mutsumi sugiyama ph. d tokyo university of science, · pdf filed tokyo university of science,...

30
Fabrication and Material Design of Fabrication and Material Design of Next Next - - Generation Solar Cells Generation Solar Cells Mutsumi Sugiyama Ph. D Tokyo University of Science, Japan E-mail: [email protected]

Upload: duongnguyet

Post on 16-Feb-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Fabrication and Material Design ofFabrication and Material Design ofNextNext--Generation Solar CellsGeneration Solar Cells

Mutsumi Sugiyama Ph. DTokyo University of Science, Japan

E-mail: [email protected]

OutlineOutline

★Introduction・Why New-Generation solar cells are needed ?

★Progress and Prospects of CIGS Solar Cells・Manufacturing Technologies

★Progress and Prospects of New Materials・Material Design of 3rd generation Solar Cells・Material Design of Transparent Solar Cells

★Summary

Light absorbing materialsLight absorbing materials

c-Sip-Si

α-Si

GaAs,CdTeCuGaInSe2

single crystalpolycrystal

DyeOrganic

III-V, II-VII-III-VI2other

crystal

amorphous

Inorganic

Organic

Si

Compound

Solar Cells

SnS, CZTS

What is What is CICIGGSS--related solar cell ?related solar cell ?

CIGS:chalcopyrite structured semiconductor composed of Copper (Cu), Indium (In), Gallium (Ga), and Selenium (Se).

Absorption layerCu(In,Ga)Se2

Buffer layer CdS

MoGlass substrate

TCO layer ZnO:Al

Al

Typical structure of CIGS solar cell

CIGS-solar cells:Thin film solar cell using CIGS layer as a light absorption layer.

Properties of CIGS Solar CellsProperties of CIGS Solar Cells

★Highest efficiency(among the thin film solar cells)

★High optical absorption coefficients★Long life、radiation resistant★Simple processes

Chalcopyrite Structure

Cu

InGa

SeS

Group-I

Group-III

Group-VI

Rapid!, Cheap!, Good! FabricationRapid!, Cheap!, Good! Fabrication

SeveralSeveral problems of CIGS fabrication problems of CIGS fabrication

Cd Cd →→ ToxicToxicWet process Wet process →→ Waste waterWaste water

Sputtering Sputtering →→ Surface damageSurface damageCVD CVD →→ ExpensiveExpensive

UnuniformityUnuniformity (Evaporation)(Evaporation)Toxic gas (Selenization)Toxic gas (Selenization)

Phase separationPhase separation

Absorption layerCu(In,Ga)Se2

Buffer layer CdS

MoGlass substrate

TCO layer ZnO:Al

Al

Typical structure of CIGS solar cell

Selenization chamber

SelenizationSelenization methodmethod

chamber

In GaCu

MoGlassGlass

Cu-In-Ga

Cu-In-GaMo

glass glass

Se(Se vapor, H2Se) etc.

CIGSMo

glassglass

○ Large area uniformity ○ Simple equipments× Phase separation between

CIS and CGS× Toxic gas (H2Se)

Sputter, Printing, Spin-Coating and so on

Typical conditionGrowth temperature 70℃

CdI2 0.001MCS(NH2)2 0.05MNH4OH 1M

heater

Substrate

NH4OHCS(NH2)2

CdI2

CBDCBD(chemical bath deposition) method(chemical bath deposition) methodFabrication of CdS buffer layer

Sputtering methodSputtering method

Ar gas Substrate

targetplasma

○ Conventional technique ○ Not so expensive× plasma damage for cell

Fabrication of ZnO layer

For the future For the future ……(in my case)(in my case)

p-Cu(In,Ga)Se2 Selenization using organometalSelenization using organometal

DamageDamage--less sputtering systemless sputtering system(ex. Helicon wave excited plasma)(ex. Helicon wave excited plasma)

◆All dry process◆Reduction of the number of the processes◆Toxic element (such as Cd) Free

pnpn--homojunction using Zn diffusionhomojunction using Zn diffusionn-CIGS

Rapid!, Cheap!, Good! FabricationRapid!, Cheap!, Good! Fabrication

MoGlass substrate

TCO layer ZnO:Ga

Al

How to fabricate CIGS How to fabricate CIGS filmsfilms

CIGS growthCIGS growthCoCo--evaporationevaporation

methodmethodSelenizationSelenization

methodmethod

Se source for SelenizationSe source for Selenization

HH22SeSeElemental SeElemental Se

DESe

◎◎ ηη=19.5%(small cell)=19.5%(small cell)△△ Scaling up Scaling up →→ DifficultDifficult

◎◎ Simple processSimple process◎◎ Scaling up Scaling up →→ Large cellLarge cell

Toxic, High pressure,….

Low efficiency, …..

