multiscale waveform tomography

62
Multiscale Waveform Multiscale Waveform Tomography Tomography onyasiriwat, P. Valasek nyasiriwat, P. Valasek * , P. Routh , P. Routh * , B. , B. W. Cao, and G. T. Schuster W. Cao, and G. T. Schuster * ConocoPhillips ConocoPhillips

Upload: chun

Post on 02-Feb-2016

35 views

Category:

Documents


0 download

DESCRIPTION

Multiscale Waveform Tomography. C. Boonyasiriwat, P. Valasek * , P. Routh * , B. Macy * , W. Cao, and G. T. Schuster * ConocoPhillips. Outline. Goal. Introduction. Theory of Acoustic Waveform Tomography. Multiscale Waveform Tomography. Results. Conclusions. 1. Goal. 2. Outline. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Multiscale Waveform Tomography

Multiscale Waveform TomographyMultiscale Waveform Tomography

C. Boonyasiriwat, P. ValasekC. Boonyasiriwat, P. Valasek**, P. Routh, P. Routh**, B. Macy, B. Macy**,,W. Cao, and G. T. SchusterW. Cao, and G. T. Schuster

** ConocoPhillips ConocoPhillips

Page 2: Multiscale Waveform Tomography

OutlineOutline

• IntroductionIntroduction

• ResultsResults

• Multiscale Waveform TomographyMultiscale Waveform Tomography

• ConclusionsConclusions

• Theory of Acoustic Waveform TomographyTheory of Acoustic Waveform Tomography

1

• GoalGoal

Page 3: Multiscale Waveform Tomography

GoalGoal

2

Page 4: Multiscale Waveform Tomography

OutlineOutline

• IntroductionIntroduction

• ResultsResults

• Multiscale Waveform TomographyMultiscale Waveform Tomography

• ConclusionsConclusions

• Theory of Acoustic Waveform TomographyTheory of Acoustic Waveform Tomography

3

• Goal and MotivationGoal and Motivation

Page 5: Multiscale Waveform Tomography

?IntroductionIntroduction

4

Page 6: Multiscale Waveform Tomography

IntroductionIntroduction

X (km)

Tim

e (s

)

0 2 4 6 8 10 12 14 16

0

1

2

3

4

5

65

Page 7: Multiscale Waveform Tomography

Introduction: Traveltime TomographyIntroduction: Traveltime Tomography

6

Page 8: Multiscale Waveform Tomography

IntroductionIntroduction

X (km)

Tim

e (s

)

0 2 4 6 8 10 12 14 16

0

1

2

3

4

5

67

Page 9: Multiscale Waveform Tomography

Introduction: Waveform TomographyIntroduction: Waveform Tomography

8

Page 10: Multiscale Waveform Tomography

Introduction: Waveform TomographyIntroduction: Waveform Tomography

9

Page 11: Multiscale Waveform Tomography

Introduction: Waveform TomographyIntroduction: Waveform Tomography

10

• Pratt and Brenders (2004) and Sheng (2006) Pratt and Brenders (2004) and Sheng (2006) used early-arrival wavefields.used early-arrival wavefields.

• Frequency domain: Pratt et al. (1998), etc.Frequency domain: Pratt et al. (1998), etc.

• No high frequency approximationNo high frequency approximation

• Time domain: Zhou et al. (1995), Sheng et al. Time domain: Zhou et al. (1995), Sheng et al. (2006), etc.(2006), etc.

• Bunks et al. (1995) and Pratt et al. (1998) used Bunks et al. (1995) and Pratt et al. (1998) used multiscale approaches.multiscale approaches.

Page 12: Multiscale Waveform Tomography

OutlineOutline

• IntroductionIntroduction

• ResultsResults

• Multiscale Waveform TomographyMultiscale Waveform Tomography

• ConclusionsConclusions

• Theory of Acoustic Waveform TomographyTheory of Acoustic Waveform Tomography

11

• GoalGoal

Page 13: Multiscale Waveform Tomography

Why Acoustic?Why Acoustic?

