multiphase bainitic steels at the max planck institut in düsseldorf

53
Max-Planck-Institut für Eisenforschung GmbH

Upload: dierk-raabe

Post on 23-Jun-2015

271 views

Category:

Technology


1 download

DESCRIPTION

Steel, Bainite, microstructure, properties, processing

TRANSCRIPT

Page 1: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Max-Planck-Institut für Eisenforschung GmbH

Page 2: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Content

1. Aims of project

2. Upper and Lower Bainite

3. Incomplete Reaction Phenomenon

4. Overview on Experiments

5. Influence of Alloying Elements on Transformation

6. Dilatometry a. CCT without deformation

b. CCT with deformation

7. WUMSI a. Experiments

b. LePera

c. EBSD / SEM

d. Tensile Tests

e. Nanoindentation

Page 3: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Aims of High Strength Long Products - Project

tensile strength of 900 to 1400 MPa

good ductility and toughness

(K1C≈150MNm-3/2, Charpy

V-notch energy ≥ 30 J at -60°C)

develop refined multi-phase

microstructures (carbide-free

bainite/acicular ferrite with films

of retained austenite trapped

between the platelets

Page 4: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Aims of High Strength Long Products - Project

Define medium carbon steel compositions

(addition of Si, Mn, Cr, Mo, Ni, V, B)

Page 5: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Aims of High Strength Long Products - Project

industrial cooling conditions

for Long Products

(wire rods from 16 to 22mm

diameter with cooling rates

of 1–4 K/s)

guidelines for the processing

parameters (thermomechanical

treatment (TMT), austenite

conditioning (hot rolling parameters)

and cooling strategies (continuous

or more-step-cooling)

Page 6: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Content

1. Aims of project

2. Upper and Lower Bainite

3. Incomplete Reaction Phenomenon

4. Overview on Experiments

5. Influence of Alloying Elements on Transformation

6. Dilatometry a. CCT without deformation

b. CCT with deformation

7. WUMSI a. Experiments

b. LePera

c. EBSD / SEM

d. Nanoindentation

Page 7: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Upper and Lower Bainite

Upper and Lower Bainite:

•tend to form as aggregates

(sheaves) of small platelets or

laths (sub-units) of ferrite

•difference:

carbide precipitation

UPPER BAINITE

(High Transformation

Temperature)

LOWER BAINITE (Low Transformation

Temperature)

Carbon supersaturated plate

Carbon diffusion into austenite

Carbon diffusion into austenite and carbide precipitation in ferrite

from

austenite

Carbide precipitation from

austenite

Carbide precipitation

10µm

0.2µm

Page 8: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Content

1. Aims of project

2. Upper and Lower Bainite

3. Incomplete Reaction Phenomenon

4. Overview on Experiments

5. Influence of Alloying Elements on Transformation

6. Dilatometry a. CCT without deformation

b. CCT with deformation

7. WUMSI a. Experiments

b. LePera

c. EBSD / SEM

d. Tensile Tests

e. Nanoindentation

Page 9: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Incomplete Reaction Phenomenon

Ae3'

T' o

x Carbon in austenite

Tem

per

ature

Page 10: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Content

1. Aims of project

2. Upper and Lower Bainite

3. Incomplete Reaction Phenomenon

4. Overview on Experiments

5. Influence of Alloying Elements on Transformation

6. Dilatometry a. CCT without deformation

b. CCT with deformation

7. WUMSI a. Experiments

b. LePera

c. EBSD / SEM

d. Tensile Tests

e. Nanoindentation

Page 11: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Overview on Proceedings

9 different steel

compositions

Dilatometer tests WUMSI tests

Isothermal

Multi-step cooling: temperatures: 400°C, 425°C, 450°C

time: 1h, 15min

Continuous

Multi-step cooling: breaking points:

600°C and 700°C

no deformation deformation at 800°C

110

sTransformation

parameters:

AC3, MS, BS

Austenite grain

characteristics: Grain size

Elongated or equiaxed

Microstructure

characteristics

Material testing: Tensile tests

Charpy-V-notch tests

Microstructure: Light optical

microscopy

SEM

EBSD

Austenite

Stability: X-ray

Nano-Indentation

TTT and CCT

diagrams

Page 12: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Chemical analysis of steel compositions

• Base composition:

0.3 wt% C - increasing the strength of the steel,

stabilizing the austenite

2.0 wt% Si - retarding the carbide precipitation

1.5 wt% Mn - stabilizing the austenite

• Additional alloying elements:

Cr, Mo, Ni, V, B and P – influence the trans-

formation (inhibit

diffusional, promote

bainitic transformation)

Page 13: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Content

1. Aims of project

2. Upper and Lower Bainite

3. Incomplete Reaction Phenomenon

4. Overview on Experiments

5. Influence of Alloying Elements on Transformation

6. Dilatometry a. CCT without deformation

b. CCT with deformation

7. WUMSI a. Experiments

b. LePera

c. EBSD / SEM

d. Tensile Tests

e. Nanoindentation

Page 14: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

B

F + P

Influence of alloying elements on transformation

Mn, Ni, Mo, Cr, B Cr,

Mo,

V, Si Mn,

Ni

time

tem

pera

ture

Ms

Cr,

Mo,

V,

Mn,

Ni

C, Cr, Mo, Mn, Ni, V

Page 15: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Content

1. Aims of project

2. Upper and Lower Bainite

3. Incomplete Reaction Phenomenon

4. Overview on Experiments

5. Influence of Alloying Elements on Transformation

6. Dilatometry a. CCT without deformation

b. CCT with deformation

7. WUMSI a. Experiments

b. LePera

c. EBSD / SEM

d. Tensile Tests

e. Nanoindentation

Page 16: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Austenizing, tempering and etching tests

Variation of:

Tausten.= 950°C-1200°C

Ttemper= 300°C-600°C

Etchant: aqueous or

alcoholic picric acid + Cu2Cl at

room temperature or heated at

80°C; alcoholic nitric acid;

mixture of nitric acid and picric

acid + Cu2Cl

MP_MnSi: Tausten.= 950°C; Ttemper= 450°C, aqueous picric acid; G = 11-12

Page 17: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Thermal etching

MP_CrMoNi:

Tausten.= 1200°C

Thermal etching

G = 2-3

Page 18: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Content

1. Aims of project

2. Upper and Lower Bainite

3. Incomplete Reaction Phenomenon

4. Overview on Experiments

5. Influence of Alloying Elements on Transformation

6. Dilatometry a. CCT without deformation

b. CCT with deformation

7. WUMSI a. Experiments

b. LePera

c. EBSD / SEM

d. Tensile Tests

e. Nanoindentation

Page 19: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Determination of CCT-diagrams without deformation

0,1 1 10 100 1000 10000

0

200

400

600

800

1000

HV5 241 260 274 351 404 487

tem

pe

ratu

re (

°C)

time (s)

Steel Base of chemical composition (wt%) Additional alloying elements (wt%)

C Mn Si S P Al N Cr Mo Ni V B

MP_MnSi 0.3 1.5 2.0 0.0135 0.0110 0.04 0.005 - - - - -

Page 20: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

MP_MnSi, 32K/s to 1K/s

32K/s 16K/s 8K/s

4K/s 2K/s 1K/s

Page 21: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Determination of CCT-diagrams without deformation

0,1 1 10 100 1000 10000

0

200

400

600

800

1000

HV5288335410498

545

557590

tem

pe

ratu

re (

°C)

time (s)

Steel Base of chemical composition (wt%) Additional alloying elements (wt%)

C Mn Si S P Al N Cr Mo Ni V B

MP_B 0.3 1.5 2.0 0.0135 0.0110 0.04 0.005 - - - - < 20ppm

Page 22: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

MP_B, 32K/s to 3K/s

32K/s 16K/s 8K/s

6K/s 4K/s 3K/s

Page 23: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Determination of CCT-diagrams without deformation

0,1 1 10 100 1000 0

200

400

600

800

1000

504

HV5

410

467 508 551

582 593

tem

pera

ture

(°C

)

time (s)

Steel Base of chemical composition (wt%) Additional alloying elements (wt%)

C Mn Si S P Al N Cr Mo Ni V B

MP_Mo 0.3 1.5 2.0 0.0135 0.0110 0.04 0.005 - 0.6 - - -

Page 24: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

MP_Mo, 32K/s to 2K/s

32K/s 16K/s 8K/s

4K/s 3K/s 2K/s

Page 25: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Hardness (HV5) of continuous cooled samples

