multiphysics simulation and characterization in support of energy geotechnology · 2016. 7. 28. ·...

33
Xiong (Bill) Yu, Ph.D., P.E. Associate Professor, Department of Civil Engineering Case Western Reserve University April 26, 2014 Contributors from Former and Current Students: Zhen (Leo) Liu, Assistant Professor, Michigan Technological University Chanjuan Han, Graduate Research Assistant Bin (Ben) Zhang, Michael Baker Jr. Inc. Multiphysics Simulation and Characterization In support of Energy Geotechnology

Upload: others

Post on 09-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Xiong (Bill) Yu, Ph.D., P.E. Associate Professor, Department of Civil Engineering

    Case Western Reserve University

    April 26, 2014

    Contributors from Former and Current Students:

    Zhen (Leo) Liu, Assistant Professor, Michigan Technological University

    Chanjuan Han, Graduate Research Assistant

    Bin (Ben) Zhang, Michael Baker Jr. Inc.

    Multiphysics Simulation and Characterization

    In support of Energy Geotechnology

  • About myself

    Ph.D. Purdue University 2003, B.S. and M.S.

    Tsinghua University 1997, 2000

    Joined CWRU in 2005

    Current program affiliation

    Civil engineering/Geotechnical engineering/Infrastructure

    engineering

    EECS, MAE, MSE and other programs

    Research program focus/interest

    Sustainable geo/infrastructure (design, sensor technology, SHM,

    field instrumentation diagnose, etc.)

    Durable and multifunctional civil engineering materials

    Smart engineering systems

    Energy and efficiency

  • Challenges Facing the Rising Energy Demand

    Source: Energy Information Administration Data

  • Unsaturated uniform soil specimen subjected to surface freezing

    Multiphysics: Example

    Vertical internal stress

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25 0.30 0.35 0.40 0.45 0.50

    0 hour

    He

    ight (m

    )

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25 0.30 0.35 0.40 0.45 0.50

    12 hours

    He

    ight (m

    )

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25 0.30 0.35 0.40 0.45 0.50

    24 hours

    Total volumetric water content

    He

    ight (m

    )

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25 0.30 0.35 0.40 0.45 0.50

    50 hours

    Total volumetric water content

    He

    ight (m

    )

    Distribution of total volumetric water content

    Thermal boundary load

    Thermo-hydro

    Thermo-mechano

    Liu and Yu 2012

  • Understand the Multiphysics Process in

    Gas Hydrate Exploration

  • Gas Hydrate

    Definition: Gas hydrates, or clathrate hydrates, is a solid, ice-like form consisting of a host

    lattice of water molecules that enclose voids, each of which may contain one molecule of a

    guest gas (Selim and Sloan 1985) .

    Guest gases: CH4, C2H6, C3H8, i-C4H10, CO2 etc. (Bishnoi 1996, Englezos 1993).

    Natural occurring conditions: High Pressures and Low Temperatures (Oceanic Sediments

    and Permafrost Regions)

    Gas hydrate core sample from 920 m deep

    at the Mallik site, Canada (www.sciencewatch.com)

    Gas hydrate studied

    in the Northern Gulf of Mexico (usgs.gov)

    Massive gas hydrates Gas hydrate-bearing sediment

  • Uniqueness as Energy Source

    Huge amounts of methane in a concentrated form

    Combustible low molecular weight hydrocarbons such as

    methane, ethane, and propane

    (Kvenvolden, 1993; Hyndman and Dallimore, 2001)

    Organic Carbon

    in the Earth

  • Gas Hydrate Explorations

    Challenges:

    Limitations in understanding hydrate reservoirs behaviors (Pawar and

    Zyvoloski 2005).

    Optimal strategy for gas hydrate resource utilization.

    Strategies

    Simulation studies including analytical and numerical models

    coordinated with laboratory studies to address knowledge gaps that are

    critical to the prediction of gas production (Moridis et al. 2006).

    Field validation

  • Mechanisms Involved 1. Energy Balance (Thermal Field, T)

    2. Mass Transfer (Hydraulic Field, H)

    3. Momentum Balance (Mechanical Field, M)

    4. Chemical Kinetics (Chemical Field, C)

    it is a MULTI-PHYSICAL process.