• Waveform inversion is also expensive.Waveform inversion is also expensive.

• Previous research shows acoustics is adequate.Previous research shows acoustics is adequate.

12

• Elastic wave equation is expensive.Elastic wave equation is expensive.

• Use acoustics and mute unpredicted wavefieldsUse acoustics and mute unpredicted wavefields

Page 14: Multiscale Waveform Tomography

Theory of Waveform TomographyTheory of Waveform Tomography

An acoustic wave equation:An acoustic wave equation:

),()',';,()',';,(

)(

1 22

2

2tsttP

t

ttP

crrr

rr

r

The waveform misfit function isThe waveform misfit function is

s g

sg tPdtf );,(2

1 2 rr

13

Page 15: Multiscale Waveform Tomography

Theory of Waveform TomographyTheory of Waveform Tomography

The waveform residual is defined byThe waveform residual is defined by

calcsgobssgsg tPtPtP );,();,();,( rrrrrr

The steepest descend method is used to minimize The steepest descend method is used to minimize the misfit function:the misfit function:

)()()(1 rrr kkkk gcc

14

Page 16: Multiscale Waveform Tomography

Theory of Waveform TomographyTheory of Waveform Tomography

The gradient is calculated byThe gradient is calculated by

s

ss tPtPdtc

g );,(');,( )(

2)(

3rrrr

rr

wherewhere

);,'(),';0,(');,(' ss tstGdtP rrrrrrr

);,()();,( sggg

s tPts rrrrrr

15

Page 17: Multiscale Waveform Tomography

OutlineOutline

• IntroductionIntroduction

• ResultsResults

• Multiscale Waveform TomographyMultiscale Waveform Tomography

• ConclusionsConclusions

• Theory of Acoustic Waveform TomographyTheory of Acoustic Waveform Tomography

16

• GoalGoal

Page 18: Multiscale Waveform Tomography

Why using Multiscale?Why using Multiscale?

Low Frequency

High Frequency

Coarse Scale

Fine Scale

Image from Bunk et al. (1995)

Model parameter (m)

Mis

fit f

unct

ion

( f )

17

Page 19: Multiscale Waveform Tomography

Our Multiscale ApproachOur Multiscale Approach

• Use a Wiener filter for low-pass filtering.Use a Wiener filter for low-pass filtering.

• Combine Early-arrival Waveform Tomography Combine Early-arrival Waveform Tomography (Sheng et al., 2006) and a time-domain multiscale (Sheng et al., 2006) and a time-domain multiscale approach (Bunk et al., 1995)approach (Bunk et al., 1995)

18

• Use an early-arrival window function to mute all Use an early-arrival window function to mute all energy except early arrivals.energy except early arrivals.

• Use multiscale V-cycles.Use multiscale V-cycles.

Page 20: Multiscale Waveform Tomography

High Frequency Fine GridHigh Frequency Fine Grid

Low Frequency Coarse GridLow Frequency Coarse Grid

Multiscale V-CycleMultiscale V-Cycle

19

Page 21: Multiscale Waveform Tomography

Why a Wiener Filter?Why a Wiener Filter?

