Φ(123)

Φ(1)

Φ (12)

R

Φ(3)

Φ(23)Φ(23)

Φ(3)

1 3~~

2

Φ(13)

~2

Φ(2)

PROPOSITION [AD, Kashaev]

The birational map RA : (x1, x2, x3) 7→ (x1, x2, x3)

x1 = [x3 + x1(1− x3)]−1 x1x2, x2 = x3 + x1(1− x3),

x3 = 1 + (x2 − 1) [(1− x1)x3 + x1(1− x2)]−1 (x3 + x1(1− x3)) ,

satisfies Zamolodchikov’s condition

RA123 ◦ RA

145 ◦ RA246 ◦ RA

356 = RA356 ◦ RA

246 ◦ RA145 ◦ RA

123,

ADAM DOLIWA (UWM PL) MULTIDIMENSIONAL CONSISTENCY 6.05.2020 14 / 25

Page 15: Multidimensional consistency of the (discrete) Hirota equation · 2020-05-06 · MULTIDIMENSIONAL CONSISTENCY OF THE (DISCRETE) HIROTA EQUATION Adam Doliwa doliwa@matman.uwm.edu.pl

DECOMPOSITION INTO PENTAGONAL MAPS

The birational map RA : (x1, x2, x3) 7→ (x1, x2, x3) can be decomposed as

RA = P23 ◦ V12 ◦ N13

where

the (affine) normalization map N : (x1, x2)→ (x ′1, x′2)

x ′1 = (x2 + x1 − x1x2)−1 x1, x ′2 = x2 + x1 − x1x2,

N SATISFIES THE PENTAGONAL CONDITION

N12 ◦ N13 ◦ N23 = N23 ◦ N12

the Veblen map V : (x1, x2)→ (x1, x2)

x1 = x1x2, x2 = (1− x1)x2(1− x1x2)−1,

V SATISFIES THE REVERSED PENTAGONAL CONDITION

V23 ◦ V13 ◦ V12 = V12 ◦ V23

transposition P : (x1, x2)→ (x2, x1)

ADAM DOLIWA (UWM PL) MULTIDIMENSIONAL CONSISTENCY 6.05.2020 15 / 25

Page 16: Multidimensional consistency of the (discrete) Hirota equation · 2020-05-06 · MULTIDIMENSIONAL CONSISTENCY OF THE (DISCRETE) HIROTA EQUATION Adam Doliwa doliwa@matman.uwm.edu.pl

GEOMETRY OF THE (AFFINE) NORMALIZATION MAP

Given four collinear points A, B, C and D, consider two pairs of linear relationsbetween their non-homogeneous coordinates

B

A

C

D

φA − φB = (φC − φB)x1

φD − φA = (φC − φA)x2and φA − φB = (φD − φB)x ′1

φD − φB = (φC − φB)x ′2.

The (affine) normalization map is a consequence of that change

x ′1 = (x2 + x1 − x1x2)−1 x1, x ′2 = x2 + x1 − x1x2,

ADAM DOLIWA (UWM PL) MULTIDIMENSIONAL CONSISTENCY 6.05.2020 16 / 25

Page 17: Multidimensional consistency of the (discrete) Hirota equation · 2020-05-06 · MULTIDIMENSIONAL CONSISTENCY OF THE (DISCRETE) HIROTA EQUATION Adam Doliwa doliwa@matman.uwm.edu.pl

LINEAR PROBLEM FOR THE VEBLEN MAP [AD, Sergeev 2014]

V

AC

A

C

BC

AC

A

C

CD

BC

AD

AB

CD

AB

AD

D

B

D

B

BD BD

The Veblen (62, 43) configuration

φAC − φAD = (φAB − φAD)x1

φBC − φCD = (φAC − φCD)x2and φBC − φBD = (φAB − φBD)x1

φBD − φCD = (φAD − φCD)x2

x1 = x1x2, x2 = (1− x1)x2(1− x1x2)−1,

ADAM DOLIWA (UWM PL) MULTIDIMENSIONAL CONSISTENCY 6.05.2020 17 / 25

Page 18: Multidimensional consistency of the (discrete) Hirota equation · 2020-05-06 · MULTIDIMENSIONAL CONSISTENCY OF THE (DISCRETE) HIROTA EQUATION Adam Doliwa doliwa@matman.uwm.edu.pl

GEOMETRY OF THE TEN-TERM RELATION

THEOREM [Kashaev, Sergeev 1998]

Given a solution N of the functional pentagon equation, and given a solution V of thereversed functional pentagon equation on the same set X , then the mapR = P23 ◦ V12 ◦ N13 satisfies the Zamolodchikov equation, provided

V13 ◦ N12 ◦ V14 ◦ N34 ◦ V24 = N34 ◦ V24 ◦ N14 ◦ V13 ◦ N12.