Selenization using Diethylselenide (DESe)Selenization using Diethylselenide (DESe)

SeCC

CC

H

HHH

H CCCC

H

H

H

HH

Diethylselenide(DESe)

Liquid at RTLiquid at RTNormal organometalNormal organometal

Easy to handleEasy to handle

NOT so expensiveNOT so expensiveSafetySafety

CIS growth using DESe◆ S.F.Chichibu et al. J.Cryst Growth, 243 (2002) 404.◆ T.Yamamoto et al. J.Phys. & Chem. Solids, 64 (2003) 1855.

CIS growth using DESeCIS growth using DESe◆◆ S.F.ChichibuS.F.Chichibu et alet al. . J.CrystJ.Cryst Growth, Growth, 243243 (2002) 404.(2002) 404.◆◆ T.YamamotoT.Yamamoto et alet al. J.Phys. & Chem. Solids, . J.Phys. & Chem. Solids, 6464 (2003) 1855.(2003) 1855.

XRD pattern of CIGS filmsXRD pattern of CIGS films

52 53 54 55 56

XRD

INTE

NSI

TY (a

rb. u

nits

)

2θ (deg.)

X=1.0

X=0.9

X=0.8

X=0.7

X=0.6

X=0.5

X=0.4

X=0.3

X=0.2

X=0.0

X=0.1

(116/312)CIS CGS

(312)(116)

52 53 54 55 56

XRD

INTE

NSI

TY (a

rb. u

nits

)

2θ (deg.)52 53 54 55 56

XRD

INTE

NSI

TY (a

rb. u

nits

)

2θ (deg.)

X=1.0

X=0.9

X=0.8

X=0.7

X=0.6

X=0.5

X=0.4

X=0.3

X=0.2

X=0.0

X=0.1

(116/312)CIS CGS

(312)(116)

○ Simple EQIPMENT○ Simple PROCESS

Highly advantageousfor the development

of low-cost solar modules

40 80 120

INTE

NS

ITY

[arb

. uni

ts]

SPUTTERING TIME [sec.]

CIGS:ZnZnO:Ga/ZnO

C

CIGS

0

Zn Ga

WITHOUT Carbon contamination!WITHOUT Carbon contamination!

Depth profile of carbon in the cellDepth profile of carbon in the cell

CIGS solar cell structureCIGS solar cell structure

AVOID carrier recombination

Fabricated by DRY PROCESS

pn-homojunction (by Zn-doping)

CBD-CdS

TOXIC element (Cd)

Fabricated by WET PROCESS

SAFE element (Zn, Cu, In etc.)

at the physical interface○

MoSLG

MgZnOZnO:Ga

Al

CIGSCIGS:ZnCIGS

ExperimentExperiment1st step

preparation of CIGS films

2nd step Zn-diffusion

Selenization method using Diethylselenide

Dimethylzinc : 60µmol/min@Atmospheric pressure

+ N2 carrier gases: 2L/min[(CH ) Zn: DMZn]

Thin Solid Films 515 (2007) 5867.

60min

300

515

Cooling

0

selenization

Zn diffusion

TIME [min]

TEM

P. [

°C]

1st step

2nd step

3~300sec.

3 stage methodor

[ ]∗[ ]∗

3 2

ExperimentExperiment3rd step

Fabrication of solar cellsZnO:Ga/MgZnO/CIGS:Zn

Zn doped CIGS films: XRD, GDOES, PL, I-V, C-V

Zn doped CIGS cells: I-V

CharacterizationCharacterization

Deposition by helicon-wave-excited-plasma sputtering (HWPS) method

Appl. Phys. Lett. 72 (1998) 235.We reported yesterday.

HeliconHelicon--WaveWave--ExcitedExcited--Plasma Sputtering (HWPS) MethodPlasma Sputtering (HWPS) Method

~matchingnetworkAr+

MFCMFC

RF antenna(Nagoya Type III)

quartz tubetarget

target (DC) bias

Ion energy controlvacuum

substrate holdershutter

heater temp.control units

coilRF power

Ion flux andDensity control

O2

Ar

Remote plasmaLow damage on surface

Independent control of ion flux and energy

Low pressureLong mean free path

Appl. Phys. Lett. 72 (1998) 235.

AFM images

39nm

0nm500nm500nm 500nm500nm

0nm

39nm

200°C, 1.5 wt.%

RMS = 5 nmRMS = RMS = 5 nm5 nmRMS = 4 nmRMS = RMS = 4 nm4 nm

Surface Morphology of ZnO:GaSurface Morphology of ZnO:Ga

400°C, 1.5 wt.%

ZnO:GaZnO:Al by HWPS [*]

TRA

NS

MIT

TAN

CE

(%)

0

20

40

60

80

100

WAVELENGTH (nm)400 800 1200 1600

RT

Transmittance ≥ 80%TransmittanceTransmittance ≥≥ 80%80%

Multiple interferenceMultiple interferenceMultiple interference

400400––1600 nm1600 nm

Optical Transmittance SpectrumOptical Transmittance Spectrum

[*] Appl. Phys. Lett. 72 (1998) 235.