  • Trends in Gas Hydrate Simulations Simulation models for gas hydrate

    THMC model emerging

    Seafloor stability, geohazards prediction

    Liu and Yu 2013

    THMC

  • Multiphysics Simulation Structure

    2/4/2012

    Thermal (T,Ө) Fourier’s eq.

    Mechanical (u, T,Ө,h)

    Navier’s eq.

    Hydraulic (h,T,Ө) Richards’ eq.

    Ө

    T

    u

    Ө

    h

    i i,( , ), ( , )tC

    i( , , ),T T

    i( , )E

    Water Characteristic

    th

    First Layer Coupling

    Third Layer Coupling

    Second Layer Coupling

    Chemical Field Experimental

    (C)

    Energy Balance (T)

    Mass Balance(H) Moment Balance

    (M)

  • Governing Equations

    duu

    dt v v q h

    j j j j j jd

    mdt

    v

    Tj j j j j j j j

    d

    dt

    vv v F

    Tj j j j j j

    ee e

    t

    v

    ww w w w w w w wd

    mdt

    v v

    g gg g g g g g g g g g gd d

    mdt dt

    v v

    s 0d

    dt

    ww w w w w w w w w w w w wg +d

    mdt

    v

    v v i σ F v

    gg g g g g g g g g g w w wg +d

    mdt

    v

    v v i σ F v

    h h h h h 0g σ F

    s s s s s 0g σ F

    g gj j j j j

    j j j j j j j j j j j j j j j j j j j

    T zC T C T H m

    t t

    v σ v F v v v

    hh h

    dm

    dt

    Energy Balance

    Momentum Balance

    Mass Balance

  • Model simplifications

    w ww w w wg

    g

    d kp m

    dt

    i

    g g gg g g g ggg

    d d kp m

    dt dt

    i

    hh h

    dm

    dt

    s h s h f s s h h' 0p g σ δ i

    w,g

    ggj j

    j

    j jj j jjk

    pCT

    C T T Ht

    i

    Water Mass (1)

    Gas Mass (1)

    Hydrate Mass (1)

    Solid Momentum (Mechanical,3)

    System Energy (1)

  • Auxiliary Relationships

    e A+B expC

    Tp

    j jσ σw w wp σ δ

    g g gp σ δ

    f w g1p Sp S p

    f' p σ σ δ

    sh s h s h f' p σ σ σ σ δ

    ' :σ C ε

    T1

    2

    ε u u

    ww w ww w

    gg

    kp

    v i

    gg g gg g

    gg

    kp

    v i

    g w 1p p f S

    g g

    g

    M p

    RT

    w g h s,01 w

    w h h h

    h

    103.55.75 5.75 4.9801

    119.5

    Mm m m m

    M

    g

    g h h h

    h

    160.13389

    119.5

    Mm m m m

    M

    1

    37 3h0

    h h f e 23

    h

    94000.585 10 exp kg m sm p p

    T

    3 3h h h3h

    54200494977.17 W/m

    109.5 1054.2 10

    mm m

    MH

    4 2 4 2CH nH O CH +nH O (n = 5.75 in this study)

  • Implementation

    0 4 8 12 16 200.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Satu

    ration

    Distance from bottom (m)

    HydrateResSim

    MH21

    STARSOIL

    STARSSOLID

    STOMPHYD

    UNIVHOSTON

    NewModel

    0 4 8 12 16 200.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    Satu

    ration

    Distance from bottom (m)

    HydrateResSim

    MH21

    STARSOIL

    STARSSOLID

    STOMPHYD

    UNIVHouston

    NewModel

    1 Day 100 Day

    Bottom Top

    20 m

    USGS-NETL Gas Hydrate Simulation Comparison Project: Case 1 (No Dissociation)

    Saturation at different times

    Liu and Yu 2013b

  • Implementation

    Bottom Top

    20 m

    USGS-NETL Gas Hydrate Simulation Comparison Project: Case 2 (Dissociation)

    1 Day 100 Day

    0 4 8 12 16 200.20

    0.25

    0.30

    0.35

    0.40

    0.45

    0.50

    0.55

    0.60

    0.65

    HydrateResSim

    MH21

    STARS

    STARSSOLID

    STOMPHYD

    TOUGHFXHydrate

    UnivHouston

    NewModel

    Sa

    tura

    tio

    n

    Distance from bottom (m)

