multimedia signal coding and transmission · 2016-05-23 · - 4 - multimedia signal coding and...

28
Jens-Rainer Ohm Multimedia Signal Coding and Transmission Solutions to End-of-chapter Problems Ohm 2016

Upload: others

Post on 04-Mar-2020

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

Jens-Rainer Ohm

Multimedia Signal Coding and Transmission Solutions to End-of-chapter Problems

Ohm 2016

Page 2: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

- 2 - Multimedia Signal Coding and Transmission

Ohm/IENT 2016

Equations for inversion of 2x2 and 3x3 matrices:

1121

1222

21122211

1

2221

12111 1

aa

aa

aaaaaa

aaA

312213332112322311322113312312332211

211222113211311222313221

231121133113331133212331

2213231233123213322333221

333231

232221

1312111 1

aaaaaaaaaaaaaaaaaa

aaaaaaaaaaaa

aaaaaaaaaaaa

aaaaaaaaaaaa

aaa

aaa

aaa

A

AA

Problem 1.1 a) per image frame: 1920 x 1080 + 2 (960 x 1080) Byte = 4.147,200 Byte per second: 4.147,200 Byte 60 = 248.832 Mbyte per minute: 248.832 Mbyte 60 = 14.92992 Gbyte whole movie: 14.92992 Gbyte 150 2.2395 Tbyte b) 2239.5 x (1:200) = 11.1975 GByte c) 248.832 Mbyte/s = 248.832 8 Mbit/s = 1.990656 Gbit/s 1.990656 Gbit/s (1:200) = 9.95328 Mbit/s using HEVC Increase by 10%: 9.95328 Mbit/s 1.1 = 10.9486 Mbit/s Note: The calculations above define 1 Mbyte as 1.000,000 Byte. In calculating hard disc storage, typically the definition 1 MByte as 1,0242=1.048,576 Byte is used. Problem 1.2 a) Rate for video signal: 720 kbit/s – 20 kbit/s = 700 kbit/s buffer memory size: 700 kbit/s 0.1 s = 70 kbit b) Mean number of bits per frame is 700 kbit/s : 30 frames/s = 23.333 kbit/frame (target data rate). Decrease of Q factor by k ef-

fects increase of actual data rate by (1.1)k – if the Q factor is increased, k is less than zero, such that the data rate becomes lower. Effect of the rate control: updated data rate = actual data rate (1.1)k target

19.28 kbit (1.1)k 23.33 kbit (1.1)k 23.33/19.28 kbit k log (1.1) log (23.33/19.28) k log (23.33/19.28) / log (1.1) 2.154 The best choice is decreasing the Q factor by two steps, which provides better quality. This may bring up the rate to approximately 23.3288 kbit/frame or 699.86 kbit/s. Note: Practically, a more conservative choice, e.g. decreasing by only one step may be more appropriate. Firstly, the rule of thumb given here may not appy to all sequences; second, strong fluctuations of quality may be undesirable; third, if there are different picture types in encoding (such as intra, unidirectional and bidirectional prediction), their bit consumption may also be quite differ-ent. Problem 2.1

a) With the frequency domain sampling basis

301 2

11

2

T

F

Interpretation from the following Figure: Boundary of base band (gray) in the first quadrant is limited by lines g1 and g2. The centers of basebands and of next periodic spectrum copies establish corners of triangles having side lengths |f0|=|f1|=|1/T|. Triangles A,B and C are congruent. The intercepts of the lines are as given in the following table: f1 axis f2 axis g1 parallel 1/(2T) g2 3 / (3 )T 1/T

The line equations are

Page 3: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

Solutions - 3 -

Ohm/IENT 2016

g1 : 2

1

2f

T

g2 : 1 22 1

11

3 / 3 3 3

f T ff T f

T

1f

2f

1

T

3

2T

1

2T

A

B

C

f0

f1

g1

g2

All signal components above any of the two lines must be zero to fulfill the sampling conditions. In the first quadrant, this can be formulated as

21 2 2 1

1 1( , ) 0 for and

2 3 3

fS f f f f

T T .

Generalization into all four quadrants gives (2.72).

b) From Figure above: Gray area in first quadrant (rectangle + triangle B having half size of rectangle)

hex 2

1 3 1 31.5

2 6 4 2A

T T T

In comparison, using rectangular sampling with R=S in the first quadrant (from Fig. 2.13c) 2

hexrect

rect

1 30.866

2 2

AA

T A

c) From Fig. 2.13a resp. length of the basis vector t0 from (2.63) : 1,hex 2

2

3T T .

For rectangular sampling 1,hex1,rect 2

1,rect

2

3

TT T

T .

d) 1,hexhex rect2

1,rect hex

2 1 21 0

3 3 3

T A

T T A

T

Results of c) and d) determine the factor, by which the number of samples is lower in case of hexagonal sampling, as compared to rectangular sampling using identical line spacing. The result from b) is the reciprocal value, as the size of the baseband spec-trum behaves reciprocally with the 'sampling area'.

e) Area of the CCD chip 10x7.5 mm2, N1N2=4106 Pixel.

Rectangular: 2 61 2 1,rect 2,rect 2,rect

32,rect

10 44 10

7.5 3

3 10 1,732 rows

T T N N N

N

Hexagonal: 2 6

1 2 1,hex 2,hex 2,hex

32,hex

2 10 3 24 10

7.5 23 3

2 3 10 1,861 rows

T T N N N

N

Sampling distances: rectangular 7.5 mm / 1,732 = 4.33 m ; hexagonal 7.5 mm / 1,861 = 4.03 m.

Page 4: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

- 4 - Multimedia Signal Coding and Transmission

Ohm/IENT 2016

Problem 2.2 a)

2T1

T1

2T2 T

2

b)

1 1 2 2

1 2

1 2

1 2

1 2 2

1 2

j21 21 2 1 2 1 2

1 2 1 2

j1 21 2 1 2

1 2 1 22, 2 even0, odd

1( , ) ( , ) , 1 e

4 2 2

1( , ) , 1 e

4 2 2

f T f T

k k

k k

k kk k kk k

k kS f f S f f f f

T T T T

k kS f f f f

T T T T

1 2

1 21 11 2 1 2

1 2 1 2 2

1 2

1( , ) ,

2 2 2

1 01 2( ) with and 1 12

k k

k k kS f f f f

T T T T T

S T T TT

k

F f kF F

Note: With different scaling 2 1 3 / 2T T T this would give the scheme of hexagonal sampling, Fig. 2.11c and (2.63) top.

N

Problem 2.3

a) Boundaries of the baseband: 1 2 2 2

1 1 1 1Boundary

2 3 2 6f f F F

T T T T .

b) According to the result from a), the sampling condition is violated. Alias in the first quadrant results from the spectral copy at F1=1/(2T), F2=1/(2T). The resulting alias frequency is F1’=1/(2T)1/(3T) = 1/(6T) , F2’=1/(2T)1/(3T) = 1/(6T) .

1f

2f

12T

Center of baseband

Center ofspectral copy

Violation ofsampling theorem

visiblealias frequency

13T

16T

16T

13T

12T

Problem 2.4

1

0

3

1( ) e ; ; ; e d

1 12

bx t xs

s

bp x a a b x y y

a)

2

2

2

2 2

2

2

12

2 21 1 1 1 1;

2 22 2

1( ) e

2s

s

s s s s

x

s

s

b a

p x

Page 5: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

Solutions - 5 -

Ohm/IENT 2016

b) 2

2

1 2 2 1 1; ( ) e

1 2 2 2s

x

ss

s s x s

b a p x

c) 0 0

13 1 1lim 0 ; lim 0 ; but 0 lim limx x x xx x x x

3 /1

?1/s

b

Assumption : b is a positive and real-valued constant. Different cases are: 1

1 lim 0 lim 1bxx bx bx eb

und 1

1 lim lim e 0bxx bx bxb

This is a uniform distribution, ps(x)=a=b/2 for –1/b<x<1/b. p (x)s

x

b/2

-1/b 1/b

The constants a and b are: 1/

2 22

1/

1 1 1;

2 3 23 12

b

s

b s s

b bx dx b a

b

Problem 2.5

a) 2 2

2 2 2

( ) (0) ;

(1) ; (2)

kss s ss s

ss s ss s

k

2

2

2

1

1

1s

ssC

b) 2 12

1 0 0 1 0 01

0 1 0 0 1 0

0 0 1 0 0 1s

s

ss ssC C Det|Css|=[s2]3

T1 1

2 2 22 221 2 32

3 3

22 231 2

2 2 2

1 0 01

0 1 0 12

0 0 1 2,3 3 33 32 2

2 2 21 2 33

2

1 1( ) e e

2 2

1e e e ( ) ( ) ( )

ss

s s s

x x

x xx x x

x x

s s

xx x

s s s

s

p

p x p x p x

s x

Problem 2.6 a) For statistical independency, Pr(j1,j2) = Pr (j1)Pr(j2), Pr(j1|j2) = Pr(j1), Pr(j2|j1) = Pr(j2). Hence,

1 2

1 2

2 1 1 2 2 2

1 2 2 2 2

1

| Pr( )Pr( ) log Pr( )