0 5 10 15 20 25 30 35

250

300

350

400

450

500

550

600

MP_CrMoPMP_CrMoVMP_CrMoNi

MP_CrMoB

MP_MoMP_CrMo

MP_Cr

MP_MnSiMP_B

HV

5

cooling rate (K/s)

Page 26: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Content

1. Aims of project

2. Upper and Lower Bainite

3. Incomplete Reaction Phenomenon

4. Overview on Experiments

5. Influence of Alloying Elements on Transformation

6. Dilatometry a. CCT without deformation

b. CCT with deformation

7. WUMSI a. Experiments

b. LePera

c. EBSD / SEM

d. Tensile Tests

e. Nanoindentation

Page 27: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Determination of CCT-diagrams with deformation

1 10 100 1000

0

200

400

600

800

1000

tem

pera

ture

(°C

)

time (s)

Steel Base of chemical composition (wt%)

Additional alloying elements

(wt%)

C Mn Si S P Al N Cr Mo Ni V B

MP_B 0.3 1.5 2.0 0.0135 0.0110 0.04 0.005 - - - - <20ppm

Page 28: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

MP_B, 32K/s to 2K/s

16K/s 4K/s 8K/s

Page 29: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Determination of CCT-diagrams with deformation

1 10 100 1000

0

100

200

300

400

500

600

700

800

900

1000

1100

tem

pera

ture

(°C

)

time (s)

Steel Base of chemical composition (wt%) Additional alloying elements (wt%)

C Mn Si S P Al N Cr Mo Ni V B

MP_Mo 0.3 1.5 2.0 0.0135 0.0110 0.04 0.005 - 0.6 - - -

Page 30: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

MP_Mo, 16 K/s to 4 K/s

16K/s 4K/s 8K/s

Page 31: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Content

1. Aims of project

2. Upper and Lower Bainite

3. Incomplete Reaction Phenomenon

4. Overview on Experiments

5. Influence of Alloying Elements on Transformation

6. Dilatometry a. CCT without deformation

b. CCT with deformation

7. WUMSI a. Experiments

b. LePera

c. EBSD / SEM

d. Tensile Tests

e. Nanoindentation

Page 32: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

WUMSI (isothermal tests, without deformation)

T

5min@

1050°C

Salt bath

1h@450°C 1h@425°C

1h@400°C

t

air

800°C

1min@

1100°C

air

t8/5 =37s

s

KT 8

C

s

1050@

10,3.0 1

Page 33: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

WUMSI (isothermal holding 1h, without deformation)

Without deformation Steel

Tiso=400°C Tiso=425°C Tiso=450°C

MP_B

MP_Mo

B

265 B

340 B

351

fine B

501

B

381 B+M

458

HV5= HV5= HV5=

HV5= HV5= HV5=

Page 34: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

WUMSI (isothermal tests, with deformation)

T

5min@1050°C

Salt bath

1h@450°C 1h@425°C

1h@400°C

t

air

air

C

s

800@

10,3.0 1

Page 35: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

WUMSI (isothermal holding 1h, with deformation)

With Deformation (0.3; 10s-1

@800°C) Steel

Tiso=400°C Tiso=425°C Tiso=450°C

MP_B

MP_Mo

B

311 B+M+P

325 B+M+P

B+M

368

B+M

411 M+B

553

HV5= HV5=

HV5= HV5= HV5=

Page 36: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

WUMSI (Continuous cooling)

T

5min@1050°C

-8K/s

air (-1K/s)

600°C / 700°C

1min@

1100°C

T

t

with deformation

T 5min

@1050°C

t

air (-1K/s)

600°C / 700°C

-8K/s

C

s

800@

10,3.0 1

C

s

1050@

10,3.0 1

Page 37: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

WUMSI (Continuous cooling)

F+P+M+B

240 B+F+P+M

310

B+M

334

P+F

250

B+M

378

M+B (50%)

379 M+B(?)

391

M+B(50%)

439

MP_CrMoB

MP_B 700°C

without def.

700°C

without def.

600°C

without def.

600°C

without def. 700°C

with def.

700°C

with def.

600°C

with def.

600°C

with def.