A

B

AB AC AD

E

DC

BC

BE

DE

AE

CD

BD

Start from seven points (black circles) of the star configuration (102, 54) AND FOUR

CORRESPONDING LINEAR RELATIONS there are two distinct ways to complete theconfiguration using the normalization and Veblen flips

ADAM DOLIWA (UWM PL) MULTIDIMENSIONAL CONSISTENCY 6.05.2020 18 / 25

Page 19: Multidimensional consistency of the (discrete) Hirota equation · 2020-05-06 · MULTIDIMENSIONAL CONSISTENCY OF THE (DISCRETE) HIROTA EQUATION Adam Doliwa doliwa@matman.uwm.edu.pl

OUTLINE

1 MULTIDIMENSIONAL CONSISTENCY

2 DESARGUES MAPSNon-commutative Hirota equation and its 4D consistencyThe Zamolodchikov equationThe normalization map and the Veblen mapThe ten-term relation

3 NON-COMMUTATIVE MAP AND ITS QUANTUM REDUCTIONNormalization map and its ultralocal/quantum reductionThe Veblen map and its quantum reductionQuantum map with Zamolodchikov’s property

ADAM DOLIWA (UWM PL) MULTIDIMENSIONAL CONSISTENCY 6.05.2020 19 / 25

Page 20: Multidimensional consistency of the (discrete) Hirota equation · 2020-05-06 · MULTIDIMENSIONAL CONSISTENCY OF THE (DISCRETE) HIROTA EQUATION Adam Doliwa doliwa@matman.uwm.edu.pl

THE NORMALIZATION MAP IN HOMOGENEOUS COORDINATES

B

A

C

D

φA =φCx1 + φBy1, φA =φDx ′1 + φBy ′1φD =φCx2 + φAy2, φD =φCx ′2 + φBy ′2

PROPOSITION [AD, Sergeev 2014]

The normalization map N : [(x1, y1), (x2, y2)]→ [(x ′1, y′1), (x ′2, y

′2)]

x ′1 = (x2 + x1y2)−1x1, y ′1 = y1x−11 x2(x2 + x1y2)−1x1

x ′2 = x2 + x1y2, y ′2 = y1y2

satisfies the pentagon relation

N12 ◦ N13 ◦ N23 = N23 ◦ N12

ADAM DOLIWA (UWM PL) MULTIDIMENSIONAL CONSISTENCY 6.05.2020 20 / 25

Page 21: Multidimensional consistency of the (discrete) Hirota equation · 2020-05-06 · MULTIDIMENSIONAL CONSISTENCY OF THE (DISCRETE) HIROTA EQUATION Adam Doliwa doliwa@matman.uwm.edu.pl

QUANTUM REDUCTION OF THE NORMALIZATION MAP

OBSERVATION

In the commutative case the normalization map provides a Poisson automorphism ofthe field of rational functions k(x1, y1, x2, y2) equipped with the Poisson structure

{xi , yi} = xiyi , {xi , xj} = {yi , yj} = {xi , yj} = 0, i 6= j

PROPOSITION [AD, Sergeev 2014]

Assume that the normalization map preserves the ultra-locality conditions

xixj = xjxi , yiyj = yjyi , xiyj = yjxi , i 6= j

then (under certain general position conditions) there exists a central non-zero elementq such that

yixi = qxiyi , y ′i x ′i = qx ′i y ′i i = 1, 2

REMARK Ultralocality in the case of the normalization map implies Weyl commutationrelations

ADAM DOLIWA (UWM PL) MULTIDIMENSIONAL CONSISTENCY 6.05.2020 21 / 25

Page 22: Multidimensional consistency of the (discrete) Hirota equation · 2020-05-06 · MULTIDIMENSIONAL CONSISTENCY OF THE (DISCRETE) HIROTA EQUATION Adam Doliwa doliwa@matman.uwm.edu.pl

THE FULL VEBLEN MAP

φAC = φABx1 + φADy1

φBC = φACx2 + φCDy2and φBC = φAB x1 + φBD y1

φBD = φAD x2 + φCD y2

V

AC

A

C

BC

AC

A

C

CD

BC

AD

AB

CD

AB

AD

D

B

D

B

BD BD

Due to the gauge freedom in rescaling φBD the coefficient y1 = λ is free

PROPOSITION [AD, Sergeev 2014]

The Veblen map Vλ : [(x1, y1), (x2, y2)]→ [(x1, y1), (x2, y2)]

x1 = x1x2, y1 = λ

x2 = y1x2λ−1, y2 = y2λ

−1

satisfies the pentagon relation V C23 ◦ V B

13 ◦ V A12 = V H

12 ◦ V G23 provided B = H and G = CB

When the gauge factors are functions of the corresponding arguments then the aboverelations between the factors become complicated functional equations