Pr( ) Pr( ) log Pr( ) ( )

j j

j j

H j j j

j j j H

S S

S

similarly for H(j1|j2). This gives 1 2 2 2 1 1 1 2( ; ) ( ) ( | ) ( ) ( | ) 0I H H H H S S S S S S S S ,

which can also be shown by direct computation:

1 2

1 21 2 1 2 2

1 2

Pr( )Pr( )( ; ) Pr( )Pr( ) log 0

Pr( )Pr( )j j

j jI j j

j j S S

b) For this case, Pr(j1,j2) = Pr(j1) (j1j2) = Pr(j2) (j1j2), Pr(j1|j2) = Pr(j2|j1) = (j1j2) (discrete delta impulse: =0 for j1 j2, =1 else). Hence, all entries j1 j2 can be disregarded:

1 1 2

1 2 1 2 1 2 1 1 2 1( )

( | ) Pr( ) log (1) 0 ( ; ) ( ) ( | ) ( )j j j

H j I H H H

S S S S S S S S ,

or by direct computation:

Page 6: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

- 6 - Multimedia Signal Coding and Transmission

Ohm/IENT 2016

1 1 2 1 1 2

11 2 1 2 1 2 1

( ) ( )1 1 1

Pr( ) 1( ; ) Pr( ) log Pr( ) log ( )

Pr( )Pr( ) Pr( )j j j j j j

jI j j H

j j j

S S S

Problem 2.7

a) 2 2 2sg s s sg C

21

2

1 g sgsg

sg ssg

CC

222 2

2 2 2

21

2

2

1( , ) e

2

g s s g sg s g

s g sg

x m y m x m y m

sg

sg

p x y

C

sg=0 : (in the sequel, assumption of zero-mean signals, ms=mg=0)

2 2 2 2 22

2 2 22

1 112 22

2 2 22 2

1 1 1( , ) e e e ( ) ( )

2 22

g s

s g gs

x y yx

sg s g

s gs g

p x y p x p y

x=y : As joint values with xy cannot occur, the following condition holds:

( , )d ( , )d 0 for all 0y

sg sg

y

p x y x p x y x

and ( , )d ( )sg sp x y y p x

Using the "sifting property" of (), these conditions are fulfilled by the following function using the Dirac impulse: psg(x,y)=ps(x) (yx). This also guarantees that the volume below the joint PDF is one:

1

( , )d d ( ) ( )d d ( ) ( )d d ( )d 1sg s s sp x y y x p x y x y x p x y x y x p x x

b)

2 2 2 2 2

2 2 2 2

21 12 22

| 2 2 2 2

( , ) 1( | ) e 2 e

( ) 2

g s sg

s g sg s

x y xy x

sgg s s

ss g sg

p x yp y x

p x

Expressed by normalized covariance coefficients sg=sg/(sg) :

2 2 2 2 2

22 2 2

2 2 2 2 2 2 2

2 2 2

2 2 2 2 22

2 2 21

212

2 1

| 2 2 2 2

2 11

2 1

2 2

2( | )

2 1

1e

2 1

g s s g sg

ss g sg

g s s g sg g sg

s g sg

y xy xs s g sg g sg

s g sg

x y xy x

sg s

s g sg

x y xy x

g sg

p y x e

2

2

2 2 2 2 2

1 1

2 21 1

2 2 2 2

1 1e e

2 1 2 1

gsg

s g sg s

s g sg g sg

y xy x

g sg g sg

Note: this is also the PDF of the prediction error, when g(t) is predicted from s(t) using a predictor coefficient gsg/s=sg/s2; the

variance of the prediction error is g2(1sg).

For uncorrelated signals, sg=0: 2

2

1

2

| 2

1( | ) e ( )

2g

y

g s g

g

p y x p y

For fully dependent signals, sg=1 and pg|s(y|x)= (yx).

Problem 2.8

a) ,0 ,0

,1 ,1

1; 0,1

1k k

uk k

k

k=0 : 1,00,01,01,00,00,01,00,0 1;1

Page 7: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

Solutions - 7 -

Ohm/IENT 2016

k=1 : 1,10,11,11,10,10,11,10,1 1;1

x0

x1

2

2

2

2

2

2

Orthonormality:

2

11;1 2

1,12

0,12

1,02

0,02

1,12

0,12

1,02

0,0 2

2;

2

21,10,11,00,0

b) 4 possible solutions (combinations of signs) are (the Figure above shows the case with both signs positive)

0 1

2 2

2 2;2 2

2 2

Φ Φ

c) Basis system is orthonormal and real: -1=T

10 1

1 12

1 12

Ψ Φ Φ Ψ

d) |R|=1-2 ; 12=(1+)(1-)=1-2=|| in the eigenvalue system

2

1

0

0;

ΛΛΨΨR

Problem 2.9 Proof of autocorrelation properties:

AR AR

2AR AR AR

AR AR AR1

( 1) ( ) ( 1)

( 2) ( 1) ( 2) ( ) ( 1) ( 2)

( ) ( 1) ( ) ( ) ( )k

k k l

l

s n s n v n

s n s n v n s n v n v n

s n k s n k v n k s n v n l

2

AR AR

AR AR AR1

0

( ) ( ) ( )

( ) ( ) ( ) ( )

s

ss

kk k l

l

k s n s n k

s n s n s n v n l

E

E E

2( ) ( ) ( ) kss ss ss sk k k

Proof of variance properties:

2

2 2

22 2AR AR

2 22AR AR AR AR

2 2

( ) ( ) ( 1)

( ) 2 ( ) ( 1) ( 1)

1

ss s

v

s

v n s n s n

s n s n s n s n

E E

E E E

Proof of spectral properties:

j2

222

j2 j2

2 2

2j2 j2 2

1( )

1 e

( ) ( )1 e e

1 2 cos21 e e

f

vss v f f

v vf f

B f

f B f

f

alternatively by Fourier transform of ACF:

Page 8: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

- 8 - Multimedia Signal Coding and Transmission

Ohm/IENT 2016

j2 2 j2 2 j2 j2

0 1

0

2 2 22

j2 j2 2j2 j2 2

( ) ( )e e e e .

1With when a <1:

1

11 1( ) 1

1 e 1 e 1 2 cos21 e e

k kkf f f fss ss s s

k k k k

k

k

s vss s f f f f

f k

aa

ff

Problem 2.10

2 22

1 (1)

1 (2)s s

a

a

(1) (2) (1) 1 (2)a a a a

2 2 2 2(1) (2) 1 (2) (2) (2) 1 0a a a a a

For 1: a(1)= ; a(2)=0. For =1: a(1)+a(2)=1 (degenerate case) Problem 2.11

22 21 2 1 2 1 2 1 2 1 2ˆ ˆ( ) ( , ) ( , ) ; ( , ) 0.5 ( 1, ) 0.5 ( , 1)e e s n n s n n s n n s n n s n n nE E

2 21 2 1 2 1 2 1 2 1 2

2 21 2 1 2 1 2 1 2

2 2 2 2 2 2 21 2 1 2 1 2 1 2

( , ) 2 0.5 ( , ) ( 1, ) 2 0.5 ( , ) ( , 1)

0.5 0.5 ( 1, ) 0.5 0.5 ( , 1) 2 0.25 ( 1, ) ( , 1)

0.25 0.25 0.5 1.5 0.5

e

s s s s s s s

s n n s n n s n n s n n s n n

s n n s n n s n n s n n

E E E

E E E

For 1=2=0.95 : e2=0.05125s

2 Separable Predictor : Prediction error = variance of innovation, according to (2.195)

2 2 2 2 21 21 1e v s . For 1=2=0.95 : e

2=0.009506s

Problem 2.12 a) Result as in Problem 4.4:

2 2 2 2 21 21 1 .e v s For 1=2=0.95 : e

2=0.009506s2.

b) As a result of translation shift: s(n1,n2,n31)=s(n1+k1,n2+k2,n3)

2 221 2 3 1 2 3 1 2 3 1 1 2 2 3

2 21 2 3 1 2 3 1 1 2 2 3 1 1 2 2 3

21 2

( , , ) ( , , 1) ( , , ) ( , , )

( , , ) 2 ( , , ) ( , , ) ( , , )

2 1

e

k ls

s n n n s n n n s n n n s n k n k n

s n n n s n n n s n k n k n s n k n k n

E E

E E E

For 1=2=0.95 : e2=0.8025s

2 c) By knowing actual shift for prediction: x(m-k,n-l,o-1)=x(m,n,o)

2 221 2 3 1 1 2 2 3 1 2 3 1 2 3( , , ) ( , , 1) ( , , ) ( , , ) 0e s n n n s n k n k n s n n n s n n n E E

Problem 2.13

a)

1111

1111

1111

1111

2

1;

2200

0022

1111

1111

2

1 )4Walsh()4Haar( TT

b) Tv hC T S T

i) Haar basis :

Vertical transform step v vC T S

v

1 1 1 1 18 4 2 4 20 8 4 81 1 1 1 18 4 2 4 16 0 0 01

2 2 0 0 2 4 2 4 0 0 0 02

2 4 2 4 0 0 0 00 0 2 2

C

Page 9: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

Solutions - 9 -

Ohm/IENT 2016

Horizontal transform step T

v hC C T

1 1 2 020 8 4 8 20 8 6 2 2 2

16 0 0 0 1 1 2 01 8 8 8 2 00 0 0 02 1 1 0 2 0 0 0 00 0 0 0 0 0 0 01 1 0 2

C

ii) Walsh basis :