Smooth surfaceSmooth surfaceSmooth surface2.0 wt.%

1/C1/C33--V curves of the ZnV curves of the Zn--diffused CIS/Mo/SLGdiffused CIS/Mo/SLG

・Surfaces of the films n-type

・I-V rectification property

values of 1/C3

change linearly

pn-homojunctionfabricated by thermal diffusion

linearly graded junction1/

C [

x10

F

]

-33

34

CuInSe2DMZn

flow300sec.

VD

-2 -1 0 1 2REVERSE BIAS [V]

0

2

4

6

8

-1 0 1

0

0.5

1.0

[V]

[mA]

.

Impact of introducing ZnImpact of introducing Zn--diffusiondiffusion

0 0.1 0.2 0.3 0.4 0.50

5

10

15

20

CU

RR

EN

T D

EN

SIT

Y [m

A/cm

2 ]

VOLTAGE [V]

MgZnO/CIGS:Zn/CIGS

MgZnO/CdS/CIGS

3sec. DMZn flow

By 3 sec. DMZn flowinstead of CBD-CdS

Voc is improved approximately by 20 %

Issues of CIGS growthIssues of CIGS growth

0.4

0.6

0.8

1.0

1.2

VO

C[V

]BANDGAP Eg [eV]

1.0 1.2 1.4 1.6

Cu(In,Ga)Se2

CuG

aSe 2C

uInS

e 2

R. Herberholz et al. Sol. Energy Mater. Sol. Cells 49 (1997) 227.

Due to the difference in the reaction rates of the CIS and CGS

at at EgEg>1.2eV>1.2eV

Crystal quality Crystal quality ↓↓Device performance Device performance ↓↓

Cu(In,Al)Se2 (CIAS)

Issues of Cu(In,Al)SeIssues of Cu(In,Al)Se2 2 growthgrowth

Eg of CIAS1.0~2.7eV

0

1

2

3

5.2 5.4 5.6 5.8

CuInS2

CuGaS2

CuAlSe2

CuGaSe2

CuAlS2

CuInSe2B

AN

DG

AP

[eV

]

LATTICE CONSTANT [Å]

Ga/(In+Ga)=0.6

Al/(In+Al)=0.3

(CIS) (CAS)

Ideal Eg 1.4eVGa/(In+Ga) Al/(In+Al)>

CIAS

Hopefully phase separation less likely than CIGS films

XRD patterns of CIAS as a function of xXRD patterns of CIAS as a function of xX

RD

INTE

NS

ITY

[arb

. uni

ts]

52 53 54 552θ [deg.]

x=0

CIS(116/312)

CAS(116)

CAS(312)

x=0.26

x=0.19

x=0.06

x=0.03

distinct peaks corresponding to CIS CAS

or any combination of the two phases

were not observed

the decrease in lattice parameterwith the increase in x

Material Design for 3rd generation solar cell

Orthorhombicstructure

SAFE and CHEAP elements (Sn, S)Clarke numbers of the order of 31 and 15

●α ≅ 105 cm-1 [1]direct gap : 1.3eV indirect gap : 1.1eV

A promising candidate as a light-absorbing medium for next generation solar cells

Tin Sulfide (SnS)

5µm

5µm

Fabrication of SnS Solar CellFabrication of SnS Solar Cell

-1.0 -0.5 0 0.5 1.0 1.5

0

0.4

0.8

1.2

1.6

CU

RR

EN

T D

EN

SIT

Y [

mA

/cm

2]

VOLTAGE [V]

VOLTAGE [V]0 0.4 0.8

0

2.0

4.0

CU

RR

EN

TD

EN

SIT

Y [

nA

/cm

2]

under illumination

SnS Solar Cell

SLG

Mo

CdS

SnS

1.0µm

0.1µm

2.5µm

Material design for transparent solar cells

200 ∼380nm

Visibleradiation380 780nm Trans

Tran

spare

nt

Absorption↓

Power

Sunlight

Ex: Transparent solar cell

Ultravioletradiation

solar c

ell

generation

mission

CuAlO2CuGaO2CuInO2

Main p-type TCO

NiO

Transparent pn Diodes for Solar Cell

-1 0 1 2 3

0

1

2

3

4

CU

RR

EN

T [1

0-4 m

A]

VOLTAGE [V]-1 0

0.0

0.5

1.0

1.5

2.0

2.5

VOLTAGE [V]1 2C

UR

RE

NT

DE

NS

ITY

[mA/

cm2 ]

SLGITONiO

MgZnOZnO:Ga

SLGITO

CuAlO2

MgZnOZnO:Ga

SummarySummary

Progress and Prospects of Next-Generation Solar Cells

Rapid!, Cheap!, Good! FabricationRapid!, Cheap!, Good! Fabrication

・Simple and high efficiency solar cells

・Variety of fabrication technique

・Variety of Material