ADAM DOLIWA (UWM PL) MULTIDIMENSIONAL CONSISTENCY 6.05.2020 22 / 25

Page 23: Multidimensional consistency of the (discrete) Hirota equation · 2020-05-06 · MULTIDIMENSIONAL CONSISTENCY OF THE (DISCRETE) HIROTA EQUATION Adam Doliwa doliwa@matman.uwm.edu.pl

ULTRALOCAL/QUANTUM REDUCTION OF THE VEBLEN MAP [AD, Sergeev 2014]

OBSERVATION

In the commutative case the Veblen map Vλ with the gauge function λ = αy1 + βx1y2,where α, β ∈ k are parameters, provides a Poisson automorphism of the field ofrational functions k(x1, y1, x2, y2) equipped with the Poisson structure

{xi , yi} = xiyi , {xi , xj} = {yi , yj} = {xi , yj} = 0, i 6= j

Moreover, the map satifies the pentagon relation V C23 ◦ V B

13 ◦ V A12 = V H

12 ◦ V G23 provided

αG = αBαC , αH = αAαB, βA = αCβH , βB = βGβH , βC = αAβG

PROPOSITION

With the same form of the gauge function the Veblen map preserves the ultralocal Weylcommutation relations

yixi = qxiyi , xixj = xjxi , yiyj = yjyi , xiyj = yjxi , i 6= j

Moreover such map satisfies pentagonal condition with the same relations as abovebetween the parameters

ADAM DOLIWA (UWM PL) MULTIDIMENSIONAL CONSISTENCY 6.05.2020 23 / 25

Page 24: Multidimensional consistency of the (discrete) Hirota equation · 2020-05-06 · MULTIDIMENSIONAL CONSISTENCY OF THE (DISCRETE) HIROTA EQUATION Adam Doliwa doliwa@matman.uwm.edu.pl

ULTRALOCAL/QUANTUM MAP WITH ZAMOLODCHIKOV’S PROPERTY

The map Rλ = P23 ◦ Vλ12 ◦ N13 given explicitly by

x1 = (x3 + x1y3)−1x1x2 y1 = (αy1x3 + βx1y2)(x3 + x1y3)−1

x2 = x3 + x1y3 y2 = y1y3

x3 = y1x2x3(αy1x3 + βx1y2)−1 y3 = y2(x3 + x1y3)(αy1x3 + βx1y2)−1

preserves ultralocal Weyl commutation relations, and satisfies Zamolodchikov’scondition

RH123 ◦ RG

145 ◦ RF246 ◦ RE

356 = RD356 ◦ RC

246 ◦ RB145 ◦ RA

123,

provided the parameters of the gauge functions satisfy

βB = βFβH , αC = αEαG, αF = αBαD, βG = βAβC

αHβF = βDαB, βEαG = βCαA, αAαB = αGαH , βAαE = αDβH

REMARK

The above Zamolodchikov-type map can be realized by a unitary operator (inappropriate Hilbert space) whose definition involves the non-compact quantumdilogarithm function.

ADAM DOLIWA (UWM PL) MULTIDIMENSIONAL CONSISTENCY 6.05.2020 24 / 25

Page 25: Multidimensional consistency of the (discrete) Hirota equation · 2020-05-06 · MULTIDIMENSIONAL CONSISTENCY OF THE (DISCRETE) HIROTA EQUATION Adam Doliwa doliwa@matman.uwm.edu.pl

CONCLUSION

The possibility of adding to an integrable equation arbitrary number of its copiesinvolving additional independent variables provides new meaning to its commutingsymmetries [AD, Santini 1997], [AD, Santini, Mañas 2000]

Multidimensional consistency of 2D discrete equations can serve as integrabilitydetector [Nijhoff 2002], [Adler, Bobenko, Suris 2003]

Zamolodchikov’s equation as multidimensional generalization of the Yang–Baxterequation [Zamolodchokov 1981], [Kashaev, Korepanov, Sergeev 1998]

The Hirota equation in integrable systems theory [Hirota 1981], [Miwa 1982], ...

The non-commutative Hirota equation, its geometric meaning, and its AN -typeaffine Weyl group symmetry [Nimmo 2006], [AD 2010], [AD 2011]

Pentagonal maps in construction of solutions to the Zamolodchikov equation(classical, non-commutative, quantum) [Kashaev, Sergeev 1998], [AD, Sergeev 2014]

ADAM DOLIWA (UWM PL) MULTIDIMENSIONAL CONSISTENCY 6.05.2020 25 / 25