Vertical transform step v vC T S

1 1 1 1 18 4 2 4 20 8 4 8

1 1 1 1 18 4 2 4 16 0 0 01

1 1 1 1 2 4 2 4 0 0 0 02

1 1 1 1 2 4 2 4 0 0 0 0

Horizontal transform step Tv hC C T

20 8 4 8 1 1 1 1 20 8 8 4

16 0 0 0 1 1 1 1 8 8 8 81

0 0 0 0 1 1 1 1 0 0 0 02

0 0 0 0 1 1 1 1 0 0 0 0

C

c) Haar transform better suitable for this case, as more coefficients are zero, which typically requires less rate for encoding. Problem 2.14

a)

T0

cos T1

T2

2 2 22 2 22 2 22 2 2

2 2 3 3cos cos cos 0

3 6 2 6 3 2 21 1

1cos cos cos2 23 3

t

T t

t

2

T0 1

2

T0 2

2

T1 2

2 2 3 2 30

3 2 2 2 2

2 2 1 2 2 10

3 2 2 2 2 2

2 1 3 1 30

3 2 2 2 2

t t

t t

t t

2 2 2 2

T0 0

2 2 2

T1 1

2 2 2T

2 2

2 2 2 2 2 31

3 2 2 2 3 2

2 3 3 2 30 1

3 2 2 3 2

2 1 1 2 31 1

3 2 2 3 2

t t

t t

t t

b) 2

2 T

2

1

1 ;

1s

cc

ss cc ss

C

C C TC T

2

2

2

2 2 2

2 2 21

2 3 30 1

3 2 211 1

12 2

s

cc ssC TC =

Page 10: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

- 10 - Multimedia Signal Coding and Transmission

Ohm/IENT 2016

2 2

2 2 2

2 2

2 2 21 1 2 1

2 2 2

2 3 31 0 1

3 2 21 1

1 1 12 2

s

2 2

T 2 2 2

2 2

2 2

2 2

2

2 2 2 2 3 11 1 2 1

2 2 2 2 2 2

2 3 3 21 0 1 0 1

3 2 2 21 1 2 3 11 1 12 2 2 2 2

3 22 0

2 22 3

0 1 03 2

20

2

s

s

cc ccC C T

232

2 2

c) =0.9 : 2,1

2.8683 0 .033

0 .0975 0

.033 0 .0342s

ccC

=0.5 : 2,2

1.8333 0 .177

0 .75 0

.177 0 .41671s

ccC

In the second case, higher correlation is observed between c0 and c2; less concentration of energy in low-frequency coefficients. d) tr(Css) = tr(Ccc,1) = tr(Ccc,2) = 3s

2. As the transformation is orthonormal, the total energy and variance of the vector is unchanged. Problem 2.15

a)

1 1 1 1

1 1 1 11

1 1 0 02

0 0 1 1

T

b)

2 3

22

2

3 2

2 3 2 2 2 3

2 3 2 2 2 32

2 3 2

2 3 2

1 1 1 1 1 1 1 01

1 1 1 1 1 1 1 01

1 1 0 0 1 1 0 14 1

0 0 1 1 1 1 0 11

1 1 2 1 2 1

1 1 1 1

4 1 1

1

scc

s

C

2 3 3 3

2 3 32

3 3 2 3

3 3 2 3

1 1 1 0

1 1 1 0

1 1 0 1

1 1 0 11

4 6 4 2 0

0 4 2 4

4 2 2 2

2 2 2

s

c) Positive correlation between coefficient c1, and c2|c3: If a signal has a local gradient around the center of the block, this will be measured just at different scale. Extremely small negative correlation between c2/c3, which are measuring local changes in signal at different positions. No correlation between c0 and c1, because the first is measuring the mean, and a superimposed change around the center of the block is positive or negative with same probability. Some positive correlation between c0 and c3, and negative between c0 and c2: If a positive gradient is found in the right part of the block as measured by c3, the mean measured by c0 will by tendency be higher; this will likewise be the case if a negative gradient is found in the left part of the block as measured by c2.

Page 11: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

Solutions - 11 -

Ohm/IENT 2016

Problem 2.16

a) j2 j j j j0

2 2 2 2( ) e e e e e 2 cos

2 2 2 2f f f f f f

tF

1j

j2 j j j j 21

2 2 2 2( ) e e e e e 2 jsin e 2 sin

2 2 2 2

ff f f f f f f

tF

b) 2 2 2

2 2 2 2 21 ; 0

2 2 2 2 2

c) 1 1

2 22 cos 2 sin 2 sinf f f with cos sin / 2 ; sin sin( )

d) 2 2

2 22 cos 2 sin 2 cos sin 2f f f f

Problem 2.17 a) Arguments of the windowing function:

3 5 7(0) sin ; (1) sin ; (2) sin ; (3) sin

8 8 8 8w A w B w B w A

Arguments of the cosine function:

0 0 0 0

3 5(0) cos ; (1) cos ; (2) cos ; (3) cos

8 8 8 8h B h B h A h A

1 1 1 1

3 3 9 15(0) cos ; (1) cos ; (2) cos ; (3) cos

8 8 8 8h A h A h B h B

Basis vectors:

T T

0 1;AB BB BA AA AA BA BB AB t t

b) T T 3 3 3 3

0 1 1 0 0A B B A B A A B t t t t 2T 2 2 4 2 2 4 T 4 2 2 4 2 2 2 2

0 0 1 1A B B B A A A B A B A B A B t t t t

222 2 2 2sin cos 1

8 8A B

c)

2 j2 j4 2 j6 j4 j2 2 j2 j60

j2 j2 j2 j2 2 j4 j2 j2

j2 j2 2 j4 j2 2 j2

( ) e e e 1 e e e e

e e e e e e e

2 e cos 2 e 2 e cos 2 e 1 2cos 2 e

f f f f f f f

f f f f f f f

f f f f f

AB B AB A AB A

AB A

AB f A f f AB A

tF

2 j2 2 j4 j6 2 j4 j2 3 j61

2 j2 j2 j2 j4 j2 j2

2 j2 j4 j2 j2 2

( ) e e e 1 1 e e e

1 e e e e e e

1 2 e cos 2 2 e cos 2 1 2e cos 2 e

f f f f f j f

f f f f f f

f f f f

A AB B AB B AB e

B AB

B f AB f f AB B

tF

d) The basis functions do not express impulse responses of linear-phase filters. However, fast algorithms can be realized, as same

factors (A2,B2,AB) are used multiple times. By appropriate realization, at most three multiplications/sample must be applied to compute the 1D transform.

Problem 2.18 a) Relationships of filter impulse responses: 1

1 0( ) ( 1) (1 )nh n h n

Filter with 6 coefficients, lowpass: h0(2) h0(1) h0(0) h0(1) h0(2) h0(3)

A B C C B A Filter with 6 coefficients, highpass: h1(2)= h0(3) h1(1)=h0(2) h1(0)= h0(1) h1(1)=h0(0) h1(2)= h0(1) h1(3)=h0(2)

A B C C B A

3 3

2 2 2 2 2 2 2 2 2 20 1

2 2

( ) ( ) 0 and ( ) 2 0 ; 0,1kn n

h n h n A B C C B A h n A B C k

Page 12: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

- 12 - Multimedia Signal Coding and Transmission

Ohm/IENT 2016

Filter with 5 coefficients, lowpass: h0(2) h0(1) h0(0) h0(1) h0(2) h0(3)

A B C B A 0 Filter with 5 coefficients, highpass: h1(2)= h0(3) h1(1)=h0(2) h1(0)= h0(1) h1(1)=h0(0) h1(2)= h0(1) h1(3)=h0(2)

0 A B C B A

3 3

2 2 2 20 1

2 2

( ) ( ) 0 and ( ) 2 0 ; 0,1kn n

h n h n AB BC BC AB h n A B C k

b) Filter with 6 coefficients: z-transfer functions of the equivalent polyphase filter components (without subsampling):

2 1 2 30,A 0

2 1 2 31,A 1

1 1 2 3 40,B 0

1 1 2 3 41,B 1

( ) ( )

( ) ( )

( ) ( )

( ) ( )

H z H z Az Bz C Cz Bz Az

H z H z Az Bz C Cz Bz Az

H z z H z Az B Cz Cz Bz Az

H z z H z Az B Cz Cz Bz Az

Subsampling eliminates the odd-indexed filter coefficients: 1

0,A

11,A 0,A

1 20,B

1 21,B 0,B

( )

( ) ( )

( )

( ) ( )

H z Az C Bz

H z Az C Bz H z

H z B Cz Az

H z B Cz Az H z

Due to H1,A(z)= H0,A(z) and H1,B(z)=H0,B(z), the A and B branches each require a filter with 2 delay taps and 3 multiplications. As this is performed in parallel for two samples, only 3 multiplications/sample are necessary effectively (instead of 12, when lowpass and highpass filters are applied directly before the subsampling steps). Filter with 5 coefficients: z-transfer functions of the equivalent polyphase filter components (without subsampling):