20

Original Wavelet Target Wavelet

Wavelet: Hamming Window Wavelet: Wiener Filter

Page 22: Multiscale Waveform Tomography

OutlineOutline

• IntroductionIntroduction

• ResultsResults

• Multiscale Waveform TomographyMultiscale Waveform Tomography

• ConclusionsConclusions

• Theory of Acoustic Waveform TomographyTheory of Acoustic Waveform Tomography

21

• GoalGoal

Page 23: Multiscale Waveform Tomography

Synthetic SSP Data ResultsSynthetic SSP Data Results

• Three-Layer ModelThree-Layer Model

• SEG Salt ModelSEG Salt Model

• Layered Model with ScattersLayered Model with Scatters

• Zhu’s ModelZhu’s Model

• Mapleton ModelMapleton Model

22

Page 24: Multiscale Waveform Tomography

Three-Layer Velocity ModelThree-Layer Velocity Model

23

Page 25: Multiscale Waveform Tomography

Initial Velocity ModelInitial Velocity Model

24

Page 26: Multiscale Waveform Tomography

TRT TomogramTRT TomogramGradient

25

Page 27: Multiscale Waveform Tomography

EWT TomogramEWT TomogramGradient

26

Page 28: Multiscale Waveform Tomography

MWT Tomogram (5,10 Hz)MWT Tomogram (5,10 Hz)Gradient

27

Page 29: Multiscale Waveform Tomography

True Velocity Model 1True Velocity Model 1

28

Page 30: Multiscale Waveform Tomography

Layered Model with ScattersLayered Model with Scatters

29

Page 31: Multiscale Waveform Tomography

Initial Velocity ModelInitial Velocity Model

30

Page 32: Multiscale Waveform Tomography

TRT TomogramTRT TomogramGradient

32

Page 33: Multiscale Waveform Tomography

EWT Tomogram using 15-Hz DataEWT Tomogram using 15-Hz Data

Gradient

32

Page 34: Multiscale Waveform Tomography

MWT Tomogram using 2.5-Hz DataMWT Tomogram using 2.5-Hz Data

Gradient

33

Page 35: Multiscale Waveform Tomography

MWT Tomogram using 5-Hz DataMWT Tomogram using 5-Hz Data

2.5-Hz

34

Page 36: Multiscale Waveform Tomography

MWT Tomogram using 10-Hz DataMWT Tomogram using 10-Hz Data

5 Hz

35

Page 37: Multiscale Waveform Tomography

MWT Tomogram using 15-Hz DataMWT Tomogram using 15-Hz Data

10 Hz

36

Page 38: Multiscale Waveform Tomography

Layered Model with ScattersLayered Model with Scatters

37

Page 39: Multiscale Waveform Tomography

Comparison of Misfit FunctionComparison of Misfit Function

15 Hz

10 Hz5 Hz

2.5 Hz

15 Hz

38

Page 40: Multiscale Waveform Tomography

SEG Salt Velocity ModelSEG Salt Velocity Model

39

Page 41: Multiscale Waveform Tomography

TRT TomogramTRT TomogramGradient

40

Page 42: Multiscale Waveform Tomography

MWT Tomogram (2.5,5 Hz)MWT Tomogram (2.5,5 Hz)TRT

41

Page 43: Multiscale Waveform Tomography

SEG Salt Velocity ModelSEG Salt Velocity Model

42

Page 44: Multiscale Waveform Tomography

Zhu’s Velocity ModelZhu’s Velocity Model

43

Page 45: Multiscale Waveform Tomography

TRT TomogramTRT TomogramGradient

44

Page 46: Multiscale Waveform Tomography

MWT Tomogram (2.5,5 Hz)MWT Tomogram (2.5,5 Hz)TRT

45

Page 47: Multiscale Waveform Tomography

Zhu’s Velocity ModelZhu’s Velocity Model

46

Page 48: Multiscale Waveform Tomography

Mapleton ModelMapleton Model

47

Page 49: Multiscale Waveform Tomography

TRT TomogramTRT Tomogram

48

Page 50: Multiscale Waveform Tomography

MWT Tomogram MWT Tomogram (30, 50, 70 HZ)(30, 50, 70 HZ)

49

Page 51: Multiscale Waveform Tomography

Mapleton ModelMapleton Model

50

Page 52: Multiscale Waveform Tomography

Marine Data ResultsMarine Data Results

51

Page 53: Multiscale Waveform Tomography

Marine Data

515 Shots480 Hydrophones

12.5 mdt = 2 msTmax = 10 s

1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

3

Offset (km)

Tim

e (s)

b) Original CSG 1

1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

3

Offset (km)