    0 4 8 12 16 20

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    HydrateResSim

    MH21

    STARS

    STARSSOLID

    STOMPHYD

    TOUGHFXHydrate

    UnivHouston

    NewModel

    Sa

    tura

    tio

    n

    Distance from bottom (m)

    Saturation at different times

    Liu and Yu 2013b

  • 0 10 20 30 40 50 60 70 80 90 100-0.5

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    Su

    bsid

    en

    ce

    (m

    )

    Time (day)

    Subsidence

    Hydrate Dissociation Ground Settlement

    Profile of a hydrate-bearing zone and

    corresponding computational domain

    Liu and Yu 2013b

  • Understand the Multiphysics Process in

    Underground Geothermal Heat

    Exchanger

  • Geothermal Heat Exchanger

    Summer: cooling mode Winter: heating mode

    heat dispersion heat absorption

  • Prototype House with Geothermal Heat Pump

    Prototype

    • Geothermal heat pump

    system installed under a

    three-floor resident

    house located in

    Cleveland

    • Instrumented (Tin,

    Tout, flow velocity,

    power consumption,

    etc.)

  • Geometry

    • U-pipe: D=100mm

    • Pipe wall thickness: 5mm

    • Length=60m

    • Distance between inlet and outlet pipe=0.4m

    • Borehole: R=0.4m

    Boundary Conditions

    • Pipe inlet temperature: Tinlet=7℃

    • Flow rate:v=0.1m/s

    • Soil temperature: T=15℃ (under depth of 4m)

    Material Property

    • Fluid: water

    • Pipe: HDPE

    • Refill material: bentonite

    Non-isothermal Pipe

    Flow

    Physics Process and Simulation Model

    soil

    borehol

    e

    pip

    e

    Heat Transfer in Solid

    Coupling

    Process

  • Temperature(degC)

    Figure 1 Temperature distribution

    on the border of the borehole

    and on the transverse section

    Figure 2

    Temperature

    distribution along

    the pipe

    3-D Stationary Model

    • Sensitivity analysis

    • Optimize the design

    3-D Time-dependent Model

    • Compare the simulation and experimental data

    • Calibration and optimization

    Simulation Design and Schematic Results

  • Example Results: Sensitivity study

    3-D Stationary Model: sensitivity analysis (d=50mm)

    7

    7.5

    8

    8.5

    9

    9.5

    10

    10.5

    11

    11.5

    12

    0.1 0.2 0.3 0.4 0.5 0.6 0.7

    Out

    let T

    empe

    ratu

    re (℃

    )

    Flow Velocity (m/s)

    10m20m30m40m50m60m70m80m90m100m

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    10 20 30 40 50 60 70 80 90 100

    He

    at

    Exc

    ha

    ng

    e R

    ate

    (W

    /m)

    Depth of the pipe (m)

    0.1 0.2 0.3 0.4 0.5 0.6 0.7

    Flow velocity (m/s)

    ( ) / Lout inQ cvA t t

  • 0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    12

    :00

    AM

    1

    :00

    AM

    2

    :00

    AM

    3

    :00

    AM

    4

    :00

    AM

    5

    :00

    AM

    6

    :00

    AM

    7

    :00

    AM

    8

    :00

    AM

    9

    :00

    AM

    1

    0:0

    0 A

    M

    11

    :00

    AM

    1

    2:0

    0 P

    M

    1:0

    0 P

    M

    2:0

    0 P

    M

    3:0

    0 P

    M

    4:0

    0 P

    M

    5:0

    0 P

    M

    6:0

    0 P

    M

    7:0

    0 P

    M

    8:0

    0 P

    M

    9:0

    0 P

    M

    10

    :00

    PM

    1

    1:0

    0 P

    M

    2012-10-08

    T_in(experimental) T_out(simulation)T_out(experimental) BB_low(experimental)BB_high(experimental) 0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    12