2 1 20,A 0

1 1 2 31,A 1

1 1 2 30,B 0

1 1 2 3 41,B 1

( ) ( )

( ) ( )

( ) ( )

( ) ( )

H z H z Az Bz C Bz Az

H z H z Az B Cz Bz Az

H z z H z Az B Cz Bz Az

H z z H z A Bz Cz Bz Az

After subsampling:

1 10,A

1 11,A

1 10,B 1,A

1 2 1 2 11,B 0,A

( )

( ) 1

( ) 1 ( )

( ) 1 ( )

H z Az C Az C A z z

H z B Bz B z

H z B Bz B z H z

H z A Cz Az Cz A z z H z

Here, again 3 multiplications/sample are necessary (instead of 10 for direct computation). In both the A and B branches, one filter with one and one with two delay taps must be implemented. Problem 2.19

a) 2 2 2 2

2

(1 ) (1 )( 1/ 2) 1 9(1 ) 0.8

1 2 1 9s s s

ss f

2 2 2 2(1 ) 0.36v s s

b) Prediction of s(n) is performed from s(n2). Hence,

2 2 22

(2)(2) ss

ss s opts

a

c) 2e ( ) ( ) ( 1), / 2e n s n s n n n

e

2 22 2

22 2 2 2 4 2 2 44

1( ) ( 2) ( ) 2 ( ) ( 2) ( 2) (1 )

1ss s

e ss n s n s n s n s n s n G

E E E E

Page 13: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

Solutions - 13 -

Ohm/IENT 2016

d) 2 2e o( ) (2 ) (2 2); ( ) (2 1) (2 3)e n s n s n e n s n s n

2 2

2 3 2

2 2 2e o

2 4 2 3

( ') ( ') ( ) ( 2) ( 1) ( 3) ( ) ( 1) ( 1) ( 2)

( ) ( 3) ( 2) ( 3)

s s

s s

s

e n e n s n s n s n s n s n s n s n s n

s n s n s n s n

E E E E

E E

Consequently, the prediction errors within the two polyphase components are not uncorrelated. Problem 2.20

a)

22

2

716

91 116

vs

b)

22

2 2 2

( ) ( 1)

( ) 2 ( ) ( 1) ( 1) 2 1 8

e

s

s n s n

s n s n s n s n

E

E E E

2

real 2

16

8s

e

G

c) 2

realopt 2

opt

16 8;

7 7s

v

GG

G

d)

22 j2 j2

2

2

25 3216 2

( ) ( ) 1 e 1 e1 2 cos 2

2 1 cos 2 14 1 cos 2

1 2 cos 2 cos 2

f fvee ss

v

f f A ff

f f

f f

e) 1

1

1( )

1

zB z

z

z-1+

+ +

-

x

e(n)s(n)

e(n)opt

Problem 2.21 a) s(n) is zero-mean Gaussian AR(1) with variance s

2=v2/(12). Therefore,

2

22

2

1Pr[ ( ) 0] d and Pr[ ( ) 1] 1 Pr[ ( ) 0].

2s

xC

s

b n e x b n b n

b) The probability of a state transition follows from the probability that the sign of s(n+1) is different from the sign of s(n). The joint probability density of the two samples can be modelled as a 2D Gaussian with zero mean, cf. (2.151). With random variables x1 referring s(n), and x2 referring s(n+1), cases of sign change can be found in the gray shaded areas of the elliptically shaped pdf in the following figure:

x1

x2 y 1

y 2

cases of sign change

Similar to the transformation in (2.145)ff., the problem can better be solved in the sum/difference coordinate system y1/y2. Due to the symmetry over all quadrants, the probability of a sign change can be expressed as

2 2

1 212 2

(1 ) (1 )

4 (1 )2 12 2

0 0

4Pr[sgn( ( 1)) sgn( ( ))] d d .

4 (1 )s

y yy

s

s n s n e y y

Since after thresholding with C=0, Pr(0)=Pr(1), the probability of sign change can directly be used as Pr(0|1)=Pr(1|0) in the Markov process.

Page 14: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

- 14 - Multimedia Signal Coding and Transmission

Ohm/IENT 2016

Problem 3.1 A vertical sinusoidal test pattern is shown on an HD display (N2=1080 lines) with height H. A viewer is observing from a distance D=3H.

3H

H

a) Total viewing angle: 2arctan ( / 2) / 3 2arctan 1/ 6 18.92oH H . There are approximatlely 518,62=94,62 periods vis-

ible on the screen, the wavelength is 0.0105H. b) H corresponds to 1080 sampling units, one period is approx. 0.0105108011.41 samples. c) Yes, since the viewing angle would be half and the number of cycles/degree would be doubled d) (2.258) is type-II DCT, where the basis vector t1 represents a sampled version of half a cosine period. With the result from

b), the block length should be approx. 23 (precisely 22.82) samples. e) With 3H viewing distance, one cycle (two lines) relates to 18.92/5400.030537 degrees, therefore the spatial frequency is

28.54 cy/deg. The number of cy/deg scales linearly with the viewing distance, therefore it would be visible as 60 cy/deg at a distance od 3H60/28.546.3H. Assume that the HVS of an observer has an ideal cut-off frequency of 60 cy/deg. Beyond this distance, the pattern would be perceived as gray.

Problem 4.1 a)

2

22

2 2 2

1/2 1/2 1/2

2 2 2

1/2 1/2 1/2

log

1/22

2 2

1/2

1 1( ) log log log

2 2

( )1 1log d log ( )d log d

2 2

log ( )d log

vv

ssss

D

ss v

R D DD

ff f f D f

D

f f

1/2

22

1/2 2

log ( )dlog 2

22 2 2

2 2ss

v

f f

vs

s s s

b)

2 22 2 2

2 2 2 2

( ) uncorrelated ( ) correlated

2 22 2

2 2 2 2

11 1 1 1log log log log

2 2 2 2

1 1 1 1log log log 1 log 1

2 2 2 2

ss v sxG

R D R D

s xs

RD D D D

D D

2D : 2 2 2 21 21 1v s

2 2 221 2 2 2

G 2 2 2 1 2 2

1 11 1 1 1log log log 1 log 1

2 2 2 2ssR

D D

1=2=0.95 : RG,1D=1.679 bit ; RG,2D=1.679+1.679=3.358 bit

c) 2 2 2

1 2

max 2max

1 11( ) log

2s

R DD

2 22 1 2

max 2 21 1 2 2

2 1 1 2 22 2

1 2

2 1 2

1 2

(1 ) (1 )(1/ 2,1/ 2)

1 2 1 2

(1 )(1 ) (1 )(1 )

(1 ) (1 )

(1 ) (1 )

(1 ) (1 )

ss s

s

s

D

Page 15: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

Solutions - 15 -

Ohm/IENT 2016

2 2 21 2

max 22 1 2

1 2

2 22 1 2 2 1 2

(1 )(1 )1( ) log

(1 ) (1 )2(1 ) (1 )

1log (1 ) (1 ) log (1 )(1 )

2

s

s

R D

1=2=0.95 : R(Dmax)=1.92 bit

d)

2 2

2

(1 )( )

1 2 cos 2s

ss ff

2 2 2

2max 2

2

(1 ) 11/ 8 (1 / 8)

2 1 21 2

2

sss sf

2 2 2

2max 2 2

(1 ) 11/ 4 (1/ 4)

1 2 0 1s

ss sf

2 2

2max 2

(1 ) 11/ 2 (1/ 2)

1 2 1s

ss sf

/s2 fmax=1/8 fmax=1/4 fmax=1/2

=0.5 1.3815 0.6 0.3333 =0.95 0.1744 0.0512 0.0256

Problem 4.2 Entropy: 1.92 bit Shannon code: z1=2 bit, z2= z3= z4=3 bit, R=2.6 bit Huffman code: z1=1 bit, z2=2 bit, z3= z4=3 bit or z1=z2=z3= z4=2 bit, R=2 bit in both cases. Problem 4.3 a) 2 2( ) 0,25 log 0,25 0,75 log 0,75 0,5 0,311 0,811 bitH S

b) 4Pr(0,0) 0.25 0.25 0,0625 2

4Pr(0,1) Pr(1,0) 0.25 0.75 0.1875 3 2

4Pr(1,1) 0.75 0.75 0.5625 9 2

3 6Pr(0,0,0) 0.25 0.015625 2

2 6Pr(0,0,1) Pr(0,1,0) Pr(1,0,0) 0.25 0.75 0.046875 3 2

2 6Pr(0,1,1) Pr(1,1,0) Pr(1,0,1) 0.75 0.25 0.140625 9 2

3 6Pr(1,1,1) 0.75 0.421875 27 2

c) 2( ) log Pr( )i j j ; zj allocated number of bits

First-order probability : Encoding of separate source symbols source symbol i(j) [bit] zj Shannon zj Huffman

0 2 2 1 1 0.415 1 1

RShannon=0.252 bit+0.751 bit=1.25 bit RHuffman=0.251 bit+0.751 bit=1 bit

Joint probability of second order: Encoding of source symbol vectors, K=2 source symbol i(j) [bit] zj Shannon zj Huffman

