multiple regression i

15
Multiple Regression I KNNL – Chapter 6

Upload: aneko

Post on 06-Jan-2016

39 views

Category:

Documents


0 download

DESCRIPTION

Multiple Regression I. KNNL – Chapter 6. Models with Multiple Predictors. Most Practical Problems have more than one potential predictor variable Goal is to determine effects (if any) of each predictor, controlling for others Can include polynomial terms to allow for nonlinear relations - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Multiple Regression I

Multiple Regression I

KNNL – Chapter 6

Page 2: Multiple Regression I

Models with Multiple Predictors

• Most Practical Problems have more than one potential predictor variable

• Goal is to determine effects (if any) of each predictor, controlling for others

• Can include polynomial terms to allow for nonlinear relations

• Can include product terms to allow for interactions when effect of one variable depends on level of another variable

• Can include “dummy” variables for categorical predictors

Page 3: Multiple Regression I

First-Order Model with 2 Numeric Predictors

0 1 1 2 2

0 1 1 2 20 Plane in 3-dimensionsi i i i

i

Y X X

E E Y X X

Page 4: Multiple Regression I

Interpretation of Regression Coefficients• Additive: E{Y} = 01X1 + 2X2 ≡ Mean of Y @ X1, X2

• 0 ≡ Intercept, Mean of Y when X1=X2=0

• 1 ≡ Slope with Respect to X1 (effect of increasing X1 by 1 unit, while holding X2 constant)

• 2 ≡ Slope with Respect to X2 (effect of increasing X2 by 1 unit, while holding X1 constant)

• These can also be obtained by taking the partial derivatives of E{Y} with respect to X1 and X2, respectively

• Interaction Model: E{Y} = 01X1 + 2X2 + 3X1X2

• When X2 = 0: Effect of increasing X1 by 1: 1(1)+3(1)(0)= 1

• When X2 = 1: Effect of increasing X1 by 1: 1(1)+3(1)(1)= 1+3

• The effect of increasing X1 depends on level of X2, and vice versa

Page 5: Multiple Regression I

General Linear Regression Model

0 1 1 2 2 1 , 1

1

01

1

00

0 1 1 2 2 1 1

...

where: 1

0 ... (Hyperplane in -dimensions)

1 1 Simple linear regression

Normality, indepe

i i i p i p i

p

i k ik ik

p

i k ik i ik

i p p

Y X X X

Y X

Y X X

E E Y X X X p

p

2 20 1 1 2 2 1 , 1

ndence, and constant variance for errors:

~ 0, ~ ... , , 0i i i i p i p i jNID Y N X X X Y Y i j

Page 6: Multiple Regression I

Special Types of Variables/Models - I• p-1 distinct numeric predictors (attributes)

Y = Sales, X1=Advertising, X2=Price

• Categorical Predictors – Indicator (Dummy) variables, representing m-1 levels of a m level categorical variable Y = Salary, X1=Experience, X2=1 if College Grad, 0 if Not

• Polynomial Terms – Allow for bends in the Regression Y=MPG, X1=Speed, X2=Speed2

• Transformed Variables – Transformed Y variable to achieve linearity Y’=ln(Y) Y’=1/Y

Page 7: Multiple Regression I

Special Types of Variables/Models - II• Interaction Effects – Effect of one predictor depends on

levels of other predictors Y = Salary, X1=Experience, X2=1 if Coll Grad, 0 if Not, X3=X1X2

E(Y) = X1X2X1X2

Non-College Grads (X2 =0):

E(Y) = X1(0)X1(0)= X1

College Grads (X2 =1):

E(Y) = X1(1)X1(1)= X1

• Response Surface Models E(Y) = X1X1

2X2X22X1X2

• Note: Although the Response Surface Model has polynomial terms, it is linear wrt Regression parameters

Page 8: Multiple Regression I

Matrix Form of Regression Model0 1 1 2 2 1 , 1

11 12 1, 11

21 22 2, 12

1

1 2 , 1

0 1

1 2

11

1

... 1,...,

Matrix Form:

1

1

1

i i i p i p i

p

p

n n p

n n n pn

np

p n

Y X X X i n

X X XY

X X XY

X X XY

n

Y X

β ε E ε

2

22

1

2

2

1 111 1

0 0 0

0 0 0

0 0 0

n

n n p n p nnp p

2

×1

2

n×1 n×p n×1p×1

σ ε I

Y X β ε E Y = E X β + ε X β σ Y I

Page 9: Multiple Regression I

Least Squares Estimation of Regression Coefficients

220 1 1 1 , 1

1 1

0 1 1 0 1 1

0

1

11 1

1

Goal: Minimize: ...

Obtain Estimates of , ,..., that minimize , ,...,

Normal Equations: ' '

n n

i i i p i pi i

p p

p p pp p

p

Q Y X X

Q b b b

b

b

b

-1X X b X Y b X'X X'Y

/2 22 20 1 1 1 , 12

1

2

0 1 1 1 , 11

Maximum Likelihood also leads to the same estimator :

1, 2 exp ...

