mw  12:50-2:05pm in beckman b302 profs: serafim batzoglou & gill bejerano

32
http://cs273a.stanford.edu [BejeranoFall13/14] 1 MW 12:50-2:05pm in Beckman B302 Profs: Serafim Batzoglou & Gill Bejeran TAs: Harendra Guturu & Panos Achlioptas CS273A Lecture 8: Transcription Regulation II

Upload: tehya

Post on 08-Jan-2016

37 views

Category:

Documents


1 download

DESCRIPTION

CS273A. Lecture 8: Transcription Regulation II. MW  12:50-2:05pm in Beckman B302 Profs: Serafim Batzoglou & Gill Bejerano TAs: Harendra Guturu & Panos Achlioptas. Announcements. Did the tutorials clash with other classes? How’s HW1 going? - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

http://cs273a.stanford.edu [BejeranoFall13/14] 1

MW  12:50-2:05pm in Beckman B302

Profs: Serafim Batzoglou & Gill Bejerano

TAs: Harendra Guturu & Panos Achlioptas

CS273A

Lecture 8: Transcription Regulation II

Page 2: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

http://cs273a.stanford.edu [BejeranoFall13/14] 2

Announcements

• Did the tutorials clash with other classes?• How’s HW1 going?• I’m curious about people’s background: can someone volunteer to start a Piazza thread and all will chime in?

Page 3: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

http://cs273a.stanford.edu [BejeranoFall13/14] 3

TTATATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCATTACCACCATATACATATCCATATCTAATCTTACTTATATGTTGTGGAAATGTAAAGAGCCCCATTATCTTAGCCTAAAAAAACCTTCTCTTTGGAACTTTCAGTAATACGCTTAACTGCTCATTGCTATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTCTCCTCCGTGCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACTAGCTTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATGATAATGCGATTAGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATGGAAAAGCTGCATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAATTGTTAATATACCTCTATACTTTAACGTCAAGGAGAAAAAACTATAATGACTAAATCTCATTCAGAAGAAGTGATTGTACCTGAGTTCAATTCTAGCGCAAAGGAATTACCAAGACCATTGGCCGAAAAGTGCCCGAGCATAATTAAGAAATTTATAAGCGCTTATGATGCTAAACCGGATTTTGTTGCTAGATCGCCTGGTAGAGTCAATCTAATTGGTGAACATATTGATTATTGTGACTTCTCGGTTTTACCTTTAGCTATTGATTTTGATATGCTTTGCGCCGTCAAAGTTTTGAACGATGAGATTTCAAGTCTTAAAGCTATATCAGAGGGCTAAGCATGTGTATTCTGAATCTTTAAGAGTCTTGAAGGCTGTGAAATTAATGACTACAGCGAGCTTTACTGCCGACGAAGACTTTTTCAAGCAATTTGGTGCCTTGATGAACGAGTCTCAAGCTTCTTGCGATAAACTTTACGAATGTTCTTGTCCAGAGATTGACAAAATTTGTTCCATTGCTTTGTCAAATGGATCATATGGTTCCCGTTTGACCGGAGCTGGCTGGGGTGGTTGTACTGTTCACTTGGTTCCAGGGGGCCCAAATGGCAACATAGAAAAGGTAAAAGAAGCCCTTGCCAATGAGTTCTACAAGGTCAAGTACCCTAAGATCACTGATGCTGAGCTAGAAAATGCTATCATCGTCTCTAAACCAGCATTGGGCAGCTGTCTATATGAATTAGTCAAGTATACTTCTTTTTTTTACTTTGTTCAGAACAACTTCTCATTTTTTTCTACTCATAACTTTAGCATCACAAAATACGCAATAATAACGAGTAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTTTCCTACGCATAATAAGAATAGGAGGGAATATCAAGCCAGACAATCTATCATTACATTTAAGCGGCTCTTCAAAAAGATTGAACTCTCGCCAACTTATGGAATCTTCCAATGAGACCTTTGCGCCAAATAATGTGGATTTGGAAAAAGAGTATAAGTCATCTCAGAGTAATATAACTACCGAAGTTTATGAGGCATCGAGCTTTGAAGAAAAAGTAAGCTCAGAAAAACCTCAATACAGCTCATTCTGGAAGAAAATCTATTATGAATATGTGGTCGTTGACAAATCAATCTTGGGTGTTTCTATTCTGGATTCATTTATGTACAACCAGGACTTGAAGCCCGTCGAAAAAGAAAGGCGGGTTTGGTCCTGGTACAATTATTGTTACTTCTGGCTTGCTGAATGTTTCAATATCAACACTTGGCAAATTGCAGCTACAGGTCTACAACTGGGTCTAAATTGGTGGCAGTGTTGGATAACAATTTGGATTGGGTACGGTTTCGTTGGTGCTTTTGTTGTTTTGGCCTCTAGAGTTGGATCTGCTTATCATTTGTCATTCCCTATATCATCTAGAGCATCATTCGGTATTTTCTTCTCTTTATGGCCCGTTATTAACAGAGTCGTCATGGCCATCGTTTGGTATAGTGTCCAAGCTTATATTGCGGCAACTCCCGTATCATTAATGCTGAAATCTATCTTTGGAAAAGATTTACAATGATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATAAAG

Page 4: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

Gene Regulation

http://cs273a.stanford.edu [BejeranoFall13/14] 4

Some proteins and non coding RNAs go “back” to bind DNA near genes, turning these genes on and off.

Gene

DNA

Proteins

Gene activation:

Page 5: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

Gene Regulatory Switches

http://cs273a.stanford.edu [BejeranoFall13/14] 5

• Gene = genomic substring that encodes HOW to make a protein (or ncRNA).

• Genomic switch = genomic substring that encodes WHEN, WHERE & HOW MUCH of a protein to make.

[1,0,0,1] [1,1,0,0]

[0,1,1,1]

Gene

Gene

Gene

Gene

B

N

BN

H

H

Page 6: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

Transcription Activation

http://cs273a.stanford.edu [BejeranoFall13/14]

Terminology:• RNA polymerase• Transcription Factor• Transcription Factor Binding Site• Promoter• Enhancer• Gene Regulatory Domain

6

TF

DNA

Page 7: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

Gene Expression Causality

Measuring gene expression over time provides sets of genes that change their expression in synchrony.

• But who regulates whom?• Some of the necessary regulators may not change their

expression level when measured, and yet be essential.

“Reading” enhancers can provide gene regulatory logic:• If present(TF A, TF B, TF C) then turn on nearby gene X

http://cs273a.stanford.edu [BejeranoFall13/14] 7

Page 8: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

Enhancer Prediction

How do TFs “sum” together to provide the activity of an enhancer?

A network of genes?

http://cs273a.stanford.edu [BejeranoFall13/14] 8

Page 9: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

Enhancer Prediction

Given a sequence of DNA predict:• Is it an enhancer? Ie, can it drive gene expression?• If so, in which cells? At which times?• Driven by which transcription factor binding sites?

Given a set of different enhancers driving expression in the same population of cells:• Do they share any logic? If so what is it?• Can you generalize this logic to find new enhancers?

http://cs273a.stanford.edu [BejeranoFall13/14] 9

Page 10: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

http://cs273a.stanford.edu [BejeranoFall13/14] 10

Transcription Regulation

is not just about activation

Page 11: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

Transcriptional Repression

http://cs273a.stanford.edu [BejeranoFall13/14]

An equally important but less visible part of transcription (tx) regulation is transcriptional repression (that lowers/ablates tx output).• Transcription factors can bind key genomic

sites, preventing/repelling the binding of – The RNA polymerase machinery– Activating transcription factors

(including via competitive binding)• Some transcription factors have stereotypical

roles as activators or repressors. Likely many can do both (in different contexts).

• DNA can be bent into 3D shape preventing enhancer – promoter interactions.

• Activator and co-activator proteins can be modified into inactive states.

Note: repressor thus can relate to specificDNA sequences or proteins.

11

Page 12: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

Transcriptional Output Prediction

http://cs273a.stanford.edu [BejeranoFall13/14]

All these can increase or decrease tx output:• Adding/repressing different proteins• Modifying DNA bases• Adding genomic context• Changing cellular context

Repression logic is harder to tease out.(need positive controls)

12

Page 13: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

http://cs273a.stanford.edu [BejeranoFall13/14] 13

Transcription & its regulationhappen in open chromatin

Page 14: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

http://cs273a.stanford.edu [BejeranoFall13/14] 14

Nucleosomes, Histones, Transcription

Chromatin / Proteins

DNA / Proteins

Genome packaging provides a critical layer of gene regulation.

Page 15: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

Gene Activation / Repression via Chromatin Remodeling

A dedicated machinery opens and closes chromatin.

Interactions with this machinery turns genes and/or gene regulatory regions like enhancers and repressors on or off(by making the genomic DNA in/accessible)

http://cs273a.stanford.edu [BejeranoFall13/14] 15

Page 16: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

Chromosome Centromere

http://cs273a.stanford.edu [BejeranoFall13/14] 16

Centromere:

region of DNA typically found near the middle of a chromosome where two identical sister chromatids come in contact. It is involved in cell division

Page 17: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

Heterochromatin & Euchromatin

http://cs273a.stanford.edu [BejeranoFall13/14] 17

Heterochromatin:

Tightly coiled chromosome material; believed to be mostly genetically inactive.