0,0 4 4 3 0,1 2.415 3 3 1,0 2.415 3 2 1,1 0.830 1 1

RShannon=(0.06254 bit+20.18753 bit+0.56251 bit):2 =0.96875 bit = H + 0.1578 bit RHuffman=(0.06253 bit+0.18753 bit+0.18752 bit +0.56251 bit):2=0.84375 bit

= H + 0.03275 bit Joint probability of third order: Encoding of source symbol vectors, K=3:

source symbol i(j) [bit] zj Shannon zj Huffman

0,0,0 6 6 5 0,0,1 4.415 5 5 0,1,0 4.415 5 5 1,0,0 4.415 5 5

Page 16: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

- 16 - Multimedia Signal Coding and Transmission

Ohm/IENT 2016

0,1,1 2.830 3 3 1,0,1 2.830 3 3 1,1,0 2.830 3 3 1,1,1 1.245 2 1

RShannon=(0.0156256 bit+30.0468755 bit+30.1406253 bit+0.4218752 bit):3 =0.96875 bit = H + 0.1578 bit

RHuffman=(0.0156255 bit+30.0468755 bit+30.1406253 bit+0.4218751 bit):3 =0.8229 bit = H + 0.0119 bit

d) Using (2.163) : Pr(0 |1) Pr(0) Pr(0 |1) Pr(1| 0) Pr(0 |1) 1 Pr(0) Pr(0) Pr(1| 0)

Pr(0) Pr(1| 0) 0.25 0.5Pr(0 |1) 0.1666

Pr(1) 0.75

Pr(0 | 0) 1 Pr(1| 0) 0.5 ; Pr(1|1) 1 Pr(0 |1) 0.8333

e) Using (2.135) :

Pr(0,0) Pr(0 | 0) Pr(0) 0.5 0.25 0.125

Pr(0,1) Pr(0 |1) Pr(1) 0.1666 0.75 0.125

Pr(1,0) Pr(1| 0) Pr(0) 0.5 0.25 0.125

Pr(1,1) Pr(1|1) Pr(1) 0.8333 0.75 0.625

The bit allocation of the Huffman code is identical with the result of c). As however the probabilities are different, the rate is: RHuffman=(20.1253 bit+0.1252 bit +0.6251 bit):2=0.8125 bit f) Using (2.182)-(2.183):

1( ) 0.1666 2.58496 0.8333 0.26303 0.650022 bit

bH b

0

( ) 0.5 1 0.5 1 1 bitb

H b

( ) 0.25 1 0.75 0.650022 0.73751 bitH b

Problem 4.4 a) 2 2( ) 0.8log 0.8 0.2log 0.2 0.7219 bitH S

b) Boundaries of probability intervals: 0["A"]0.8["B"]1 0["AA"]0.64["AB"]0.8["BA"]0.96["BB"]1 0["AAA"]0.512["AAB"]0.64["ABA"]0.768["ABB"]0.8["BAA"]0.928["BAB"]0.96["BBA"]0.992["BBB"]1 c) Boundaries of code intervals, 3 bit accuracy : 0 ["0"] 0.5 ["1"] 1 0 ["00"] 0.25 ["01"] 0.5 ["10"] 0.75 ["11"] 1 0 ["000"] 0.125 ["001"] 0.25 ["010"] 0.375 ["011"] 0.5 ["100"] 0.625 ["101"] 0.75 ["110"] 0.875 ["111"] 1 Boundaries of probability intervals, rounded; underlined intervals exactly correspond with code intervals underlined above, which results in the following mapping: 0["A"]0.75["B"]1 "B""11" 0["AA"]0.625["AB"]0.75 "AB""101" 0["AAA"]0.5["AAB"]0.625 "AAA""0" ; "AAB""100" The computation of the mean rate (per source symbol) must be modified as compared to (11.29), since the number of source symbols Kj must be considered individually for each code symbol j:

Pr( ) j

j j

zR j

K

3 2

Pr("B") 0.2 ; Pr("AB") 0.8 0.2 0.16

Pr("AAA") 0.8 0.512 ; Pr("AAB") 0.8 0.2 0.128

"B" "AB" "AAA" "AAB"

1 1 1 10.2 2 0.16 3 0.512 1 0.128 3

1 2 3 3

0.4 0.24 0.17066 0.128 0.93866 bit

R

Problem 4.5 a) Method 1 (Fig. 5.1a): 1-2-4-1-1-1-1-2-3. Method 2 (Fig. 5.1b): 1-0-4-1-1-0-3:

Page 17: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

Solutions - 17 -

Ohm/IENT 2016

b) 1 1

0 1Pr ( ) Pr(1| 0) Pr(0 | 0) ; Pr ( ) Pr(0 |1) Pr(1|1)l l

l l

Pr(1| 0) Pr(0 |1)Pr(1) 0.3333 ; Pr(0) 0.6666

Pr(0 |1) Pr(1| 0) Pr(0 |1) Pr(1| 0)

0

0

20

Pr (1) Pr(1| 0) 0.4

Pr (2) Pr(1| 0) Pr(0 | 0) 0.4 0.6 0.24

Pr (3) Pr(1| 0) Pr(0 | 0) 0.4 0.36 0.144

1

1

21

Pr (1) Pr(0 |1) 0.8

Pr (2) Pr(0 |1) Pr(1|1) 0.8 0.2 0.16

Pr (3) Pr(0 |1) Pr(1|1) 0.8 0.04 0.032

c) According to Fig. 11.18b, only the run-lengths Pr0(l) are encoded, but the special case l=0 must also be regarded. To get a con-

sistent result, it is assumed that any run of "0"-bits starts after a "1"-bit and is terminated by reaching the state "1" again. This gives a probability for a run-length l > 0

10Pr ( ) Pr(0 |1) Pr(0 | 0) Pr(1| 0).ll

The probability of a run l=0 is

0Pr ( 0) Pr(1|1).l

It is straightforward to show that all run-length probabilities sum up as unity:

1

1 0

Pr(1|1) Pr(0 |1) Pr(0 | 0) Pr(1| 0) Pr(1|1) Pr(0 |1) Pr(1| 0) Pr(0 | 0)

1 1Pr(1|1) Pr(0 |1) Pr(1| 0) Pr(1|1) Pr(0 |1) Pr(1| 0)

1 Pr(0 | 0) Pr(1| 0)

Pr(1|1) Pr(0 |1) 1.

l l

l l

As all run-lengths l>3 shall be handled by the ESCAPE symbol, for which the probability can be computed as follows:

3

0

Pr(' 0 ') Pr(1|1) 0.2

Pr(' 1') Pr(0 |1) Pr(1| 0) 0.8 0.4 0.32

Pr(' 2 ') Pr( 1) Pr(0 | 0) 0.32 0.6 0.192

Pr(' 3') Pr( 2) Pr(0 | 0) 0.192 0.6 0.1152

Pr(' ') 1 Pr( ) 1 0.2 0.32 0.192 0.1152 0.1728.l

l

l

l l

l l

ESC l

A Huffman code design gives: ESCAPE and l=3 : 3 bits ; l=0, l=1 and l=2: 2 bits. Problem 4.6 a) Training sequence vectors:

x(0)=[1 0]T; x(1)= [3 2]T; x(2)= [ 1 1]T; x(3)= [5 4]T; x(4)= [0 1]T; x(5)= [1 0]T; x(6)= [2 2]T 1st iteration: Squared distances according to (4.61) x(0) x(1) x(2) x(3) x(4) x(5) x(6)

y0 1 5 8 25 5 5 18 y1 5 25 0 61 1 1 2

In partition of y0: x(0) ; x(1) ; x(3) In partition of y1: x(2) ; x(4) ; x(5) ; x(6)

TT(1)

0,opt

TT(1)

1,opt

1 3 5 0 2 43 2

3 3

1 0 1 2 1 1 0 21 1

4 4

y

y

2nd iteration: Squared distances according to (4.61) x(0) x(1) x(2) x(3) x(4) x(5) x(6)

y(1)0,opt 8 0 25 8 18 20 41

y(1)1,opt 5 25 0 61 1 1 2 In partition of y0: x(1) ; x(3) In partition of y1: x(0) ; x(2) ; x(4) ; x(5) ; x(6)

Page 18: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

- 18 - Multimedia Signal Coding and Transmission

Ohm/IENT 2016

TT(2)

0,opt

TT(2)

1,opt

3 5 2 44 3

2 2

1 1 0 1 2 0 1 1 0 20.6 0.8

5 5

y

y

b) After 1st iteration: Pr(0)=3/7 i(0)=1.2224 ; Pr(1)=4/7 i(1)=0.8074

2nd iteration: Distances according to cost function (4.83), =0, are identical to result a) 2nd iteration: Distances according to cost function (4.83), =65, are given in table below

x(0) x(1) x(2) x(3) x(4) x(5) x(6)

y(1)0,opt 8+79.5

=87.5 0+79.5 =79.5

25+79.5 =104.5

8+79.5 =87.5

18+79.5=97.5

20+79.5 =99.5

41+79.5 =120.5

y(1)1,opt 5+52.5

=57.5 25+52.5=77.5

0+52.5 =52.5

61+52.5 =113.5

1+52.5=53.5

1+52.5=53.5

2+52.5 =54.5

Modified allocation to y0: x(3) Modified allocation to y1: x(0) ; x(1) ; x(2) ; x(4) ; x(5) ; x(6)