    :00

    AM

    1

    :00

    AM

    2

    :00

    AM

    3

    :00

    AM

    4

    :00

    AM

    5

    :00

    AM

    6

    :00

    AM

    7

    :00

    AM

    8

    :00

    AM

    9

    :00

    AM

    1

    0:0

    0 A

    M

    11

    :00

    AM

    1

    2:0

    0 P

    M

    1:0

    0 P

    M

    2:0

    0 P

    M

    3:0

    0 P

    M

    4:0

    0 P

    M

    5:0

    0 P

    M

    6:0

    0 P

    M

    7:0

    0 P

    M

    8:0

    0 P

    M

    9:0

    0 P

    M

    10

    :00

    PM

    1

    1:0

    0 P

    M

    2012-10-09

    T_in(experimental) T_out(simulation)T_out(experimental) BB_low(experimental)BB_high(experimental)

    Example Results: time dependent process

  • Example Results: time dependent process

    0.000

    5.000

    10.000

    15.000

    20.000

    25.000

    2012-11

    T_in(experimental) T_out(simulation) T_out(experimental)

  • Multiphysics Parameters Characterization

  • Multiphysics Characterization: Thermal-TDR probe:

    6 mm

    Sensor probe

    Thermocouple reading wire

    Connect to TDR unit

    Combine EM wave and

    thermal excitations

  • Example of thermal pulse response

    0 30 60 90 120 15020

    25

    30

    35

    40

    45

    50

    Time(s)

    Tem

    pera

    ture

    (oC

    )

    25.6

    25.8

    26.0

    26.2

    26.4

    Tem

    perature(oC

    )

    Heat Pulse

    Thermal Response

  • EM Wave TDR Signals in Sand and Clay

    5.4 5.6 5.8 6.0

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Re

    lative

    Vo

    lta

    ge

    (V)

    Scaled Distance(m)

    Dry Sand

    w=4%

    w=8%

    w=12%

    5.4 5.5 5.6 5.7 5.8 5.9 6.0

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Rel

    ativ

    e V

    olta

    ge(V

    )

    Scaled Distance(m)

    Dry Clay

    w=5%

    w=10%

    w=15%

  • 0 10000 20000 30000

    -20

    -10

    0

    10

    20

    30

    Tem

    pe

    ratu

    re (

    oC

    )

    Time (s)

    Heater

    Receiver A

    Receiver B

    Specimen Center

    Environmental Temp

    -20 -15 -10 -5 0 5 10 15 20

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    Thermal Conductivity (W/(m*K))

    Temperature (oC)

    Characterization of physical and

    thermal process during freezing-

    thawing

    Variation of thermal

    conductivity with

    temperature

    Zhang and Yu 2012

  • How to advance in this exciting field

    Research

    Understanding the intrinsic properties relevant to multiphysics

    coupling

    Innovative characterization tools

    Simulation capability (multiscale, multiphysics, nonlinear, time

    dependent system)

    Education

    Interdisciplinary (knowledge base, characterization, etc.)

    Modeling

  • Acknowledgements

    Funding Agencies National Science Foundation, The Ohio Department of Transportation/FHWA, TRB/National Research

    Council, NCHRP-IDEA, Minnesota Department of Transportation, Cleveland Water Department, Industry

    sponsors (GRL/PDI, WPC Inc., Durham Geo Enterprises, MWH Inc., DLZ Ohio Inc., etc)

    Graduate Students Past: Xinbao Yu (UT Arlington), Bin Zhang (Mike Baker), Yan Liu (Mount Union Univ), Zhen Liu

    (Michigan Tech), Junliang Tao (U. Akron)

    Current: Ye Sun (Michigan Tech), Chih-Chien Kung, Guangxi Wu, Jianying Hu, Quan Gao, Yang Yang,

    Chanjuan Han, Yuan Guo, Jiale Li

    Undergraduate Researchers Pete Simko, John Holman, Yuan Gao, Andrew Bittleman, Pete Simko, Cassandra McFadden, Paul Mangola,

    Jingsi Lang, Donald Cartwright, Alex Potter-weight, Randall Beck, Vanessa Penner,Peter Frank, Ben Ma,

    Rebecca Ciciretti, Joseph Brenner, Javanni Gonzalez, Vanessa Penner, Grant Mott, et al.)

    Department engineer: Jim Berrila

  • Thank you