Page 38: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Content

1. Aims of project

2. Upper and Lower Bainite

3. Incomplete Reaction Phenomenon

4. Overview on Experiments

5. Influence of Alloying Elements on Transformation

6. Dilatometry a. CCT without deformation

b. CCT with deformation

7. WUMSI a. Experiments

b. LePera

c. EBSD / SEM

d. Tensile Tests

e. Nanoindentation

Page 39: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

WUMSI (LePera-etching, EBSD map)

MP_Mo:

•without deformation

•Isothermal holding (1h@400°C)

•HV5: 501

Page 40: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Content

1. Aims of project

2. Upper and Lower Bainite

3. Incomplete Reaction Phenomenon

4. Overview on Experiments

5. Influence of Alloying Elements on Transformation

6. Dilatometry a. CCT without deformation

b. CCT with deformation

7. WUMSI a. Experiments

b. LePera

c. EBSD / SEM

d. Tensile Tests

e. Nanoindentation

Page 41: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

WUMSI (EBSD maps, Mo_iso_400_oU)

Page 42: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

WUMSI (SEM-graph, Mo_iso_400_oU)

Page 43: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

WUMSI (EBSD maps, Mo_iso_450_oU)

Page 44: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

WUMSI (EBSD maps, Mo_iso_400_mitU)

Page 45: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

WUMSI (EBSD maps, Mo_iso_450_mitU)

Page 46: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

WUMSI (SEM-graph, Mo_iso_450_mitU)

Page 47: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Content

1. Aims of project

2. Upper and Lower Bainite

3. Incomplete Reaction Phenomenon

4. Overview on Experiments

5. Influence of Alloying Elements on Transformation

6. Dilatometry a. CCT without deformation

b. CCT with deformation

7. WUMSI a. Experiments

b. LePera

c. EBSD

d. Tensile Tests

e. Nanoindentation

Page 48: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

400 410 420 430 440 450

1200

1250

1300

1350

1400

1450

1500

1550

1600

1650

1700 no deformation, 1h

no deformation, 15min

with deformation, 1h

with deformation, 15min

UT

S (

N/m

m2)

Isothermal temperature (°C)

Tensile Tests for MP_Mo steel

10 20 30 40 50 60

1200

1250

1300

1350

1400

1450

1500

1550

1600

1650

1700

no deformation, 400°C

no deformation, 450°C

with deformation, 400°C

with deformation, 450°C

UT

S (

N/m

m2)

isothermal holding time (min)

Page 49: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Transformation Behavior of MP_Mo

No deformation With deformation

Tiso=400°C Tiso=450°C Tiso=400°C Tiso=450°C

tiso=60min

tiso=15min

Page 50: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Content

1. Aims of project

2. Upper and Lower Bainite

3. Incomplete Reaction Phenomenon

4. Overview on Experiments

5. Influence of Alloying Elements on Transformation

6. Dilatometry a. CCT without deformation

b. CCT with deformation

7. WUMSI a. Experiments

b. LePera

c. EBSD

d. Tensile Tests

e. Nanoindentation

Page 51: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Nano-Indentation, (Mo_iso_400_oU)

3.78 5.68 6.36 8.13 4.77 5.90 6.5 6.54 3.99 7.09

6.8 5.92 8.32 3.8 6.39 5.61 6.26 5.78 4.68 6.72

6.2 9.93 8.79 11.51 9.92 10.37 4.89 5.28 7.16 4.82

4.82 5.95 5.24

6.86 6.07 5.2 9.21 9.9 10.16 9.62 8.22 6.19 6.47

10 9.2 9.15 7.6 5.9 4.64 4.82

H in GPa

Pmax=1000mN

Page 52: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Conclusion

• Using EBSD microstructural characteristics can be revealed. This method

can be supported by LePera etching or nano-indentation.

• Additional alloying elements have a strong influence on the bainitic

transformation and after all trials the most promising steels can be fixed:

for isothermal treatment: MP_B and MP_Mo

for continuous cooling treatment: MP_B and MP_CrMoB

• The influence of deformation on the bainitic transformation is less than that

of the additional alloying elements and the variation of the process

parameters (e.g. isothermal holding temperature)

Page 53: Multiphase Bainitic Steels at the Max Planck Institut in Düsseldorf

Future work

• Tensile tests for all steels with promising microstructures

• Charpy-V-notch tests to investigate the toughness properties

• Nanoindentation tests not only to identify the single constituents but also

to determine the their mechanical properties and compare these results with

the mechanical properties of the whole sample

• X-ray measurement to define volume fraction of retained austenite and

its C content → stability of retained austenite