TT(2)

0,opt

TT(2)

1,opt

5 45 4

1 1

1 3 1 0 1 2 0 2 1 1 0 20 0.4

6 5

y

y

Equation of separation line according to (4.85):

1 2 1 2

42 1 0.5 0.415 8 8 6 3 0.415

3x x x x

=0: 1 2 111 11

8 6

x x

=65 : 0.41527: 1 2 119 19

4 3

x x

y1(1)

y0(1)

x1

x2

separation line

= 0

separation line

= 65

x(2)

x(0)

x(1)

x(4)

x(3)

x(5)

x(6)

Problem 4.7

a) 1 22

1 2

1,

2( , )

0, else

x x AA

p x x

s

b) Solution graphically from triangular areas 1 2

1 1Pr( / 2) 2 1/ 4

2 2 2

Ax A A

A

Page 19: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

Solutions - 19 -

Ohm/IENT 2016

x1

x2

A-A

A

-A

x

x2

A-A

A

-A

c) Voronoi lines are principal axes of 45o, as all reconstruction values on coordinate axes have same distances from the origin.

Optimum is a=A/2 (centroid of Voronoi regions at the centers of the squares, due to uniform PDF)

d) 2 2

1 12 2

2 22 22 2

x x

x x

(see Figure)

x1

x2

A-A

A

-A

x1

x '2

2

2

2

2

2

2

2

2

2

2

e) Quantization error identical within all Voronoi regions, can be derived by the 2/12 formula for uniform quantization error

variance (related to samples; variance per vector would have double value) :

2412

2/2 222 AA

q

Problem 5.1

a) 1D : 2

32 2 224

1 4 (1 ) 1 4se s

e

G

2D : 2

3 32 2 2 21 2 24 4

1 1 4 (1 ) (1 ) 0.25 16se s

e

G

b) 1D : 2G 2 2

1 1log 1 log 0.25 1 bit

2 2R

2D :

2 2G 2 1 2 2

2

1 1log 1 log 1

2 21

2 log 0.25 2 bit2

R

c) At the input of the predictor P, the reconstruction signal ( )s n must be available. This can be computed from the original signal

s(n) by adding the quantization error:

Q Q( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )s s q s e e s e e n n n n n n n n n

P

Q Cs( )ne( )n+

-s( )n

i( )n

+ -

+

+

e ( )Q n

s( )n

Page 20: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

- 20 - Multimedia Signal Coding and Transmission

Ohm/IENT 2016

Problem 5.2 With U=2 according to (2.287):

T

2 2 2

2 2 2 21 1 1 1 1 1 012 2 2 2

1 1 1 1 1 0 122 2 2 2

2 2 2 2

s s s

ssC Λ

T T

2 2 2 20 11 ; 1s sc c E E

With U=3, using results from Problem 2.14:

2 2 2 2 2 2 2 2 20 1 2

4 2 4 11 ; 1 ; 1

3 3 3 3s s sc c c

E E E

With separable transform, U1=V1=2:

2 2 2 200 1 2 01 1 2

2 2 2 210 1 2 11 1 2

1 1 ; 1 1

1 1 ; 1 1

s s

s s

c c

c c

E E

E E

With separable transform, U1=V1=3:

2 2 2 200 1 1 2 2

2 2 2 201 1 1 2

2 2 2 202 1 2 2 2

4 2 4 21 1

3 3 3 3

4 21 1

3 3

4 2 4 11 1

3 3 3 3

s

s

s

c

c

c

E

E

E

2 2 2 210 1 2 2

2 2 2 211 1 2

2 2 2 212 1 2 2

4 21 1

3 3

1 1

4 11 1

3 3

s

s

s

c

c

c

E

E

E

2 2 2 220 1 1 2 2

2 2 2 221 1 1 2

2 2 2 222 1 1 2 2

4 1 4 21 1

3 3 3 3

4 11 1

3 3

4 1 4 11 1

3 3 3 3

s

s

s

c

c

c

E

E

E

Coding gain of discrete transform (12.33)

12

0TC,1D 1

12

0

1 U

kk

U U

kk

cU

G

c

E

E

1 2

1 2

1 2

1 21 2

1 2

1 2

1 12

0 01 2TC,2D 1

1 12

0 0

1 U U

k kk k

U UU U

k kk k

cU U

G

c

E

E

e.g. U=2 : TC,1D 2

1

1G

U1=U2=2, =1=2:

TC,2D 222 224

1 1

11 1 1G

Theoretical gain, 1D from (4.33) 2D1

1

1

G

Theoretical gain, 2D (4.41) 2D 2 2

1 2

1

1 1G

GTC,1D,U=2 GTC,1D,U=3 GTC,2D,U1=U2=2 GTC,2D,U1=U2=3 G1D G2D

=0.5 1.1547 1.204 1.3333 1.4497 1.3333 1.7777 =0.95 3.2026 4.7125 10.2564 22.208 10.2564 105.194

Page 21: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

Solutions - 21 -

Ohm/IENT 2016

Other example : =0.91, G1D,opt=5.8173 DCT with U=2 : GTC,1D=2.4119 ; U=3 : GTC,1D=3.2253 DCT with U=8 provides the covariance matrix of transform coefficients Ccc

2

6.344 0.000 0.000 0.000 0.000

0.000 0.930 0.000 0.000 0.000

0.000 0.312 0.000 0.000 0.000

0.000 0.000 0.149 0.000 0.000

0.000 0.000 0cc s

-0.291 -0.066 -0.021

-0.027 -0.008 -0.002

-0.291 -0.001 0.000

-0.027 -0.001 0.000C

-0.066 -0.001 .094 0.000 0.000

0.000 0.000 0.000 0.068 0.000

0.000 0.000 0.000 0.055 0.000

0.000 0.000 0.000 0.000 0.049

0.000

-0.008 -0.001 0.000

-0.021 0.000 0.000

-0.002 0.000 0.000

which gives GTC,1D=4.6313, and also illustrates that the coefficients are not entirely uncorrelated. Problem 5.3

a) 1 1 1/ 2 1 1/ 21

1 1/ 2 1 1/ 2det

TT

b) Basis vectors have different norms (not unity). Equivalent orthonormal transform is 1 12

1 12

S

c) 222 2 2

0

11 1( ) ( 1) ( ) 2 ( ) ( 1) ( 1)

4 4 2sc s n s n s n s n x n s n

E E E E E

22 2 2 21 ( ) ( 1) ( ) 2 ( ) ( 1) ( 1) 2 1sc s n s n s n s n s n s n E E E E E

d) 0 101

0 11

/ 21 1/ 2

/ 21 1/ 2

q qq

q qq

s s T q

2

T 2 2 2 10 1 0 1 0/ 2 / 2 2

2

qq q q q q

s s s s E E E E E

Consequently, the quantizer step size effecting the quantization error q0 should be half of that relating to q1.

e)

x(0)

x(1)

x(2)

x(3)

+

+

+

-

+

+

+

-

+

+

+-

c0

c2

c1

c3

:4

:2

1/ 4 1/ 4 1/ 4 1/ 4

1/ 2 1/ 2 1/ 2 1/ 2(4)

1 1 0 0

0 0 1 1

T

Problem 6.1

a) Image 1: 1 2

1 2 1 21 2

1 1( , ) ( , ) 20 19 17 18 14 13 1

9n n

s n n s n nN N

Image 2 : 1 2

1 2 1 21 2

1 1( , ) ( , ) 20 20 17 17 14 23 14 14 1

9n n

s n n s n nN N

b) Image 1: 1 2

2 2 2 2

1 2 1 21 2

1 1( , ) ( , ) 20 19 17 18 14 13 1

9n n

s n n s n nN N

2

10

255PSNR 10 log 48.13 dB

1

Page 22: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

- 22 - Multimedia Signal Coding and Transmission

Ohm/IENT 2016

Image 2 : 1 2

2 2 2 2

1 2 1 21 2

1 1( , ) ( , ) 20 20 17 17 14 23 14 14 9

9n n

s n n s n nN N

2

10

255PSNR 10 log 38.59 dB

9

Interpretation: If the squared error (energy of error) criterion is used, single high deviations are penalized more strictly than for the case of errors which are widely dispersed over the image. This phenomenon is in accordance with the visibility of errors (single high errors are clearly visible, not being masked by the image content). Problem 6.2 a) a)

i)

0 0 0 0 0

0 0 1 1 1

0 0 1 1 1

0 0 1 1 1

0 0 0 0 0

ˆ

S ii)

0 0 0 0 0

0 0 0.5 0.5 0.5

0 0.5 1 1 0.5

0 0.5 1 1 0.5

0 0.5 0.5 0.5 0

ˆ

S iii)

0 0 0 0 0

0 0 1 1 1

0 1 1 1 0

0 1 1 1 0

0 1 0 0 1

ˆ

S

b) b)

i)