2

since maximizing involves minimizing ...

nn

i i p i pi

n

i i p i pi

L Y X X

L Y X X

b

β

Page 10: Multiple Regression I

Fitted Values and Residuals

^

11

^

22

1 1

^

1 1

1 1 11 1

Fitted Values: Residuals:

'

n n

nn

n n p p

n n n n pn p

Y e

eY

eY

^

^ -1 -1

^ -1

Y e

Y X b X X'X X'Y = HY H = X X'X X' H = H' = HH

e = Y Y Y X b Y X X'X X'Y = I H Y I H I H I H I

MSE

MSE

^ ^2 2 2 2 2

2 2 2 2 2

H

σ Y = σ HY = Hσ Y H' = σ H s Y H

σ e = σ I H Y = I H σ Y I H ' = σ I H s e I H

Page 11: Multiple Regression I

Analysis of Variance – Sums of Squares

^

11 1

^

2 22

1 1 1

^

2

1

2^

1 11 1

1 1

1

n n n

n nn

n

ii

iii

Y YY Y

Y YYYn n

Y YYY

SSTO Y Yn

SSE Y Y

^

Y Y Xb HY Y JY

Y Y ' Y Y Y' I J Y

1

2^

1

2

12 2

' ' '1 1 '

1 1

1

n

n

i

i

p p

k kk k k kk kkk k k k

SSEMSE

n p

SSRSSR Y Y MSR

n n p

E MSE

E MSR SS SS SS

^ ^

^ ^

Y Y ' Y Y Y' I H Y Y'Y -b'X'Y

Y Y ' Y Y Y' H J Y b'X'Y Y' JY

1

''1

1 1 ... 0

n

k kik iki

p

X X X X

E MSR E MSE E MSR E MSE

Page 12: Multiple Regression I

ANOVA Table, F-test, and R2

Analysis of Variance (ANOVA) Table

Source df Sum of Squares Mean Square

-------------------------------------------------------------------------------------------------------------------------------------

1Regression 1

1

Error

SSRp SSR MSR

n p

n

b'X'Y - Y' JY

0 1 1 0

1Total 1

Test of : ... 0 : Not all 0

Test Statis

p A k

SSEp SSE MSE

n p

n SSTOn

H E Y H

Y'Y -b'X'Y

Y'Y -Y' JY

2 2

2

tic: * Rejection Region: * 1 ; 1, -value= Pr 1, *

Coefficient of Multiple Determination: 1 Correlation:

Adjusted- 1

1

MSRF F F p n p P F p n p F

MSE

SSR SSER R R

SSTO SSTO

SSEn p

RSSTOn

11 places a "penalty" on models with extra predictors

n SSE

n p SSTO

Page 13: Multiple Regression I

Inferences Regarding Regression Parameters

2 2

2 20 0 1 0 1 0 0 1 0 1

2 21 0 1 1 1 1 0 1 1 1

21 0 1 1 1 1

, , , ,

, , , ,

, ,

p p

p p

p p p p

b b b b b s b s b b s b b

b b b b b s b b s b s b b

b b b b b s b

2 2

-1 -1 -1

2 2

Y = Xβ +ε E ε = 0 σ ε = I E Y = Xβ σ Y = I

E b = E X'X X'Y = X'X X'E Y = X'X X'Xβ = β

σ b s b

20 1 1 1

2 2

0

, ,

~ 1 100% CI for 1 ;2

Test of : 0 : 0 Test Statistic: *

p p

k kn p k k k

k

k A k

b s b b s b

MSE

bt b t n p s b

s b

bH H t

-1 -1 -1 -1 -1 -12 2 2

-12

σ b = σ X'X X'Y X'X X'σ Y X'X X' ' X'X X'X X'X X'X

s b = X'X

Rejection Region: * 1 ; P-value=2Pr *2

Simultaneous 1 100% CI for : 1 ;2

k

k

s sk k

s b

t t n p t n p t

g p b t n p s bg

Page 14: Multiple Regression I

Estimating Mean Response at Specific X-levels

1 1 1 , 1

^1 ' '

1

, 1

^ ^ ^' 2 ' 2 ' 2 '

^ ^ ^

Given set of levels of ,..., : ,...,

1

1 100% CI for : 1 ;2

1 100

p h h p

hhh h h h

p

h p

h h hh h h h h h h

h h h

X X X X

XE Y Y

X

E Y Y s Y MSE

E Y Y t n p s Y

-1 -12

X X β X b

X β X σ b X X X'X X X X'X X

^ ^2

^ ^ ^

% Confidence Region for Regression Surface: 1 ; ,

1 100% CI for several ( ) : 1 ;2

h h

h h h

Y Ws Y W pF p n p

g E Y Y Bs Y B t n pg

Page 15: Multiple Regression I

Predicting New Response(s) at Specific X-levels

1 1 1 , 1

^1 ' '

1

, 1

2 '

2 '

Given set of levels of ,..., : ,...,

1

pred 1

1mean of observations (at same X-levels): predmean

1

p h h p

hhh h h h

p

h p

h h

h h

X X X X

XE Y Y

X

s MSE

m s MSEm

-1

-1

X X β X b

X X'X X

X X'X X

^

(new)

^2

(new)

^

(new)

100% CI for : 1 ; pred2

Scheffe: 1 100% CI for several ( ) : pred 1 ; ,

Bonferroni: 1 100% CI for several ( ) : pred 1 ;2

hh

hh

hh

Y Y t n p s

g Y Y Ss S gF g n p

g Y Y Bs B t n pg