Tim

e (s)

a) Virtual CSG 1

52

Page 54: Multiscale Waveform Tomography

Low-pass FilteringLow-pass Filtering

53

Offset (km)

Tim

e (s

)

(a) Original CSG

0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Offset (km)

Tim

e (s

)

(b) 5-Hz CSG

0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Offset (km)Ti

me

(s)

(c) 10-Hz CSG

0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Page 55: Multiscale Waveform Tomography

Reconstructed VelocityReconstructed Velocity

54

X (km)

Z (k

m)

(a) Initial Velocity Modelm/s

0 2 4 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1600

1700

1800

1900

2000

2100

2200

2300

X (m)

Z (m

)

(b) MWT Tomogram m/s

0 2 4 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1600

1700

1800

1900

2000

2100

2200

2300

X (km)

Z (k

m)

(a) Initial Velocity Modelm/s

0 2 4 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1600

1700

1800

1900

2000

2100

2200

2300

X (m)

Z (m

)

(b) MWT Tomogram m/s

0 2 4 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1600

1700

1800

1900

2000

2100

2200

2300

Page 56: Multiscale Waveform Tomography

Observed Data vs Predicted DataObserved Data vs Predicted Data

55

Offset (km)

Tim

e (s

)

(a) Observed Windowed CSG

0 1 2 3 4 5

0

0.5

1

1.5

2

2.5

3

3.5

4

Offset (km)

Tim

e (s

)

(b) Predicted Windowed CSG

0 1 2 3 4 5

0

0.5

1

1.5

2

2.5

3

3.5

4

Page 57: Multiscale Waveform Tomography

Waveform Residual vs Iteration NumberWaveform Residual vs Iteration Number

56

0 10 20 30 40 50450

500

550

600

650

700

Iteration Number

RM

S W

avef

orm

Res

idua

lWaveform Residual versus Iteration

5-Hz

10-Hz

5 Hz

10 Hz

Page 58: Multiscale Waveform Tomography

Common Image GatherCommon Image Gather

57

5 Hz

10 Hz

Shot Number

Z (k

m)

(a) CIG using Initial Tomogram

20 40 60 80

0

0.5

1

1.5

Shot Number

Z (k

m)

(b) CIG using MWT Tomogram

20 40 60 80

0

0.5

1

1.5

Page 59: Multiscale Waveform Tomography

OutlineOutline

• IntroductionIntroduction

• ResultsResults

• Multiscale Waveform TomographyMultiscale Waveform Tomography

• ConclusionsConclusions

• Theory of Acoustic Waveform TomographyTheory of Acoustic Waveform Tomography

58

• GoalGoal

Page 60: Multiscale Waveform Tomography

ConclusionsConclusions• MWT partly overcomes the local minima problem.MWT partly overcomes the local minima problem.

• MWT provides more accurate and highly resolved than MWT provides more accurate and highly resolved than TRT and EWT.TRT and EWT.

• MWT is much more expensive than TRT.MWT is much more expensive than TRT.

59

• Accuracy is more important than the cost.Accuracy is more important than the cost.

• MWT provides very accurate tomograms for synthetic MWT provides very accurate tomograms for synthetic data and shows encouraging results for the marine data.data and shows encouraging results for the marine data.

Page 61: Multiscale Waveform Tomography

Future WorkFuture Work

• Apply MWT to land data.Apply MWT to land data.

60

• Use wider-window data and finally use all the Use wider-window data and finally use all the data to obtain more accurate velocity data to obtain more accurate velocity distributions.distributions.

Page 62: Multiscale Waveform Tomography

AcknowledgmentAcknowledgment

• We are grateful for the support from the We are grateful for the support from the sponsors of UTAM consortium.sponsors of UTAM consortium.

• Chaiwoot personally thanks ConocoPhillips Chaiwoot personally thanks ConocoPhillips for an internship and also appreciates the help for an internship and also appreciates the help from Seismic Technology Group at from Seismic Technology Group at ConocoPhillips.ConocoPhillips.

61