00000

10010

10010

10010

00000

E ii)

0 0 0 0 0

0 1 0.5 0.5 0.5

0 0.5 0 0 0.5

0 0.5 0 0 0.5

0 0.5 0.5 0.5 0

E iii)

10010

00000

00000

10010

00000

E

c)

i)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1

0 1 0 0 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0

0 1 0 0 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ˆ

E S

S S S

Impulse response of the predictor filter: z-1 , i.e. S is generated step by step from S by a shift of one sample. Feedback of the wrong prediction resulting by one transmission error – the deviation is the convolution of the transmission error by the impulse response of the inverse prediction error filter (synthesis filter), B(z)=1/(1z-1) b(n) is a discrete unit step function horizontally. Subsequently, the matrices for cases of both 2D predictors are given, which allow to better understand the effect of 2D error propagation.

ii)

0 0 0 0 0 0 0 0 0 0

0 0 0.5 0.5 0.5 0 0 0 0.25 0.375

0 0.5 0 0 0.5 0 0 0.5 0.625 0.25

0 0.5 0 0 0.5 0 0.25 0.625 0.625 0.375

0 0.5 0.5 0.5 0 0 0.375 0.25 0.375 0.125

ˆ

0 0 0 0 0

0 0 0.5 0.75 0.125

0 0.5 0

E S

S

0 0 0 0 0

0 1 0.5 0.25 0.125

.5 0.625 0.25 0 0.5 0.5 0.375 0.25

0 0.75 0.625 0.625 0.125 0 0.25 0.375 0.375 0.125

0 0.125 0.25 0.125 0.125 0 0.125 0.25 0.125 0.125

S S

iii)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1

0 1 0 0 1 0 0 1 1 2 0 1 1 1 1 0 1 1 1 1

S S S

d)

Q

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 1 1 1 1 2 1 2 20 1 1 0 0 0 1 0 13 3 3 3 3 3 3 3 3 3 32 1 1 1 1 1 1 2 1 2 20 1 1 0 0 0 1 0 13 3 3 3 3 3 3 3 3 3 32 1 1 1 1 1 1 2 1 20 1 1 0 0 0 1 0 13 3 3 3 3 3 3 3 3 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ˆ

ˆ

E S

E S S S

23

0 0 0 0 0

0 0 0 0 0

2 1 20 03 3 32 1 20 0Q 3 3 32 1 20 03 3 3

0 0 0 0 0

Q S S E E

Page 23: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

Solutions - 23 -

Ohm/IENT 2016

Interpretation: Feedback of quantization error. The values of Q appear shifted by one sample (convolution by impulse response of predictor filter, z-1) in the prediction error signal E. Problem 6.3 a)

0051

1122

1108

02429

1I

0020

0012

10011

02659

2I

00408

881616

88064

01632232

1(q)C

00320

001216

160066

01636236

2(q)C

b) Case 1: 0,0,0,0,1,1,0,0,0,0,0,0,EOB. Case 2: 0,0,0,0,1,2,1,1,EOB c) Row-wise scan: Case 1: 11+7+5+1+9+1+3+3+5+5+3+3+3+7+1+1 bit = 68 bit 4.25 bit/coefficient Case 2: 13+7+5+1+9+1+1+3+5+3+1+1+1+5+1+1 bit = 58 bit 3.625 bit/coefficient d)

1233

1131

1333

3133

00408

881616

88064

01632232

12375

971317

95367

31535235

1(q)CC

1255

9711

7531

3111

00320

001216

160066

01636236

12375

971317

95367

31535235

2(q)CC

e)

2(q) 2 2 2, 1, ,

1 19 3 1 2 6 1 5.6875

16u v u vu v

c cUV

2255

PSNR 10lg 40.58 dB5.6875

2(q) 2 2 2 2 2 2, 2, ,

1 11 9 2 7 3 5 2 3 1 2 7 1 17.6875

16u v u vu v

c cUV

2255

PSNR 10lg 35.65 dB17.6875

22

2 1 2 21

1 1( ) log ( ) ( ) log

2 2v D

R D R D R DD D

With the difference by distortion, theoretically a rate difference of 0.8184 bit could be expected. The actual difference is only 0.625 bit, which can be explained by the fact that the frequency weighting is suboptimum when the distortion criterion is the unweighted squared error. Problem 6.4 a) H=1 in case Pr(X=black)=Pr(X=white)=0.5; maximum number of bits 161=16. b) 1 1 3 3 1 3 3

2 2 2 24 4 4 4 4 4 4Pr('b') 0.25, Pr('w') 0.75 log log log log 3 2 1.6 0.8H

c) Pr(‘b’,’b’)=1/16, Pr(‘b’,’w’)=P(‘w’,’b’)=3/16, P(‘w’,’w’)=9/16

W,W

Symbol

W,S

S,W

S,S

Probability

9/16

3/16

3/16

1/164/16

7/16

1

1

0

1

01

0

1

# bits

2

3

3

1 9 3 3 1 1 27 271 2 3 3

2 16 16 16 16 2 16 32R

Page 24: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

- 24 - Multimedia Signal Coding and Transmission

Ohm/IENT 2016

d) i) Pr(‘w’,’w’)=5/8, P(‘b’,’w’)=P(‘w’,’b’)=P(‘b’,’b’)=1/8 ii) P(‘w’,’w’)=1/2, P(‘b’,’w’)=1/2, P(‘w’,’b’)=P(‘b’,’b’)=0

e) i) 5+2+3+3 bit for the code +1 bit signalization = 14 bit

ii) 4+8 bit for the code +1 bit signalization = 13 bit (better) Advantage of ii) would e.g. not apply when the Huffman code from c) is used, as the combination (‘b’,’w’) is encoded by 3 bit.

Problem 6.5

a) 92 2 2

min16

2 21 74

2 min2 16min min

1 16 (1 ) 7 ( )

log 2 2

v s

v v

R D

DD D

2

opt 2

16

7s

v

G

b) 2 2

2 72 2 20 4

2 2( ) ( 1) 2 2 1 16 28

2 2 s sc s n s n

E E

2 2

2 12 2 21 4

2 2( ) ( 1) 2 2 1 16 4

2 2 s sc s n s n

E E

Coding gain 1opt2

2 2 bit min2

28 4 16 16 16 7

7 7 1628 4 7 16

GG D D

G

c) i) optimum: 2

2 2

1 1log log 7 1.4

2 2vR

D

ii) using T :

2 20 11 1 1 1 1

2 2 2 2 22 2 2 4 4log log log 28 log 4) log 7 2 2) 1.7

c c

D DR

E E

d)

22 2 2 2 200 01 10

22 211 2,2 4

1 49 ; 1 1 7

149 7 7 1 1641 1

749 7 7 1

s s

s

c c c

c G

E E E

E

Problem 7.1

a) (7.13) 1 2 1 2 k 1 2( , ) 2 ( , ) 1 Re ( , )ee ssf f f f p

F

,

j2 j21 1( ) e 1 e 1 2cos 2 ; 1,2

3 3i i

i

f fk i ip f i F

1 2 1 2 1 2

1( , ) 2 ( , ) 1 1 2cos 2 1 2cos 2

9ee ssf f f f f f

b) Condition in the stop band of the filter: 1 1( ) ( )ss ssf f .

Cutoff frequency 1 1 1: ( ) ( )ss eef f f

1 1 1 1 1 1

1 1 1 1

1 4( ) ( ) 2 ( ) 1 1 2cos 2 ( ) 1 cos 2

3 3

4 4 1 4 11 cos 2 cos 2 cos 2 0.21

3 3 3 3 4

ss ee ss ssf f f f f f

f f f f

c) Note: Error in problem formulation. Periodic power density spectrum should be ss ( f )=A |12 f | , | f |1/2

1/2

21 1

0

1 12 1 2 d 2 0.5

2 4s A f f A A

1/2 1/2 1/22

1 1 1 1 1 1 1 1

0 0 0

1/2 1/21 1 1 1 20 0

8 8 11 2 1 cos 2 d cos 2 d 2 cos 2 d

3 3 4

2 2 4 1 2 41 sin 2 cos 2 sin 2 1 0.396

3 2 3

e

A Af f f f f f f f

A Af f f f A

2

SNR21.26 ; 10lg 1.01 dBs

e

G G G

Page 25: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

Solutions - 25 -

Ohm/IENT 2016

0.21 1/22

1 1 1 1 1

0 0.21

0.21 0.212 2

1 1 1 1 1

0 0

0.211 1 10

0.6166

81 2 1 cos 2 d 2 1 2 d

3

8 1 10.21 0.21 cos 2 d 2 cos 2 d 2 0.21 0.21

3 2 4

2 2 4 10.6636 sin 2 cos 2 sin 2

3 2

e

Af f f A f f

Af f f f f A

Af f f f

0.21

1 0

0.1067

0.1682

0.1025 0.1682 0.2707

A

A A A

2

SNR 102,filt

1.85 ; 10 log 2.668 dBs

e

G G G

Problem 7.2 a) Vector k1 : 300)10(01010 2222

Vector k2 : 160020202020 2222 Vector k1 is the better choice according to this criterion.

b)

515

55

2

2

2

22

2

2

2

21025

025

2

2

2

22

2

2

2

100

1010

2

2

2

22

2

2

2

00

040

2

2

2

22

2

2

2

00

220220

2

2

2

22

2

2

2

2020

2020

2

2

2

22

2

2

2

Bit allocation in case of k1 : 7 + 7 + 9 + 7 bit = 30 bit Bit allocation in case of k2 : 13 + 1 + 1 + 1 bit = 13 bit

In both cases lossless coding of the (discrete) prediction error signal. Choosing k2 gives a much lower number of bits, which can be explained by the high spatial correlation of the prediction error signal.