Euchromatin:

Where temporal opening and closing of chromatin (“nucleosome positioning”) and transcription takes place.

Page 18: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

Insulators

http://cs273a.stanford.edu [BejeranoFall13/14]

Insulators are DNA sequences that when placed between target gene and enhancer prevent enhancer from acting on the gene.•Known insulators contain binding sites for a specific DNA binding protein (CTCF) that is involved in DNA 3D conformation.

•However, CTCF fulfills additional roles besides insulation. I.e, the presence of a CTCF site does not ensure that a genomic region acts as an insulator.

18

TSS1 TSS2

Insulator

Page 19: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

http://cs273a.stanford.edu [BejeranoFall13/14] 19

Histone Tails, Histone Marks

DNA is wrapped around nucleosomes.

Nucleosomes are made of histones.

Histones have free tails.

Residues in the tails are modified in specific patterns in conjunction with specific gene regulation activity.

Page 20: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

Histone Mark Correlation Examples

Active gene promoters are marked by H3K4me3

Silenced gene promoters are marked by H3K27me3

p300, a protein component of many active enhancers acetylates H3k27Ac.

http://cs273a.stanford.edu [BejeranoFall13/14] 20

Page 21: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

Measuring these different states

http://cs273a.stanford.edu [BejeranoFall13/14] 21

Note that the DNA itself doesn’t change. We sequence different portions of it thatare currently in different states (bound by a TF, wrapped around a nucleosome etc.)

Page 22: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

Epigenomics: study all these marks genomewide

http://cs273a.stanford.edu [BejeranoFall13/14] 22

Translate observationsinto current genome state.

Page 23: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

Obtain a network of all active genes & DNA

http://cs273a.stanford.edu [BejeranoFall13/14] 23

Now what?(to be revisited)

“Ridicilogram”

Page 24: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

Histone Code Hypothesis

Histone modifications serve to recruit other proteins by specific recognition of the modified histone via protein domains specialized for such purposes, rather than through simply stabilizing or destabilizing the interaction between histone and the underlying DNA.

http://cs273a.stanford.edu [BejeranoFall13/14] 24

histonemodification:

writer

reader

eraser…

Page 25: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

Epigenomics is not Epigenetics

Epigenetics is the study of heritable changes in gene expression or cellular phenotype, caused by mechanisms other than changes in the underlying DNA sequence

There are objections to the use of the term epigenetic to describe chemical modification of histone, since it remains unknown whether or not these modifications are heritable.

http://cs273a.stanford.edu [BejeranoFall13/14] 25

Page 26: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

Signal Transduction

Everything we discussed so far happens within the cell.

But cells talk to each other, copiously.

http://cs273a.stanford.edu [BejeranoFall13/14] 26

Page 27: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

Enhancers as Integrators

http://cs273a.stanford.edu [BejeranoFall13/14] 27

Gene

IF the cell ispart of a certain tissueANDreceives a certain signal

THEN turn Gene ON

Page 28: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

http://cs273a.stanford.edu [BejeranoFall13/14] 28

Gene Regulation

Chromatin / Proteins

DNA / Proteins

Extracellular signals

Page 29: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

http://cs273a.stanford.edu [BejeranoFall13/14] 29

Cis-Regulatory Components

Low level (“atoms”):• Promoter motifs (TATA box, etc)• Transcription factor binding sites (TFBS)

Mid Level:• Promoter• Enhancers• Repressors/silencers• Insulators/boundary elements• Locus control regions

High Level:• Epigenomic domains / signatures• Gene expression domains• Gene regulatory networks

Page 30: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

We are technically DONE with genome function

Biology – not that complicated!!

Functional part list • In our genome:

• Gene• Protein coding• Non coding / RNA genes

• Gene regulatory elements• “Atomic” event: transcription factor binding site• Build up: promoters, enhancers, silencers, gene reg. domain

• “Around” our genome• Chromatin – open / closed• Epigenomic (and some epigenetic) marks

http://cs273a.stanford.edu [BejeranoFall13/14] 30

Page 31: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

Actually almost done…

We’ve talked about transcripts and their regulation.

We’re still ignoring most of the genome…

http://cs273a.stanford.edu [BejeranoFall13/14] 31

Type # in genome % of genome

genes 25,000 2%

ncRNA 15,000 1%

cis elements 1,000,000 >10%

Page 32: MW   12:50-2:05pm  in Beckman B302 Profs: Serafim  Batzoglou  & Gill  Bejerano

http://cs273a.stanford.edu [BejeranoFall13/14] 32

To be continued