Problem 7.3 In the following block diagram the notation definitions used for the signals are given. For the top figure, the signals are marked by superscript "(1)", for the bottom figure, superscript "(2)" is used.

QB

MC

+

- +

+

QE

MC

+

- +

+

+

-

+

Base

Enhancement

QB

MC

+

- +

+

QE

MC

+

- +

+

Base

Enhancement

+-

++

MC

+

+

MC

+

+

MC

+

+

+

ˆ (1)

Bs

(1)

Be

(1)

Bs

(1)

Q,Be

ˆ (1)

Es

(1)

Ee

s

(1)

Q,Ee

ˆ (2)

Bx

(2)

Bs

(2)

Be (2)

Q,Be

(2)

Ee (2)

Q,Ee

ˆ (2)

Es

s (2)

Bs

ˆ (2)

Bs

ˆ (1)

Es

ˆ (2)

Es

(1)s

(1)s

(2)s

(2)s

(2)

Bs

(1)

Q,Be

(1)

Q,Ee

(2)

Q,Be

(2)

Q,Ee

All the subsequent formulations are made in the spectral domain, where the motion-compensated predictor is defined as a linear system of transfer function HMC(f). The base layer is identical for both structures. Hence, the following relationships hold:

(1) (2) (1) (2)B B B BB B

(1) (2) (1) (2)Q,B Q,B B BQ,B B

ˆ ˆ ˆ( ) ( ) ( ) ; ( ) ( ) ( )

( ) ( ) ( ) ; ( ) ( ) ( )

S S S E E E

E E E S S S

f f f f f f

f f f f f f

Page 26: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

- 26 - Multimedia Signal Coding and Transmission

Ohm/IENT 2016

Further, as both reconstructed signals shall be equal: (2)

Q,B Q,E(1) (2)(1)Q,EQ,B

MC MC MC

(1) (2)Q,E Q,E Q,E

( ) ( )1( ) ( ) ( ) ( ) ( )

1 ( ) 1 ( ) 1 ( )

( ) ( ) ( )

E ES S E E S

H H H

E E E

f ff f f f f

f f f

f f f

This leads to the following definitions of prediction estimates:

Q,B Q,E Q,E(1) (2)MC MCE E

MC MC

Q,B(1) (2)MC MCE E B

MC

( ) ( ) ( )ˆ ˆ( ) ( ) and ( ) ( )

1 ( ) 1 ( )

( )ˆ ˆ( ) ( ) ( ) ( ) ( )

1 ( )

E E ES H S H

H H

ES S H H S

H

f f ff f f f

f f

ff f f f f

f

Finally, the prediction errors at the enhancement quantizer inputs are:

(1) (1)E E Q,B

Q,B Q,E

MC Q,BMC

Q,E MCMC Q,B

MC

1

1 ( )

Q,E

MC BMC

(2) (E

ˆ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

1 ( )

( ) ( )( ) ( ) ( ) 1

1 ( ) 1 ( )

( )( ) ( ) ( )

1 ( )

ˆ( ) ( )

MC

MC

H

E S S E

E ES H E

H

E HS H E

H H

ES H S

H

E S S

f

f f f f

f ff f f

f

f ff f f

f f

ff f f

f

f f

2)E B

Q,E

MC BMC

(1) (2)EE E

( ) ( )

( )( ) ( ) ( )

1 ( )

( ) ( ) ( )

S

ES H S

H

E E E

f f

ff f f

f

f f f

Consequently, not necessary to implement two recursive loops in the decoder, if only the enhancement layer signal shall be decoded. Problem 7.4

a) 2 2

2 12

1 1log 6

2 2 256s sD

D

b) 2

G,1D 2 2

G,2D G,1D

1 1log (1 ) log (4) 1 bit

2 22 2 bit

R

R R

c) The shaded area is uncovered and has to be newly encoded. This is 1/9 of the total area, and would on average require 1/9 of the

bit number that would be necessary to encode a complete frame by intraframe coding. 10

50

80

d) Number of pixels to be encoded: 90x50 (1st frame) + 90x50x1/9 x9 (subsequent frames) =9000; 9000 pixel x 4 bit/pixel =

36000 bit.

e) 4500 pixel in 1st frame 9000/4500=2 bit/pixel. Considering the coding gain by utilizing the spatial correlation:

Page 27: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

Solutions - 27 -

Ohm/IENT 2016

1

2 22 2 1

1 1 22 4

11 1 16(1 )(1 ) 16

12 2 16 16256

s sR

DD

D

f) Coding distortion from the previous frame is fed into the prediction error signal. The spectrum of the prediction error signal

then is, according to (7.14) ee(f1,f2)=min(ss(f1,f2),)

The coding distortion from e) is white noise, as according to the following estimation condition (11.23) still holds, i.e. encoding is performed within the range of "high distortion":

2

?1 2

1 21 2

2

1 3 / 21 1 7 / 4 316 16 16

1 1 7 / 4 31 3 / 2

17 / 4 3 256 0.0004 256 0.1

16

D

Hence in this case, =D1 and ee(f1,f2)=D1=const. Problem 7.5

For simplification, a one-dimensional case and compensation errors k are used subsequently; extension to multiple dimensions is straightforward. From (7.19),

, 1 , 1 , 1 , 12 2 2j j j jb , 1 , 1 , 1 , 1

2 2 2, 1 , 1 , 1 , 1 , 1 , 1 , 1

( ) ( ) je sin je sin je sin je sin ( )

( ) sin sin 2sin sin cos cos sin sin

fk fk fk fkE f S f fk fk fk fk R f

S f fk fk fk fk fk fk fk fk

, 1

From this, in case of statistically independent and zero-mean deviations k,+1 and k,-1, the cross-products come to zero when the expectation is computed. Therefore,

b b

, 1 , 1

2 2, 1 , 1 , 1 , 1

1 1 1 1( ) ( ) sin sin ( ) ( ) cos 2π cos 2π

2 2 2 2

1 1( ) 1 ( )cos 2π d ( )cos 2π d ( )

2 2

( ) 1 Re ( ) ( ) w

e e ss rr ss

ss k k rr

ss k rr

f f fk fk f f fk fk

f p f p f f

f p f

E E E

F, 1 , 1

hen ( ) ( ).k kp p

When k,+1=k,-1=k, the result becomes identical to uni-directional prediction in (7.9), which is explainable by the fact that systemat-ically the same wrong compensation is performed from both preceding and subsequent frames.

b b

2 2 2 2( ) ( ) 2sin 2sin cos sin ( )

2 ( ) 1 cos 2π ( ) 2 ( ) 1 Re ( ) ( ) .

e e ss rr

ss rr ss k rr

f f fk fk fk fk f

f fk f f p f

E

E F

When k,+1=k,1=k,

b b

2

2 2 2 2

2 2 2

4 2

sin

( ) ( ) 2sin 2sin cos sin ( )

( ) 2sin 2sin 1 2sin ( )

( ) 4sin ( ) 2 ( ) 1 cos ( )

e e ss rr

ss rr

ss rr ss rr

fk

f f fk fk fk fk f

f fk fk fk f

f fk f f fk f

E

E

E E

( ) 1 cos 4π ( ) ( ) 1 Re (2 ) ( ) .ss rr ss k rrf fk f f p f E F

The PDF is becoming narrower and therefore, its Fourier transform is becoming wider. As a consequence, the increase of spectral power towards higher frequencies is typically even less than in the statistically independent case. As an interpretation, the systematic behaviour of misaligning in one direction for the preceding and in the other direction for the subsequent frame is equivalent to additional spatial lowpass filtering. The subsequent picture illustrates the advantage of bidirectional prediction for the case of wrong motion compensation of an edge. In case of unidirectional prediction, a peak of width k appears in the prediction error signal e(n3). In case of bidi-rectional prediction, though two peaks appear at distinct positions, their amplitude is reduced by half, such that the prediction error energy is also reduced by half.

Page 28: Multimedia Signal Coding and Transmission · 2016-05-23 · - 4 - Multimedia Signal Coding and Transmission Ohm/IENT 2016 Problem 2.2 a) 2T1 T1 2 T 2 T 2 b) 11 22 12 12 12 12 2 12

- 28 - Multimedia Signal Coding and Transmission

Ohm/IENT 2016

s(n -1)3

k

estimated motion k

s(n )3

e(n )=3 s(n ) - s(n -1)3 3

s(n -1)3

k

estimated motion k-1

s(n )3

e(n )=3 s(n ) - 0.5 s(n -1)

3

3 - 0.5 s(n -1)3

s(n +1)3

k

estimated motion k+1

unidirectional bidirectional